Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models

Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic pa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of personalized medicine Vol. 11; no. 6; p. 496
Main Authors: Jalili, Mahdi, Scharm, Martin, Wolkenhauer, Olaf, Damaghi, Mehdi, Salehzadeh-Yazdi, Ali
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2021
MDPI
Subjects:
ISSN:2075-4426, 2075-4426
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
AbstractList Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
Author Jalili, Mahdi
Scharm, Martin
Damaghi, Mehdi
Salehzadeh-Yazdi, Ali
Wolkenhauer, Olaf
AuthorAffiliation 4 Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; mehdi.damaghi@moffitt.org
3 Wallenberg Research Centre, Stellenbosch Institute for Advanced Study (STIAS), Stellenbosch University, 10 Marais Street, Stellenbosch 7600, South Africa
5 Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
2 Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; martin.scharm@uni-rostock.de (M.S.); olaf.wolkenhauer@uni-rostock.de (O.W.)
1 Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran 14114, Iran
AuthorAffiliation_xml – name: 4 Department of Cancer Physiology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; mehdi.damaghi@moffitt.org
– name: 2 Department of Systems Biology and Bioinformatics, University of Rostock, 18051 Rostock, Germany; martin.scharm@uni-rostock.de (M.S.); olaf.wolkenhauer@uni-rostock.de (O.W.)
– name: 5 Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
– name: 1 Hematology, Oncology and SCT Research Center, Tehran University of Medical Sciences, Tehran 14114, Iran
– name: 3 Wallenberg Research Centre, Stellenbosch Institute for Advanced Study (STIAS), Stellenbosch University, 10 Marais Street, Stellenbosch 7600, South Africa
Author_xml – sequence: 1
  givenname: Mahdi
  orcidid: 0000-0002-5491-089X
  surname: Jalili
  fullname: Jalili, Mahdi
– sequence: 2
  givenname: Martin
  surname: Scharm
  fullname: Scharm, Martin
– sequence: 3
  givenname: Olaf
  surname: Wolkenhauer
  fullname: Wolkenhauer, Olaf
– sequence: 4
  givenname: Mehdi
  orcidid: 0000-0002-7744-6161
  surname: Damaghi
  fullname: Damaghi, Mehdi
– sequence: 5
  givenname: Ali
  orcidid: 0000-0002-1678-0051
  surname: Salehzadeh-Yazdi
  fullname: Salehzadeh-Yazdi, Ali
BookMark eNptkU1r3DAQhkVJaT6aU_-AoZdAcapvWz0EkiVtCrvkkOYaIcvjXW29kiPJJfn38bIhpCFzmYH3mZd3mEO054MHhL4QfMqYwt_Xw4YQLDFX8gM6oLgSJedU7r2a99FxSms8VS0olfgT2mecYqEIPUB3lw9DH6LzyyKvoFhANk3onS2uIEMMS_Dg8mMRumJmvIWYfhTnxQV4u9qY-Le4yWO7U4PP8JDLmwGs66b9RWihT5_Rx870CY6f-xG6_Xn5Z3ZVzq9__Z6dz0vLBc0lYJACSEdZU1MlOkwqLi3pQDQGGMYGS8VsLVSlrOwUblgDvG2ZoqaqGKHsCJ3tfIex2UBrwedoej1EN8V81ME4_b_i3Uovwz9dU6pYxSeDk2eDGO5HSFlvXLLQ98ZDGJOmgtdMVVSSCf36Bl2HMfrpvC3F65pjtU30bUfZGFKK0L2EIVhvX6dfvW6iyRvaumyyC9u0rn935wkDCpxJ
CitedBy_id crossref_primary_10_1007_s10555_021_10006_2
crossref_primary_10_3390_cancers13143541
crossref_primary_10_3390_biology10111115
crossref_primary_10_3390_cancers13164130
crossref_primary_10_1016_j_csbj_2022_06_027
crossref_primary_10_1039_D3MO00152K
crossref_primary_10_1016_j_csbj_2021_08_004
crossref_primary_10_3389_fphar_2024_1412672
crossref_primary_10_1371_journal_pcbi_1009294
crossref_primary_10_1098_rsos_220633
Cites_doi 10.3389/fphys.2013.00237
10.1191/096228099673819272
10.1371/journal.pcbi.1006936
10.1016/j.febslet.2009.09.031
10.1038/s41587-020-0477-4
10.11613/BM.2015.015
10.1038/msb.2011.51
10.1093/nar/30.1.207
10.1038/s42255-020-0172-2
10.1371/journal.pcbi.1003837
10.1016/j.ygeno.2015.03.001
10.1016/j.cels.2017.12.014
10.1016/j.ebiom.2017.04.009
10.1038/nbt.4072
10.1016/j.cmet.2015.12.006
10.1038/nprot.2011.308
10.1126/science.aan2507
10.1016/j.coisb.2019.02.009
10.1016/j.compbiolchem.2016.03.002
10.1101/301945
10.1371/journal.pcbi.1003580
10.1155/2019/8304260
10.1093/nar/gkw936
10.1186/1752-0509-6-153
10.1016/j.cels.2015.12.004
10.1085/jgp.8.6.519
10.1038/nmeth.2728
10.1016/j.pharmthera.2012.11.003
10.32614/CRAN.package.randomForestExplainer
10.1158/0008-5472.CAN-12-2215
10.1186/s12967-019-2042-9
10.1126/science.1260419
10.1016/j.jbi.2017.02.014
10.1371/journal.pcbi.1003424
10.1101/384099
10.1371/journal.pcbi.1002018
10.1073/pnas.2011342118
10.1371/journal.pcbi.1007084
10.1016/j.cels.2017.01.010
10.1016/j.celrep.2013.07.018
10.1101/023010
10.1016/S1040-8428(01)00144-5
10.1093/nar/gky992
10.15252/msb.20134993
10.1101/357137
10.1093/nar/gky964
10.4103/1477-3163.113622
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/jpm11060496
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4426
ExternalDocumentID PMC8229374
10_3390_jpm11060496
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ADBBV
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
DIK
EMOBN
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c452t-e0e65e1f23b8295f01746c1fe5bae300a0693c85979c6f90b3be4dd392a773123
IEDL.DBID PIMPY
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000666318600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4426
IngestDate Tue Nov 04 02:00:53 EST 2025
Thu Oct 02 04:57:53 EDT 2025
Mon Dec 01 09:10:52 EST 2025
Tue Nov 18 21:07:12 EST 2025
Sat Nov 29 07:18:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-e0e65e1f23b8295f01746c1fe5bae300a0693c85979c6f90b3be4dd392a773123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work as first authors.
ORCID 0000-0002-1678-0051
0000-0002-7744-6161
0000-0002-5491-089X
OpenAccessLink https://www.proquest.com/publiccontent/docview/2544884092?pq-origsite=%requestingapplication%
PMID 34205912
PQID 2544884092
PQPubID 2032376
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8229374
proquest_miscellaneous_2548397261
proquest_journals_2544884092
crossref_primary_10_3390_jpm11060496
crossref_citationtrail_10_3390_jpm11060496
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of personalized medicine
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
ref_14
ref_13
Lieven (ref_45) 2020; 38
ref_53
ref_52
ref_51
ref_19
Upadhyay (ref_55) 2013; 137
ref_18
ref_17
Fouladiha (ref_12) 2017; 68
ref_16
ref_15
Kassambara (ref_41) 2017; 1
Sun (ref_54) 2002; 41
Lewis (ref_9) 2013; 4
ref_25
ref_24
ref_23
ref_22
ref_21
ref_20
Bass (ref_39) 2013; 10
ref_29
ref_27
Angione (ref_34) 2019; 2019
Bland (ref_40) 1986; 47
DeBerardinis (ref_2) 2020; 2
Edgar (ref_28) 2002; 30
Liaw (ref_42) 2002; 2
ref_36
ref_35
ref_33
ref_32
ref_31
Palsson (ref_11) 2009; 583
ref_37
Gholami (ref_26) 2013; 4
Jaccard (ref_38) 1901; 37
Brunk (ref_30) 2018; 36
Cho (ref_10) 2019; 15
Pavlova (ref_3) 2016; 23
ref_47
ref_46
ref_44
ref_43
ref_49
ref_48
ref_8
ref_5
Warburg (ref_1) 1927; 8
ref_4
ref_7
ref_6
References_xml – volume: 4
  start-page: 237
  year: 2013
  ident: ref_9
  article-title: The evolution of genome-scale models of cancer metabolism
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00237
– ident: ref_49
  doi: 10.1191/096228099673819272
– ident: ref_51
– ident: ref_46
  doi: 10.1371/journal.pcbi.1006936
– volume: 583
  start-page: 3900
  year: 2009
  ident: ref_11
  article-title: Metabolic systems biology
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.09.031
– volume: 38
  start-page: 504
  year: 2020
  ident: ref_45
  article-title: MEMOTE for standardized genome-scale metabolic model testing
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0477-4
– ident: ref_50
  doi: 10.11613/BM.2015.015
– ident: ref_17
  doi: 10.1038/msb.2011.51
– volume: 30
  start-page: 207
  year: 2002
  ident: ref_28
  article-title: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 2
  start-page: 127
  year: 2020
  ident: ref_2
  article-title: We need to talk about the Warburg effect
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-0172-2
– ident: ref_21
  doi: 10.1371/journal.pcbi.1003837
– ident: ref_22
  doi: 10.1016/j.ygeno.2015.03.001
– ident: ref_4
  doi: 10.1016/j.cels.2017.12.014
– ident: ref_6
  doi: 10.1016/j.ebiom.2017.04.009
– volume: 36
  start-page: 272
  year: 2018
  ident: ref_30
  article-title: Recon3D enables a three-dimensional view of gene variation in human metabolism
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4072
– volume: 23
  start-page: 27
  year: 2016
  ident: ref_3
  article-title: The Emerging Hallmarks of Cancer Metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2015.12.006
– ident: ref_27
– volume: 37
  start-page: 241
  year: 1901
  ident: ref_38
  article-title: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines
  publication-title: Bull. Soc. Vaudoise Sci. Nat.
– ident: ref_44
  doi: 10.1038/nprot.2011.308
– ident: ref_23
  doi: 10.1126/science.aan2507
– volume: 15
  start-page: 1
  year: 2019
  ident: ref_10
  article-title: Reconstruction of context-specific genome-scale metabolic models using multiomics data to study metabolic rewiring
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2019.02.009
– ident: ref_35
  doi: 10.1016/j.compbiolchem.2016.03.002
– ident: ref_15
  doi: 10.1101/301945
– ident: ref_13
  doi: 10.1371/journal.pcbi.1003580
– volume: 2019
  start-page: 16
  year: 2019
  ident: ref_34
  article-title: Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine
  publication-title: Biomed Res. Int.
  doi: 10.1155/2019/8304260
– volume: 47
  start-page: 931
  year: 1986
  ident: ref_40
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– volume: 1
  start-page: 337
  year: 2017
  ident: ref_41
  article-title: Factoextra: Extract and Visualize the Results of Multivariate Data Analyses
  publication-title: R Packag. Vers.
– ident: ref_29
  doi: 10.1093/nar/gkw936
– ident: ref_47
– ident: ref_18
  doi: 10.1186/1752-0509-6-153
– ident: ref_36
  doi: 10.1016/j.cels.2015.12.004
– volume: 8
  start-page: 519
  year: 1927
  ident: ref_1
  article-title: The metabolism of tumors in the body
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.8.6.519
– volume: 10
  start-page: 1169
  year: 2013
  ident: ref_39
  article-title: Using networks to measure similarity between genes: Association index selection
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2728
– volume: 137
  start-page: 318
  year: 2013
  ident: ref_55
  article-title: The Warburg effect: Insights from the past decade
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2012.11.003
– ident: ref_43
  doi: 10.32614/CRAN.package.randomForestExplainer
– ident: ref_19
  doi: 10.1158/0008-5472.CAN-12-2215
– ident: ref_7
  doi: 10.1186/s12967-019-2042-9
– ident: ref_24
  doi: 10.1126/science.1260419
– volume: 68
  start-page: 35
  year: 2017
  ident: ref_12
  article-title: Biomedical applications of cell- and tissue-specific metabolic network models
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2017.02.014
– ident: ref_32
  doi: 10.1371/journal.pcbi.1003424
– ident: ref_37
  doi: 10.1101/384099
– ident: ref_16
  doi: 10.1371/journal.pcbi.1002018
– ident: ref_33
– ident: ref_48
  doi: 10.1073/pnas.2011342118
– ident: ref_5
  doi: 10.1371/journal.pcbi.1007084
– ident: ref_14
  doi: 10.1016/j.cels.2017.01.010
– volume: 4
  start-page: 609
  year: 2013
  ident: ref_26
  article-title: Global proteome analysis of the NCI-60 cell line panel
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.07.018
– ident: ref_52
  doi: 10.1101/023010
– volume: 41
  start-page: 41
  year: 2002
  ident: ref_54
  article-title: Retinoids and their receptors in cancer development and chemoprevention
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/S1040-8428(01)00144-5
– ident: ref_31
  doi: 10.1093/nar/gky992
– ident: ref_20
  doi: 10.15252/msb.20134993
– ident: ref_53
  doi: 10.1101/357137
– ident: ref_25
  doi: 10.1093/nar/gky964
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_42
  article-title: Classification and Regression by randomForest
  publication-title: R News
– ident: ref_8
  doi: 10.4103/1477-3163.113622
SSID ssj0000852260
Score 2.2263725
Snippet Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific...
SourceID pubmedcentral
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 496
SubjectTerms Algorithms
Biomarkers
Cancer
Consortia
Gene expression
Genomes
Genomics
Metabolism
Metabolites
Metastasis
Phenotypes
Precision medicine
Proteins
Proteomics
Title Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models
URI https://www.proquest.com/docview/2544884092
https://www.proquest.com/docview/2548397261
https://pubmed.ncbi.nlm.nih.gov/PMC8229374
Volume 11
WOSCitedRecordID wos000666318600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4426
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852260
  issn: 2075-4426
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swED7WZIy9rPtJs3ZBgz4NTBxLluy9jLa0dLAEM7aRvcxYskS7tnYWp_v7d2crbgNjT3s-CQnupPvu9OkO4JBLHeupiYOSx2kgCsEDncQuQGRbRiosi6RNXXz7pObzZLFIM_89uvG0ys2d2F7UXbVn4m3jJTwpa0MZ8wkV1kooNok-LH8F1EOK3lp9Q40dGJI8HMAw-zjLvvc5F4QXiDbC7psex2h_8nN5g_5PIkyW247pDm1ucyXvOZ-z3f-77afwxINQdtRZzTN4YKvn8Gjmn9lfwI-emccQH7KZXaOp4ELsnMgzNdqcRfDOasdOyGhWzXt2xI7R3i9uitUVI25iJ6WNYWTdNrl3OJ86r103L-Hr2emXk_PAN2IIjIijdWBDK2M7dRHXSZTGDk-xkGbqbKwLy8OwCGXKTYKxSWqkS0PNtRVlidCrUIqjb3wFg6qu7B4wIRxCLFlK66zAUKzQyojUlkroxGqnRvBuo4Xc-Crl1CzjOsdohVSW31PZCA77wcuuOMffhx1sdJP7E9rkd6oYwdtejGeLHkyKyta37RjEjwqDzBGoLTPol6Pq3NuS6vKirdJNlfS5Eq__vfg-PI6IJdPmdQ5gsF7d2jfw0PxeXzarMeyoRTKG4fHpPPs8Jl5qNvZG_QdJBQf0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWwRceCMWChipXJCsemPHTpAQKoVqV91drURB5dIQO466sE2WTcrjT_EbGefVroS49cDZlqxkPo-_GX-eAdjmUvt6YHyacD-kIhac6sBPKTLbxFMsiYMqdfFxrKbT4OgonG3A7_YtjJNVtj6xctRJblyOfMeV0gpcNOK9Xn6jrmuUu11tW2jUsDiwv35gyFa8Gr1F-z73vP13h3tD2nQVoEb4Xkkts9K3g9TjOvBCP0VICmkGqfV1bDljMZMhNwES7dDINGSaayuSBHlErBQfuEIH6PI3BYKd9WBzNprMPnVZHSQwyGdY_RCQ85DtfFme4gkrkYjL9aPvnM-uqzEvHG_7N_-3H3MLbjREmuzWyL8NGza7A1cnjVTgLhx36kKCHJdMbIlwX8wNGToBUI77xmIAQvKU7Dngr4qXZJe8wT17chqvvhKnr6xHXfmunyV9v7SVfJG47nGL4h58uJSvuw-9LM_sAyBCpEgTZSJtagWGk7FWRoQ2UUIHVqeqDy9aO0emqbTuGn4sIoy4HCiiC6Dow3Y3eVkXGPn7tK3W-lHjZYro3PR9eNYNo39wlz5xZvOzag5yYIWBch_UGtC65VyF8fWRbH5SVRp33QC4Eg__vfhTuDY8nIyj8Wh68Aiue071U-WptqBXrs7sY7hivpfzYvWk2S4EPl82EP8AaxhUiA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1La9wwEB7CpoRe-i7dJG1VSC8FsV5LluxCKXktCUmWpS9yqmPJEtl2Y2_XTh9_rb-uI7-ShdJbDj1LIGx9M_pm9GkGYIsJFaihDmjKgojyhDOqwsBSZLapL700CavUxadjOR6Hp6fRZAV-t29hnKyy9YmVo05z7XLkA1dKK3TRiD-wjSxisjd6O_9GXQcpd9PattOoIXJkfv3A8K14c7iHe_3S90f7H3YPaNNhgGoe-CU1nhGBGVqfqdCPAovw5EIPrQlUYpjnJZ6ImA6RdEda2MhTTBmepsgpEinZ0BU9QPe_KhkGPT1Y3dkfT951GR4kM8htvPpRIGORN_gyv8DTViApF8vH4BW3XVZmXjvqRnf_5590D-40BJts1xZxH1ZM9gDWThoJwUP43KkOCXJfcmJKNIPZVJMDJwzK0Z4MBiYkt2TXGcSieE22yQ7a8vlFsvhKnO6yHnVlvX6W9P3cVLJG4rrKzYpH8PFGvu4x9LI8M0-AcG6RPopUGGs4hpmJkppHJpVchUZZ2YdX7Z7HuqnA7hqBzGKMxBxA4msA6cNWN3leFx75-7TNFglx432K-AoGfXjRDaPfcJdBSWbyy2oOcmOJAXQf5BLouuVc5fHlkWx6XlUgd10CmOTr_178Oawh-uLjw_HRBtz2nRioSl9tQq9cXJqncEt_L6fF4lljOQTObhqHfwA6g10i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Metabolic+Heterogeneity+of+Cancers%3A+A+Benchmark+Study+of+Context-Specific+Models&rft.jtitle=Journal+of+personalized+medicine&rft.au=Jalili%2C+Mahdi&rft.au=Scharm%2C+Martin&rft.au=Wolkenhauer%2C+Olaf&rft.au=Damaghi%2C+Mehdi&rft.date=2021-06-01&rft.issn=2075-4426&rft.eissn=2075-4426&rft.volume=11&rft.issue=6&rft_id=info:doi/10.3390%2Fjpm11060496&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4426&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4426&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4426&client=summon