Salicylic acid: biosynthesis, perception, and contributions to plant immunity

•Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current opinion in plant biology Ročník 50; s. 29 - 36
Hlavní autoři: Zhang, Yuelin, Li, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.08.2019
Témata:
ISSN:1369-5266, 1879-0356, 1879-0356
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstream defence genes.•SA-binding inhibits NPR3/NPR4, leading to de-repression of SA-responsive genes. Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
AbstractList •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstream defence genes.•SA-binding inhibits NPR3/NPR4, leading to de-repression of SA-responsive genes. Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.
Author Zhang, Yuelin
Li, Xin
Author_xml – sequence: 1
  givenname: Yuelin
  surname: Zhang
  fullname: Zhang, Yuelin
  email: yuelin.zhang@ubc.ca
  organization: Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
– sequence: 2
  givenname: Xin
  surname: Li
  fullname: Li, Xin
  organization: Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30901692$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2L1TAUhoOMOB_6A9xIly6mNTltkltdyaCjMOJCXYc0PcVzaZOapML99-ZyRxezGBchHzzPIbzvJTvzwSNjLwVvBBfqzb5ZB2qAi77h0HDePWEXYqf7mrdSnZVzq_paglLn7DKlPedcgm6fsfOW98Xv4YJ9-WZncoeyKutofFsNFNLB55-YKF1XK0aHa6bgryvrx8oFnyMN2_ElVTlU62x9rmhZNk_58Jw9neyc8MX9fsV-fPzw_eZTfff19vPN-7vadRJyPSq0KAfX9Z0YQE-2Qy0HKbsdTAhC8bEF2-60BgnlzgftLGiclB6t7IRtr9jr09w1hl8bpmwWSg7n8hkMWzIAxQLFZfd_VPRKCi3UrqCv7tFtWHA0a6TFxoP5m1YBxAlwMaQUcfqHCG6OjZi9KY2YYyOGgymNFEc_cBxle8wvR0vzo-a7k4klyd-E0SRH6B2OFNFlMwZ6xP4DY-OkkQ
CitedBy_id crossref_primary_10_3389_fpls_2023_1211825
crossref_primary_10_1021_acs_jafc_5c05099
crossref_primary_10_1038_s41438_020_00436_4
crossref_primary_10_1371_journal_pone_0281470
crossref_primary_10_1111_mpp_13415
crossref_primary_10_3390_jof10090635
crossref_primary_10_1016_j_plaphy_2023_108192
crossref_primary_10_1093_jxb_erae475
crossref_primary_10_1016_j_sajb_2024_04_012
crossref_primary_10_3389_fpls_2020_579772
crossref_primary_10_1016_j_bbrc_2021_10_058
crossref_primary_10_1093_jxb_erab084
crossref_primary_10_1186_s40538_023_00468_7
crossref_primary_10_3389_fmicb_2022_857160
crossref_primary_10_1007_s42976_021_00236_z
crossref_primary_10_3390_ijms20246365
crossref_primary_10_1111_mec_70092
crossref_primary_10_3390_ijms222212093
crossref_primary_10_1007_s10340_022_01583_4
crossref_primary_10_1111_tpj_16890
crossref_primary_10_1007_s12298_024_01452_7
crossref_primary_10_1094_PHYTO_04_24_0125_R
crossref_primary_10_3390_plants11030293
crossref_primary_10_1111_tpj_15445
crossref_primary_10_1021_acs_jafc_4c08160
crossref_primary_10_3390_ijms252413244
crossref_primary_10_3390_genes15091237
crossref_primary_10_3390_plants11091100
crossref_primary_10_1016_j_plaphy_2021_10_026
crossref_primary_10_1093_hr_uhaf013
crossref_primary_10_3390_biology14010018
crossref_primary_10_1111_pce_14560
crossref_primary_10_1111_pce_15098
crossref_primary_10_1111_ppl_14012
crossref_primary_10_1111_nph_17218
crossref_primary_10_1111_pbi_14097
crossref_primary_10_3389_fpls_2021_777884
crossref_primary_10_1111_tpj_70166
crossref_primary_10_1186_s12870_023_04569_1
crossref_primary_10_1007_s00344_024_11586_3
crossref_primary_10_1007_s44154_023_00140_y
crossref_primary_10_1007_s13562_021_00764_z
crossref_primary_10_1016_j_ijfoodmicro_2020_108807
crossref_primary_10_3390_genes14112030
crossref_primary_10_1186_s13007_024_01165_8
crossref_primary_10_1111_ppl_13975
crossref_primary_10_1016_j_plaphy_2021_10_011
crossref_primary_10_1186_s42483_024_00289_y
crossref_primary_10_1016_j_sajb_2024_01_029
crossref_primary_10_3389_fpls_2020_603518
crossref_primary_10_3390_f12081090
crossref_primary_10_1016_j_jplph_2022_153616
crossref_primary_10_1111_ppl_13978
crossref_primary_10_1186_s12870_023_04156_4
crossref_primary_10_1093_plcell_koae329
crossref_primary_10_3390_horticulturae11060660
crossref_primary_10_1146_annurev_arplant_081320_092855
crossref_primary_10_1111_ppl_14387
crossref_primary_10_3389_fpls_2022_1038467
crossref_primary_10_3389_fpls_2021_805614
crossref_primary_10_3390_genes14040923
crossref_primary_10_1111_ppl_70172
crossref_primary_10_1094_PHYTO_12_21_0521_R
crossref_primary_10_3390_ijms232112974
crossref_primary_10_1016_j_cell_2020_04_028
crossref_primary_10_1111_ppl_70174
crossref_primary_10_3389_fpls_2022_878076
crossref_primary_10_3390_plants11020156
crossref_primary_10_4103_wjtcm_wjtcm_20_21
crossref_primary_10_1007_s42729_020_00316_9
crossref_primary_10_3103_S0096392525600139
crossref_primary_10_3389_fpls_2022_836582
crossref_primary_10_1093_hr_uhad295
crossref_primary_10_1111_jipb_13780
crossref_primary_10_1016_j_pmpp_2025_102718
crossref_primary_10_3390_ijms24032583
crossref_primary_10_1016_j_aac_2023_09_002
crossref_primary_10_1002_npp2_70022
crossref_primary_10_3389_fpls_2022_971371
crossref_primary_10_12677_IJE_2023_122025
crossref_primary_10_1242_dev_189647
crossref_primary_10_3390_f15111896
crossref_primary_10_1002_ps_7600
crossref_primary_10_1038_s41467_023_44356_y
crossref_primary_10_1073_pnas_2108242118
crossref_primary_10_14348_molcells_2023_0127
crossref_primary_10_3390_plants10050903
crossref_primary_10_1080_15592324_2019_1671122
crossref_primary_10_3390_plants10020282
crossref_primary_10_1016_j_postharvbio_2023_112589
crossref_primary_10_12677_ojns_2025_133072
crossref_primary_10_3390_jof9121169
crossref_primary_10_3389_fpls_2020_551201
crossref_primary_10_3389_fbioe_2023_1150842
crossref_primary_10_1002_pi_6131
crossref_primary_10_1038_s41586_025_09280_9
crossref_primary_10_1038_s41467_021_27489_w
crossref_primary_10_32604_phyton_2022_023733
crossref_primary_10_1007_s42535_022_00358_7
crossref_primary_10_1016_j_plaphy_2020_04_006
crossref_primary_10_3389_fpls_2022_1106123
crossref_primary_10_3390_ijms252413397
crossref_primary_10_1111_mpp_13457
crossref_primary_10_3390_ijms23105568
crossref_primary_10_3390_agronomy12123151
crossref_primary_10_1186_s43897_025_00174_y
crossref_primary_10_1007_s10658_021_02404_7
crossref_primary_10_1111_jipb_13611
crossref_primary_10_1080_01904167_2025_2538633
crossref_primary_10_1111_ppl_70136
crossref_primary_10_3389_fpls_2022_995178
crossref_primary_10_3389_fpls_2023_1213257
crossref_primary_10_1080_17429145_2023_2255597
crossref_primary_10_1111_mpp_13102
crossref_primary_10_3390_ijms241814210
crossref_primary_10_3390_ijms20092335
crossref_primary_10_3389_fpls_2020_00908
crossref_primary_10_3390_ijms23042175
crossref_primary_10_1016_j_tibs_2023_05_004
crossref_primary_10_1111_nph_17251
crossref_primary_10_1007_s10725_024_01147_9
crossref_primary_10_1016_j_cell_2020_07_020
crossref_primary_10_1016_j_stress_2025_100989
crossref_primary_10_3390_ijms23105438
crossref_primary_10_3390_ijms25137452
crossref_primary_10_3390_biology13040219
crossref_primary_10_3390_plants13081129
crossref_primary_10_1007_s00425_020_03467_2
crossref_primary_10_1007_s00425_024_04355_9
crossref_primary_10_3389_fpls_2023_1231013
crossref_primary_10_1016_j_tplants_2020_04_004
crossref_primary_10_1038_s41477_020_0741_0
crossref_primary_10_1007_s00299_022_02961_z
crossref_primary_10_1093_plphys_kiae260
crossref_primary_10_3389_fgene_2021_751040
crossref_primary_10_1016_j_envexpbot_2020_104040
crossref_primary_10_3389_fagro_2021_781027
crossref_primary_10_1016_j_molp_2022_11_011
crossref_primary_10_3389_fpls_2021_787435
crossref_primary_10_15252_embj_2023113499
crossref_primary_10_1080_21541264_2020_1820300
crossref_primary_10_1111_nph_16270
crossref_primary_10_3390_ijms22095001
crossref_primary_10_3390_ijms232214019
crossref_primary_10_1007_s10811_023_03113_w
crossref_primary_10_3390_ijms23105348
crossref_primary_10_1080_07388551_2021_2007842
crossref_primary_10_3390_biom11060788
crossref_primary_10_3390_molecules27186028
crossref_primary_10_3389_fpls_2020_00583
crossref_primary_10_1007_s10658_020_02067_w
crossref_primary_10_1093_hr_uhae078
crossref_primary_10_1016_j_envexpbot_2022_105065
crossref_primary_10_1016_j_scienta_2022_111526
crossref_primary_10_3390_plants9040495
crossref_primary_10_1016_j_hpj_2022_04_005
crossref_primary_10_1016_j_pbi_2021_102039
crossref_primary_10_1016_j_plaphy_2023_107768
crossref_primary_10_3390_ijms232315436
crossref_primary_10_1111_tpj_17242
crossref_primary_10_3390_ijms21031097
crossref_primary_10_1111_tpj_15068
crossref_primary_10_1111_nph_18324
crossref_primary_10_1371_journal_pone_0306340
crossref_primary_10_3390_ijms242417448
crossref_primary_10_1038_s41438_021_00597_w
crossref_primary_10_1093_plcell_koae142
crossref_primary_10_1111_1744_7917_12820
crossref_primary_10_1111_pce_14501
crossref_primary_10_1016_j_plaphy_2020_04_034
crossref_primary_10_1007_s11427_024_2684_8
crossref_primary_10_1016_j_cj_2023_08_001
crossref_primary_10_1016_j_plaphy_2020_10_026
crossref_primary_10_3390_life12101496
crossref_primary_10_1111_jipb_13621
crossref_primary_10_3389_fagro_2022_825087
crossref_primary_10_3389_fpls_2020_00338
crossref_primary_10_1111_tpj_16393
crossref_primary_10_3389_fpls_2021_690857
crossref_primary_10_3390_biology11060861
crossref_primary_10_3390_ijms232113576
crossref_primary_10_3390_plants12051013
crossref_primary_10_7717_peerj_13214
crossref_primary_10_1016_j_hpj_2022_07_009
crossref_primary_10_1002_ps_70073
crossref_primary_10_1007_s00299_024_03348_y
crossref_primary_10_1007_s00344_022_10613_5
crossref_primary_10_1080_07388551_2025_2498463
crossref_primary_10_1007_s10327_024_01191_3
crossref_primary_10_3390_plants12101962
crossref_primary_10_1093_hr_uhab064
crossref_primary_10_1016_j_scienta_2023_112797
crossref_primary_10_1093_jxb_erac442
crossref_primary_10_1093_plcell_koaa045
crossref_primary_10_3103_S0095452722050048
crossref_primary_10_1093_plcell_koaa047
crossref_primary_10_15252_embj_2022110682
crossref_primary_10_1016_j_indcrop_2022_114948
crossref_primary_10_1080_15592324_2023_2270835
crossref_primary_10_3390_biology14050528
crossref_primary_10_3390_plants9030303
crossref_primary_10_1038_s41598_021_00209_6
crossref_primary_10_3390_horticulturae9101070
crossref_primary_10_3389_fpls_2023_1224736
crossref_primary_10_1007_s44372_025_00274_5
crossref_primary_10_1093_plcell_koaf051
crossref_primary_10_48130_ph_0025_0003
crossref_primary_10_1007_s00203_021_02200_1
crossref_primary_10_3390_plants12213785
crossref_primary_10_1016_j_chom_2022_07_001
crossref_primary_10_1111_plb_13647
crossref_primary_10_1007_s00425_022_04010_1
crossref_primary_10_1111_pce_13874
crossref_primary_10_3390_ijms23063377
crossref_primary_10_1016_j_cj_2024_05_012
crossref_primary_10_1080_15548627_2021_1987674
crossref_primary_10_1111_pce_14288
crossref_primary_10_1186_s12870_022_03939_5
crossref_primary_10_1093_hr_uhad116
crossref_primary_10_1093_genetics_iyaf116
crossref_primary_10_3390_plants11010057
crossref_primary_10_1111_pbi_13603
crossref_primary_10_1007_s11816_022_00806_5
crossref_primary_10_1111_tpj_15010
crossref_primary_10_1111_tpj_16223
crossref_primary_10_1371_journal_pone_0288169
crossref_primary_10_1016_j_scienta_2024_113714
crossref_primary_10_3390_plants13141925
crossref_primary_10_1016_j_plaphy_2025_109780
crossref_primary_10_3389_fpls_2023_1328250
crossref_primary_10_1039_D2DT01392D
crossref_primary_10_1094_MPMI_07_23_0106_R
crossref_primary_10_3389_fpls_2022_870882
crossref_primary_10_1016_j_jgg_2024_02_005
crossref_primary_10_3390_f13101629
crossref_primary_10_1093_hr_uhaf082
crossref_primary_10_3390_biom11050705
crossref_primary_10_1111_plb_13659
crossref_primary_10_1007_s11240_024_02944_w
crossref_primary_10_1016_j_postharvbio_2020_111382
crossref_primary_10_1080_17429145_2021_1981471
crossref_primary_10_1002_ps_7433
crossref_primary_10_1016_j_envexpbot_2021_104434
crossref_primary_10_1016_j_molp_2019_12_008
crossref_primary_10_1016_j_virusres_2024_199334
crossref_primary_10_1016_j_envexpbot_2021_104432
crossref_primary_10_1016_j_plaphy_2022_08_019
crossref_primary_10_3390_ijms20235974
crossref_primary_10_1007_s00425_020_03410_5
crossref_primary_10_1093_jxb_erab257
crossref_primary_10_1007_s00425_024_04405_2
crossref_primary_10_1016_j_seppur_2020_116650
crossref_primary_10_3390_genes10050401
crossref_primary_10_3390_ijms232214288
crossref_primary_10_3390_ijms251910799
crossref_primary_10_3390_plants12244082
crossref_primary_10_1007_s11033_021_06344_7
crossref_primary_10_3390_life12060886
crossref_primary_10_1016_j_ijbiomac_2022_06_099
crossref_primary_10_1093_jxb_eraa609
crossref_primary_10_1111_jipb_13020
crossref_primary_10_1007_s00122_021_03830_1
crossref_primary_10_1016_j_plantsci_2024_111983
crossref_primary_10_1590_1807_1929_agriambi_v27n5p327_334
crossref_primary_10_1007_s13562_023_00858_w
crossref_primary_10_3390_ijms24119473
crossref_primary_10_3390_plants12173115
crossref_primary_10_1016_j_indcrop_2023_117022
crossref_primary_10_1007_s00425_021_03801_2
crossref_primary_10_1021_acs_jafc_4c13130
crossref_primary_10_1186_s42483_025_00359_9
crossref_primary_10_3389_fmicb_2022_1015038
crossref_primary_10_1007_s10658_020_02119_1
crossref_primary_10_1093_plcell_koac135
crossref_primary_10_1016_j_pmpp_2024_102352
crossref_primary_10_3389_fpls_2022_1046418
crossref_primary_10_1093_plcell_koac015
crossref_primary_10_1093_plcell_koae317
crossref_primary_10_1038_s41586_024_07100_0
crossref_primary_10_1111_ppl_13194
crossref_primary_10_1186_s12870_023_04126_w
crossref_primary_10_1016_j_jare_2025_04_035
crossref_primary_10_1016_j_molp_2024_07_010
crossref_primary_10_1080_15592324_2019_1666657
crossref_primary_10_1111_mpp_70129
crossref_primary_10_1093_treephys_tpac111
crossref_primary_10_1007_s40626_021_00230_0
crossref_primary_10_1038_s41598_021_98902_z
crossref_primary_10_3390_polym13183105
crossref_primary_10_1111_ppl_14604
crossref_primary_10_1007_s00299_025_03547_1
crossref_primary_10_1111_jipb_13215
crossref_primary_10_1016_j_tplants_2020_06_008
crossref_primary_10_1038_s42003_024_06031_w
crossref_primary_10_1111_mpp_13050
crossref_primary_10_1111_tpj_70374
crossref_primary_10_3390_ijms232214070
crossref_primary_10_1186_s12864_021_07571_9
crossref_primary_10_3390_ijms232314525
crossref_primary_10_3390_metabo15020102
crossref_primary_10_1371_journal_ppat_1011340
crossref_primary_10_1111_pbi_14325
crossref_primary_10_1111_tpj_15124
crossref_primary_10_1002_ajoc_202500285
crossref_primary_10_3390_plants13141997
crossref_primary_10_3389_fpls_2022_1032820
crossref_primary_10_3390_ijms252211879
crossref_primary_10_1111_jph_12938
crossref_primary_10_1007_s00299_021_02811_4
crossref_primary_10_1007_s12041_025_01494_0
crossref_primary_10_1016_j_ecoenv_2020_111797
crossref_primary_10_1111_pce_14003
crossref_primary_10_1111_pce_14123
crossref_primary_10_1007_s12042_025_09411_6
crossref_primary_10_1007_s00253_021_11588_1
crossref_primary_10_1111_jph_13347
crossref_primary_10_3389_fpls_2022_881212
crossref_primary_10_1093_jxb_erae309
crossref_primary_10_1007_s00344_025_11790_9
crossref_primary_10_3389_fpls_2023_1141697
crossref_primary_10_3390_horticulturae8121164
crossref_primary_10_1080_14620316_2022_2160381
crossref_primary_10_3389_fpls_2021_636877
crossref_primary_10_3389_fpls_2021_765003
crossref_primary_10_3389_fpls_2022_1015970
crossref_primary_10_3390_plants13233430
crossref_primary_10_1038_s41598_022_26693_y
crossref_primary_10_1093_jxb_erad362
crossref_primary_10_1111_tpj_14914
crossref_primary_10_1016_j_plantsci_2022_111178
crossref_primary_10_1016_j_plaphy_2023_107804
crossref_primary_10_1111_mpp_70030
crossref_primary_10_1111_pce_15420
crossref_primary_10_3389_fpls_2022_841688
crossref_primary_10_1007_s00425_020_03511_1
crossref_primary_10_1093_hr_uhab088
crossref_primary_10_1093_jxb_eraa535
crossref_primary_10_1186_s12870_021_03045_y
crossref_primary_10_3390_ijms23073730
crossref_primary_10_1111_tpj_17194
crossref_primary_10_3390_ijms23031354
crossref_primary_10_1111_pbi_13932
crossref_primary_10_1111_nph_18044
crossref_primary_10_1016_j_plaphy_2020_01_005
crossref_primary_10_12677_BR_2021_101005
crossref_primary_10_1186_s12864_024_10939_2
crossref_primary_10_1007_s00299_022_02938_y
crossref_primary_10_1093_plcell_koaf075
crossref_primary_10_1186_s13059_023_02952_7
crossref_primary_10_1093_jxb_erac384
crossref_primary_10_3390_ijms25105156
crossref_primary_10_1093_jxb_erac140
crossref_primary_10_1016_j_scienta_2025_114072
crossref_primary_10_1016_j_cj_2025_05_013
crossref_primary_10_1186_s13007_022_00954_3
crossref_primary_10_3390_ijms23042228
crossref_primary_10_1016_j_postharvbio_2024_112849
crossref_primary_10_1111_mpp_70021
crossref_primary_10_1016_j_cbi_2021_109494
crossref_primary_10_3390_ijms22158354
crossref_primary_10_1093_plphys_kiad201
crossref_primary_10_1111_mpp_13280
crossref_primary_10_1111_pbi_14351
Cites_doi 10.1105/tpc.108.065193
10.1111/nph.14846
10.1094/MPMI.1997.10.1.69
10.1016/j.cell.2018.02.049
10.1126/science.250.4983.1002
10.1371/journal.pgen.1007708
10.1046/j.1365-313X.2003.01902.x
10.1104/pp.17.00941
10.1016/S0092-8674(00)81858-9
10.1371/journal.pgen.1000772
10.1371/journal.ppat.1000301
10.1105/tpc.114.131938
10.1105/tpc.112.103028
10.1093/abbs/gmt078
10.1111/nph.14078
10.1111/tpj.12205
10.1073/pnas.96.6.3292
10.1016/j.chom.2012.04.014
10.1126/science.266.5188.1247
10.1038/ncomms10159
10.1038/35107108
10.3389/fpls.2018.01133
10.1186/1471-2229-11-89
10.1111/j.1365-313X.2006.02903.x
10.1016/j.cell.2018.03.044
10.1016/j.phytochem.2017.07.001
10.1111/tpj.12803
10.1016/j.pbi.2005.05.010
10.1104/pp.107.097691
10.3389/fimmu.2016.00206
10.3389/fpls.2017.02145
10.1111/nph.14780
10.1073/pnas.1302702110
10.1105/tpc.112.103564
10.1126/science.1156970
10.1073/pnas.1005225107
10.1111/j.1365-3040.2010.02194.x
10.1104/pp.110.157370
10.1038/nature11162
10.1104/pp.17.00695
10.1104/pp.17.01530
10.1093/emboj/20.19.5400
10.1016/j.molp.2018.10.002
10.1016/S0092-8674(03)00429-X
10.2307/3869945
10.1105/tpc.12.2.279
10.1126/science.250.4983.1004
10.1146/annurev-arplant-050213-040012
10.1105/tpc.106.046953
10.1105/tpc.16.00486
10.1073/pnas.1113726108
10.1073/pnas.96.11.6523
10.1104/pp.17.00222
10.1073/pnas.92.14.6602
10.1016/0042-6822(79)90019-9
10.1126/science.261.5122.754
10.1073/pnas.1511182112
10.1371/journal.ppat.1003127
10.1016/j.celrep.2012.05.008
10.1111/j.1365-313X.2011.04655.x
10.1199/tab.0156
10.1016/j.coi.2015.01.014
10.1105/tpc.112.098343
10.1105/tpc.010376
10.1074/jbc.M806662200
10.3389/fpls.2014.00777
10.1126/science.aaa8764
10.1105/tpc.014894
10.1105/tpc.15.00371
10.1094/MPMI.2000.13.2.191
10.1104/pp.113.218156
10.1016/j.cell.2009.03.038
10.1104/pp.108.119420
10.1111/j.1365-313X.2007.03369.x
10.1016/j.chom.2015.07.005
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.pbi.2019.02.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1879-0356
EndPage 36
ExternalDocumentID 30901692
10_1016_j_pbi_2019_02_004
S136952661830116X
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
Y6R
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c452t-d6eae5bc4941b27fa4e75b55482fe2160d32a3877252e210b7ca27ef67da541a3
ISICitedReferencesCount 386
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486357700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1369-5266
1879-0356
IngestDate Fri Oct 03 00:07:18 EDT 2025
Sun Sep 28 08:40:11 EDT 2025
Wed Feb 19 02:31:21 EST 2025
Tue Nov 18 22:23:06 EST 2025
Sat Nov 29 07:03:51 EST 2025
Fri Feb 23 02:42:23 EST 2024
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c452t-d6eae5bc4941b27fa4e75b55482fe2160d32a3877252e210b7ca27ef67da541a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 30901692
PQID 2196517168
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2221026054
proquest_miscellaneous_2196517168
pubmed_primary_30901692
crossref_primary_10_1016_j_pbi_2019_02_004
crossref_citationtrail_10_1016_j_pbi_2019_02_004
elsevier_sciencedirect_doi_10_1016_j_pbi_2019_02_004
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current opinion in plant biology
PublicationTitleAlternate Curr Opin Plant Biol
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Saleh, Withers, Mohan, Marques, Gu, Yan, Zavaliev, Nomoto, Tada, Dong (bib0310) 2015; 18
Volz, Kim, Mi, Mariappan, Guo, Bigeard, Alejandro, Pflieger, Rayapuram, Al-Babili (bib0185) 2018; 14
Hartmann, Zeier, Bernsdorff, Reichel-Deland, Kim, Hohmann, Scholten, Schuck, Brautigam, Holzel (bib0335) 2018; 173
Zheng, Zhou, Yoo, Pruneda-Paz, Spivey, Kay, Dong (bib0155) 2015; 112
Cao, Bowling, Gordon, Dong (bib0030) 1994; 6
Bonardi, Tang, Stallmann, Roberts, Cherkis, Dangl (bib0210) 2011; 108
Chen, Holmes, Rajniak, Kim, Tang, Fischer, Mudgett, Sattely (bib0330) 2018; 115
Noutoshi, Okazaki, Kida, Nishina, Morishita, Ogawa, Suzuki, Shibata, Jikumaru, Hanada (bib0095) 2012; 24
Mackelprang, Okrent, Wildermuth (bib0110) 2017; 143
Feys, Moisan, Newman, Parker (bib0395) 2001; 20
Rochon, Boyle, Wignes, Fobert, Després (bib0250) 2006; 18
Zhang, Cheng, Qu, Zhao, Bi, Li (bib0275) 2006; 48
Zhang, Xu, Ding, Wang, Cheng, He, Gao, Xu, Li, Zhu (bib0140) 2010; 107
Wang, Gao, Zhu, Dong, Wang, Ren, Zhou, Kuai (bib0150) 2015; 82
Metraux, Signer, Ryals, Ward, Wyss-Benz, Gaudin, Raschdorf, Schmid, Blum, Inverardi (bib0015) 1990; 250
Wang, Tsuda, Sato, Cohen, Katagiri, Glazebrook (bib0130) 2009; 5
Tsuda, Sato, Stoddard, Glazebrook, Katagiri (bib0360) 2009; 5
Canet, Dobon, Roig, Tornero (bib0225) 2010; 33
Huang, Gu, Lai, Fan, Shi, Zhou, Yu, Chen (bib0085) 2010; 153
Seguel, Jelenska, Herrera-Vasquez, Marr, Joyce, Gagesch, Shakoor, Jiang, Fonseca, Wildermuth (bib0215) 2018; 176
Radojicic, Li, Zhang (bib0375) 2018; 9
Tada, Spoel, Pajerowska-Mukhtar, Mou, Song, Wang, Zuo, Dong (bib0305) 2008; 321
Tateda, Zhang, Shrestha, Jelenska, Chinchilla, Greenberg (bib0365) 2014; 26
Cui, Tsuda, Parker (bib0385) 2015; 66
Manohar, Tian, Moreau, Park, Choi, Fei, Friso, Asif, Manosalva, von Dahl (bib0235) 2015; 5
White (bib0005) 1979; 99
Lee, Park, Seo, Kim, Sim, Kim, Park (bib0320) 2015; 27
Navarova, Bernsdorff, Doring, Zeier (bib0350) 2012; 24
Serrano, Wang, Aryal, Garcion, Abou-Mansour, Heck, Geisler, Mauch, Nawrath, Metraux (bib0070) 2013; 162
Shine, Yang, El-Habbak, Nagyabhyru, Fu, Navarre, Ghabrial, Kachroo, Kachroo (bib0090) 2016; 212
Canet, Dobon, Tornero (bib0285) 2012; 24
Jin, Choi, Kang, Yun, Kwon, Noh, Noh (bib0290) 2018; 46
Hartmann, Kim, Bernsdorff, Ajami-Rashidi, Scholten, Schreiber, Zeier, Schuck, Reichel-Deland, Zeier (bib0345) 2017; 174
Garcion, Lohmann, Lamodiere, Catinot, Buchala, Doermann, Metraux (bib0060) 2008; 147
Wildermuth, Dewdney, Wu, Ausubel (bib0055) 2001; 414
Zhang, Zhao, Zhao, Li, Wang, Guo, Gan, Liu, Zhang (bib0120) 2017; 175
van Verk, Bol, Linthorst (bib0160) 2011; 11
Peng, Sun, Zhang (bib0325) 2017; 8
Wiermer, Feys, Parker (bib0205) 2005; 8
Fu, Yan, Saleh, Wang, Ruble, Oka, Mohan, Spoel, Tada, Zheng (bib0280) 2012; 486
Ding, Sun, Ao, Peng, Zhang, Li, Zhang (bib0240) 2018; 173
Zhang, Tessaro, Lassner, Li (bib0270) 2003; 15
Zhang, Halitschke, Yin, Liu, Gan (bib0115) 2013; 110
Despres, DeLong, Glaze, Liu, Fobert (bib0255) 2000; 12
Okrent, Brooks, Wildermuth (bib0080) 2009; 284
Shah, Tsui, Klessig (bib0220) 1997; 10
Cao, Glazebrook, Clarke, Volko, Dong (bib0245) 1997; 88
Zhang, Fan, Kinkema, Li, Dong (bib0265) 1999; 96
Wang, Tsuda, Truman, Sato, Nguyen le, Katagiri, Glazebrook (bib0135) 2011; 67
Lebeis, Paredes, Lundberg, Breakfield, Gehring, McDonald, Malfatti, Glavina del Rio, Jones, Tringe (bib0045) 2015; 349
Chen, Shen, Wang, Li, He (bib0105) 2013; 45
Nawrath, Metraux (bib0025) 1999; 11
Wu, Zhang, Chu, Boyle, Wang, Brindle, De Luca, Despres (bib0230) 2012; 1
Li, Kapos, Zhang (bib0380) 2015; 32
Delaney, Uknes, Vernooij, Friedrich, Weymann, Negrotto, Gaffney, Gut-Rella, Kessmann, Ward, Ryals (bib0370) 1994; 266
Nawrath, Heck, Parinthawong, Metraux (bib0065) 2002; 14
Mou, Fan, Dong (bib0300) 2003; 113
Qi, Chen, Chang, Chen, Hall, Korin, Liu, Wang, Fu (bib0040) 2018; 11
Dempsey, Vlot, Wildermuth, Klessig (bib0050) 2011; 9
Klessig, Tian, Choi (bib0295) 2016; 7
Sun, Busta, Zhang, Ding, Jetter, Zhang (bib0180) 2018; 217
Gaffney, Friedrich, Vernooij, Negrotto, Nye, Uknes, Ward, Kessmann, Ryals (bib0020) 1993; 261
Ding, Rekhter, Ding, Feussner, Busta, Haroth, Xu, Li, Jetter, Feussner (bib0340) 2016; 28
Delaney, Friedrich, Ryals (bib0035) 1995; 92
Spoel, Mou, Tada, Spivey, Genschik, Dong (bib0315) 2009; 137
Kong, Sun, Qu, Ma, Li, Cheng, Zhang, Wu, Zhang, Zhang (bib0200) 2016; 171
Gao, Chen, Lin, Chen, Lu, Niu, Li, Cheng, McCormack, Sheen (bib0165) 2013; 9
Zhou, Trifa, Silva, Pontier, Lam, Shah, Klessig (bib0260) 2000; 13
Falk, Feys, Frost, Jones, Daniels, Parker (bib0390) 1999; 96
Chen, D’Auria, Tholl, Ross, Gershenzon, Noel, Pichersky (bib0100) 2003; 36
Zhou, Lu, Bethke, Harrison, Hatsugai, Katagiri, Glazebrook (bib0195) 2018; 217
Zheng, Spivey, Zeng, Liu, Fu, Klessig, He, Dong (bib0175) 2012; 11
Kim, Park, Gilmour, Thomashow (bib0190) 2013; 75
Huang, Zhu, Liu, Chen, Li, Hou (bib0125) 2018; 176
Sun, Zhang, Li, Zhang, Ding, Zhang (bib0145) 2015; 6
Chen, Xue, Chintamanani, Germain, Lin, Cui, Cai, Zuo, Tang, Li (bib0170) 2009; 21
Malamy, Carr, Klessig, Raskin (bib0010) 1990; 250
Nobuta, Okrent, Stoutemyer, Rodibaugh, Kempema, Wildermuth, Innes (bib0075) 2007; 144
Tsuda, Sato, Glazebrook, Cohen, Katagiri (bib0355) 2008; 53
Lebeis (10.1016/j.pbi.2019.02.004_sbref0045) 2015; 349
Kim (10.1016/j.pbi.2019.02.004_bib0190) 2013; 75
Fu (10.1016/j.pbi.2019.02.004_sbref0280) 2012; 486
Zhang (10.1016/j.pbi.2019.02.004_bib0275) 2006; 48
Garcion (10.1016/j.pbi.2019.02.004_bib0060) 2008; 147
Zhang (10.1016/j.pbi.2019.02.004_sbref0120) 2017; 175
Volz (10.1016/j.pbi.2019.02.004_bib0185) 2018; 14
Wang (10.1016/j.pbi.2019.02.004_bib0150) 2015; 82
Chen (10.1016/j.pbi.2019.02.004_bib0105) 2013; 45
Tada (10.1016/j.pbi.2019.02.004_bib0305) 2008; 321
Zheng (10.1016/j.pbi.2019.02.004_bib0175) 2012; 11
Klessig (10.1016/j.pbi.2019.02.004_bib0295) 2016; 7
Delaney (10.1016/j.pbi.2019.02.004_bib0035) 1995; 92
Wildermuth (10.1016/j.pbi.2019.02.004_sbref0055) 2001; 414
Zhou (10.1016/j.pbi.2019.02.004_bib0260) 2000; 13
Nawrath (10.1016/j.pbi.2019.02.004_bib0025) 1999; 11
Huang (10.1016/j.pbi.2019.02.004_bib0125) 2018; 176
Qi (10.1016/j.pbi.2019.02.004_bib0040) 2018; 11
Mackelprang (10.1016/j.pbi.2019.02.004_bib0110) 2017; 143
Navarova (10.1016/j.pbi.2019.02.004_bib0350) 2012; 24
Feys (10.1016/j.pbi.2019.02.004_bib0395) 2001; 20
White (10.1016/j.pbi.2019.02.004_bib0005) 1979; 99
Shine (10.1016/j.pbi.2019.02.004_bib0090) 2016; 212
Sun (10.1016/j.pbi.2019.02.004_sbref0180) 2018; 217
Shah (10.1016/j.pbi.2019.02.004_bib0220) 1997; 10
Canet (10.1016/j.pbi.2019.02.004_bib0225) 2010; 33
Wang (10.1016/j.pbi.2019.02.004_sbref0135) 2011; 67
Mou (10.1016/j.pbi.2019.02.004_bib0300) 2003; 113
Cao (10.1016/j.pbi.2019.02.004_bib0030) 1994; 6
Rochon (10.1016/j.pbi.2019.02.004_bib0250) 2006; 18
Bonardi (10.1016/j.pbi.2019.02.004_sbref0210) 2011; 108
Ding (10.1016/j.pbi.2019.02.004_sbref0240) 2018; 173
Noutoshi (10.1016/j.pbi.2019.02.004_bib0095) 2012; 24
Cao (10.1016/j.pbi.2019.02.004_bib0245) 1997; 88
Ding (10.1016/j.pbi.2019.02.004_bib0340) 2016; 28
Radojicic (10.1016/j.pbi.2019.02.004_bib0375) 2018; 9
Huang (10.1016/j.pbi.2019.02.004_bib0085) 2010; 153
Gaffney (10.1016/j.pbi.2019.02.004_bib0020) 1993; 261
Canet (10.1016/j.pbi.2019.02.004_bib0285) 2012; 24
Serrano (10.1016/j.pbi.2019.02.004_bib0070) 2013; 162
Lee (10.1016/j.pbi.2019.02.004_bib0320) 2015; 27
Tsuda (10.1016/j.pbi.2019.02.004_sbref0360) 2009; 5
Zhang (10.1016/j.pbi.2019.02.004_sbref0140) 2010; 107
Wang (10.1016/j.pbi.2019.02.004_bib0130) 2009; 5
Kong (10.1016/j.pbi.2019.02.004_bib0200) 2016; 171
Peng (10.1016/j.pbi.2019.02.004_bib0325) 2017; 8
Zheng (10.1016/j.pbi.2019.02.004_bib0155) 2015; 112
Okrent (10.1016/j.pbi.2019.02.004_bib0080) 2009; 284
Zhang (10.1016/j.pbi.2019.02.004_bib0265) 1999; 96
van Verk (10.1016/j.pbi.2019.02.004_bib0160) 2011; 11
Hartmann (10.1016/j.pbi.2019.02.004_bib0345) 2017; 174
Wu (10.1016/j.pbi.2019.02.004_sbref0230) 2012; 1
Saleh (10.1016/j.pbi.2019.02.004_bib0310) 2015; 18
Gao (10.1016/j.pbi.2019.02.004_bib0165) 2013; 9
Seguel (10.1016/j.pbi.2019.02.004_bib0215) 2018; 176
Hartmann (10.1016/j.pbi.2019.02.004_bib0335) 2018; 173
Dempsey (10.1016/j.pbi.2019.02.004_bib0050) 2011; 9
Tsuda (10.1016/j.pbi.2019.02.004_bib0355) 2008; 53
Metraux (10.1016/j.pbi.2019.02.004_bib0015) 1990; 250
Delaney (10.1016/j.pbi.2019.02.004_bib0370) 1994; 266
Chen (10.1016/j.pbi.2019.02.004_bib0100) 2003; 36
Zhang (10.1016/j.pbi.2019.02.004_bib0115) 2013; 110
Wiermer (10.1016/j.pbi.2019.02.004_bib0205) 2005; 8
Despres (10.1016/j.pbi.2019.02.004_bib0255) 2000; 12
Chen (10.1016/j.pbi.2019.02.004_bib0170) 2009; 21
Malamy (10.1016/j.pbi.2019.02.004_bib0010) 1990; 250
Jin (10.1016/j.pbi.2019.02.004_bib0290) 2018; 46
Spoel (10.1016/j.pbi.2019.02.004_bib0315) 2009; 137
Sun (10.1016/j.pbi.2019.02.004_bib0145) 2015; 6
Zhou (10.1016/j.pbi.2019.02.004_bib0195) 2018; 217
Manohar (10.1016/j.pbi.2019.02.004_bib0235) 2015; 5
Zhang (10.1016/j.pbi.2019.02.004_bib0270) 2003; 15
Cui (10.1016/j.pbi.2019.02.004_bib0385) 2015; 66
Falk (10.1016/j.pbi.2019.02.004_bib0390) 1999; 96
Nawrath (10.1016/j.pbi.2019.02.004_bib0065) 2002; 14
Nobuta (10.1016/j.pbi.2019.02.004_bib0075) 2007; 144
Li (10.1016/j.pbi.2019.02.004_bib0380) 2015; 32
Chen (10.1016/j.pbi.2019.02.004_bib0330) 2018; 115
Tateda (10.1016/j.pbi.2019.02.004_bib0365) 2014; 26
References_xml – volume: 96
  start-page: 6523
  year: 1999
  end-page: 6528
  ident: bib0265
  article-title: Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene
  publication-title: Proc Natl Acad Sci U S A
– volume: 175
  start-page: 1082
  year: 2017
  end-page: 1093
  ident: bib0120
  article-title: S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis
  publication-title: Plant Physiol
– volume: 75
  start-page: 364
  year: 2013
  end-page: 376
  ident: bib0190
  article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis
  publication-title: Plant J
– volume: 13
  start-page: 191
  year: 2000
  end-page: 202
  ident: bib0260
  article-title: NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid
  publication-title: Mol Plant Microbe Interact
– volume: 53
  start-page: 763
  year: 2008
  end-page: 775
  ident: bib0355
  article-title: Interplay between MAMP-triggered and SA-mediated defense responses
  publication-title: Plant J
– volume: 250
  start-page: 1004
  year: 1990
  end-page: 1006
  ident: bib0015
  article-title: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber
  publication-title: Science
– volume: 7
  year: 2016
  ident: bib0295
  article-title: Multiple targets of salicylic acid and its derivatives in plants and animals
  publication-title: Front Immunol
– volume: 349
  start-page: 860
  year: 2015
  end-page: 864
  ident: bib0045
  article-title: PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
  publication-title: Science
– volume: 217
  start-page: 700
  year: 2018
  end-page: 712
  ident: bib0195
  article-title: WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1
  publication-title: New Phytol
– volume: 321
  start-page: 952
  year: 2008
  end-page: 956
  ident: bib0305
  article-title: Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins
  publication-title: Science
– volume: 143
  start-page: 19
  year: 2017
  end-page: 28
  ident: bib0110
  article-title: Preference of
  publication-title: Phytochemistry
– volume: 48
  start-page: 647
  year: 2006
  end-page: 656
  ident: bib0275
  article-title: Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs
  publication-title: Plant J
– volume: 284
  start-page: 9742
  year: 2009
  end-page: 9754
  ident: bib0080
  article-title: Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate
  publication-title: J Biol Chem
– volume: 99
  start-page: 410
  year: 1979
  end-page: 412
  ident: bib0005
  article-title: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco
  publication-title: Virology
– volume: 250
  start-page: 1002
  year: 1990
  end-page: 1004
  ident: bib0010
  article-title: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection
  publication-title: Science
– volume: 11
  start-page: 89
  year: 2011
  ident: bib0160
  article-title: WRKY transcription factors involved in activation of SA biosynthesis genes
  publication-title: BMC Plant Biol
– volume: 9
  start-page: 1133
  year: 2018
  ident: bib0375
  article-title: Salicylic acid: a double-edged sword for programed cell death in plants
  publication-title: Front Plant Sci
– volume: 1
  start-page: 639
  year: 2012
  end-page: 647
  ident: bib0230
  article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
  publication-title: Cell Rep
– volume: 11
  start-page: 587
  year: 2012
  end-page: 596
  ident: bib0175
  article-title: Coronatine promotes
  publication-title: Cell Host Microbe
– volume: 147
  start-page: 1279
  year: 2008
  end-page: 1287
  ident: bib0060
  article-title: Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis
  publication-title: Plant Physiol
– volume: 18
  start-page: 3670
  year: 2006
  end-page: 3685
  ident: bib0250
  article-title: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines
  publication-title: Plant Cell
– volume: 6
  year: 2015
  ident: bib0145
  article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity
  publication-title: Nat Commun
– volume: 28
  start-page: 2603
  year: 2016
  end-page: 2615
  ident: bib0340
  article-title: Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance
  publication-title: Plant Cell
– volume: 414
  start-page: 562
  year: 2001
  end-page: 565
  ident: bib0055
  article-title: Isochorismate synthase is required to synthesize salicylic acid for plant defence
  publication-title: Nature
– volume: 67
  start-page: 1029
  year: 2011
  end-page: 1041
  ident: bib0135
  article-title: CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling
  publication-title: Plant J
– volume: 12
  start-page: 279
  year: 2000
  end-page: 290
  ident: bib0255
  article-title: The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors
  publication-title: Plant Cell
– volume: 174
  start-page: 124
  year: 2017
  end-page: 153
  ident: bib0345
  article-title: Biochemical principles and functional aspects of Pipecolic acid biosynthesis in plant immunity
  publication-title: Plant Physiol
– volume: 15
  start-page: 2647
  year: 2003
  end-page: 2653
  ident: bib0270
  article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance
  publication-title: Plant Cell
– volume: 112
  start-page: 9166
  year: 2015
  end-page: 9173
  ident: bib0155
  article-title: Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  year: 2013
  ident: bib0165
  article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases
  publication-title: PLoS Pathog
– volume: 82
  start-page: 151
  year: 2015
  end-page: 162
  ident: bib0150
  article-title: TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in
  publication-title: Plant J
– volume: 6
  start-page: 1583
  year: 1994
  end-page: 1592
  ident: bib0030
  article-title: Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance
  publication-title: Plant Cell
– volume: 176
  start-page: 2515
  year: 2018
  end-page: 2531
  ident: bib0215
  article-title: PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis
  publication-title: Plant Physiol
– volume: 5
  year: 2009
  ident: bib0360
  article-title: Network properties of robust immunity in plants
  publication-title: PLoS Genet
– volume: 32
  start-page: 114
  year: 2015
  end-page: 121
  ident: bib0380
  article-title: NLRs in plants
  publication-title: Curr Opin Immunol
– volume: 21
  start-page: 2527
  year: 2009
  end-page: 2540
  ident: bib0170
  article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis
  publication-title: Plant Cell
– volume: 18
  start-page: 169
  year: 2015
  end-page: 182
  ident: bib0310
  article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses
  publication-title: Cell Host Microbe
– volume: 176
  start-page: 3103
  year: 2018
  end-page: 3119
  ident: bib0125
  article-title: Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids
  publication-title: Plant Physiol
– volume: 46
  start-page: 11712
  year: 2018
  end-page: 11725
  ident: bib0290
  article-title: Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis
  publication-title: Nucleic Acids Res
– volume: 5
  start-page: 777
  year: 2015
  ident: bib0235
  article-title: Identification of multiple salicylic acid-binding proteins using two high throughput screens
  publication-title: Front Plant Sci
– volume: 107
  start-page: 18220
  year: 2010
  end-page: 18225
  ident: bib0140
  article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 4171
  year: 2014
  end-page: 4187
  ident: bib0365
  article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling
  publication-title: Plant Cell
– volume: 20
  start-page: 5400
  year: 2001
  end-page: 5411
  ident: bib0395
  article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4
  publication-title: EMBO J
– volume: 113
  start-page: 935
  year: 2003
  end-page: 944
  ident: bib0300
  article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
  publication-title: Cell
– volume: 217
  start-page: 344
  year: 2018
  end-page: 354
  ident: bib0180
  article-title: TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g)
  publication-title: New Phytol
– volume: 14
  year: 2018
  ident: bib0185
  article-title: The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity
  publication-title: PLoS Genet
– volume: 173
  start-page: 1454
  year: 2018
  end-page: 1467
  ident: bib0240
  article-title: Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity
  publication-title: Cell
– volume: 27
  start-page: 3425
  year: 2015
  end-page: 3438
  ident: bib0320
  article-title: Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis
  publication-title: Plant Cell
– volume: 144
  start-page: 1144
  year: 2007
  end-page: 1156
  ident: bib0075
  article-title: The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis
  publication-title: Plant Physiol
– volume: 24
  start-page: 5123
  year: 2012
  end-page: 5141
  ident: bib0350
  article-title: Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity
  publication-title: Plant Cell
– volume: 5
  year: 2009
  ident: bib0130
  article-title: Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against
  publication-title: PLoS Pathog
– volume: 88
  start-page: 57
  year: 1997
  end-page: 63
  ident: bib0245
  article-title: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats
  publication-title: Cell
– volume: 92
  start-page: 6602
  year: 1995
  end-page: 6606
  ident: bib0035
  article-title: Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance
  publication-title: Proc Natl Acad Sci U S A
– volume: 137
  start-page: 860
  year: 2009
  end-page: 872
  ident: bib0315
  article-title: Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity
  publication-title: Cell
– volume: 10
  start-page: 69
  year: 1997
  end-page: 78
  ident: bib0220
  article-title: Characterization of a salicylic acid-insensitive mutant (sai1) of
  publication-title: Mol Plant Microbe Interact
– volume: 11
  start-page: 1393
  year: 1999
  end-page: 1404
  ident: bib0025
  article-title: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation
  publication-title: Plant Cell
– volume: 115
  start-page: E4920
  year: 2018
  end-page: E4929
  ident: bib0330
  article-title: N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
– volume: 45
  start-page: 827
  year: 2013
  end-page: 836
  ident: bib0105
  article-title: Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis
  publication-title: Acta Biochim Biophys Sin (Shanghai)
– volume: 24
  start-page: 4220
  year: 2012
  end-page: 4235
  ident: bib0285
  article-title: Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid
  publication-title: Plant Cell
– volume: 173
  start-page: 456
  year: 2018
  end-page: 469
  ident: bib0335
  article-title: Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity
  publication-title: Cell
– volume: 162
  start-page: 1815
  year: 2013
  end-page: 1821
  ident: bib0070
  article-title: Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5
  publication-title: Plant Physiol
– volume: 153
  start-page: 1526
  year: 2010
  end-page: 1538
  ident: bib0085
  article-title: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress
  publication-title: Plant Physiol
– volume: 8
  start-page: 383
  year: 2005
  end-page: 389
  ident: bib0205
  article-title: Plant immunity: the EDS1 regulatory node
  publication-title: Curr Opin Plant Biol
– volume: 24
  start-page: 3795
  year: 2012
  end-page: 3804
  ident: bib0095
  article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis
  publication-title: Plant Cell
– volume: 486
  start-page: 228
  year: 2012
  end-page: 232
  ident: bib0280
  article-title: NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants
  publication-title: Nature
– volume: 171
  start-page: 1344
  year: 2016
  end-page: 1354
  ident: bib0200
  article-title: Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis
  publication-title: Plant Physiol
– volume: 261
  start-page: 754
  year: 1993
  end-page: 756
  ident: bib0020
  article-title: Requirement of salicylic acid for the induction of systemic acquired resistance
  publication-title: Science
– volume: 212
  start-page: 627
  year: 2016
  end-page: 636
  ident: bib0090
  article-title: Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean
  publication-title: New Phytol
– volume: 11
  start-page: 1427
  year: 2018
  end-page: 1439
  ident: bib0040
  article-title: Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens
  publication-title: Mol Plant
– volume: 14
  start-page: 275
  year: 2002
  end-page: 286
  ident: bib0065
  article-title: EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family
  publication-title: Plant Cell
– volume: 66
  start-page: 487
  year: 2015
  end-page: 511
  ident: bib0385
  article-title: Effector-triggered immunity: from pathogen perception to robust defense
  publication-title: Annu Rev Plant Biol
– volume: 108
  start-page: 16463
  year: 2011
  end-page: 16468
  ident: bib0210
  article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
  publication-title: Proc Natl Acad Sci U S A
– volume: 266
  start-page: 1247
  year: 1994
  end-page: 1250
  ident: bib0370
  article-title: A central role of salicylic acid in plant disease resistance
  publication-title: Science
– volume: 33
  start-page: 1911
  year: 2010
  end-page: 1922
  ident: bib0225
  article-title: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid
  publication-title: Plant Cell Environ
– volume: 8
  start-page: 2145
  year: 2017
  ident: bib0325
  article-title: Perception of salicylic acid in
  publication-title: Front Plant Sci
– volume: 110
  start-page: 14807
  year: 2013
  end-page: 14812
  ident: bib0115
  article-title: Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism
  publication-title: Proc Natl Acad Sci U S A
– volume: 96
  start-page: 3292
  year: 1999
  end-page: 3297
  ident: bib0390
  article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases
  publication-title: Proc Natl Acad Sci U S A
– volume: 36
  start-page: 577
  year: 2003
  end-page: 588
  ident: bib0100
  article-title: An
  publication-title: Plant J
– volume: 9
  year: 2011
  ident: bib0050
  article-title: Salicylic acid biosynthesis and metabolism
  publication-title: Arabidopsis Book
– volume: 21
  start-page: 2527
  year: 2009
  ident: 10.1016/j.pbi.2019.02.004_bib0170
  article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.065193
– volume: 217
  start-page: 700
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0195
  article-title: WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1
  publication-title: New Phytol
  doi: 10.1111/nph.14846
– volume: 10
  start-page: 69
  year: 1997
  ident: 10.1016/j.pbi.2019.02.004_bib0220
  article-title: Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.1997.10.1.69
– volume: 173
  start-page: 456
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0335
  article-title: Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.049
– volume: 250
  start-page: 1002
  year: 1990
  ident: 10.1016/j.pbi.2019.02.004_bib0010
  article-title: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection
  publication-title: Science
  doi: 10.1126/science.250.4983.1002
– volume: 14
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0185
  article-title: The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007708
– volume: 36
  start-page: 577
  year: 2003
  ident: 10.1016/j.pbi.2019.02.004_bib0100
  article-title: An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense
  publication-title: Plant J
  doi: 10.1046/j.1365-313X.2003.01902.x
– volume: 46
  start-page: 11712
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0290
  article-title: Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis
  publication-title: Nucleic Acids Res
– volume: 176
  start-page: 2515
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0215
  article-title: PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00941
– volume: 88
  start-page: 57
  year: 1997
  ident: 10.1016/j.pbi.2019.02.004_bib0245
  article-title: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81858-9
– volume: 5
  year: 2009
  ident: 10.1016/j.pbi.2019.02.004_sbref0360
  article-title: Network properties of robust immunity in plants
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000772
– volume: 5
  year: 2009
  ident: 10.1016/j.pbi.2019.02.004_bib0130
  article-title: Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1000301
– volume: 26
  start-page: 4171
  year: 2014
  ident: 10.1016/j.pbi.2019.02.004_bib0365
  article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling
  publication-title: Plant Cell
  doi: 10.1105/tpc.114.131938
– volume: 24
  start-page: 4220
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_bib0285
  article-title: Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.103028
– volume: 45
  start-page: 827
  year: 2013
  ident: 10.1016/j.pbi.2019.02.004_bib0105
  article-title: Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis
  publication-title: Acta Biochim Biophys Sin (Shanghai)
  doi: 10.1093/abbs/gmt078
– volume: 212
  start-page: 627
  year: 2016
  ident: 10.1016/j.pbi.2019.02.004_bib0090
  article-title: Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean
  publication-title: New Phytol
  doi: 10.1111/nph.14078
– volume: 75
  start-page: 364
  year: 2013
  ident: 10.1016/j.pbi.2019.02.004_bib0190
  article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis
  publication-title: Plant J
  doi: 10.1111/tpj.12205
– volume: 96
  start-page: 3292
  year: 1999
  ident: 10.1016/j.pbi.2019.02.004_bib0390
  article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.6.3292
– volume: 11
  start-page: 587
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_bib0175
  article-title: Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.04.014
– volume: 266
  start-page: 1247
  year: 1994
  ident: 10.1016/j.pbi.2019.02.004_bib0370
  article-title: A central role of salicylic acid in plant disease resistance
  publication-title: Science
  doi: 10.1126/science.266.5188.1247
– volume: 6
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0145
  article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity
  publication-title: Nat Commun
  doi: 10.1038/ncomms10159
– volume: 414
  start-page: 562
  year: 2001
  ident: 10.1016/j.pbi.2019.02.004_sbref0055
  article-title: Isochorismate synthase is required to synthesize salicylic acid for plant defence
  publication-title: Nature
  doi: 10.1038/35107108
– volume: 9
  start-page: 1133
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0375
  article-title: Salicylic acid: a double-edged sword for programed cell death in plants
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01133
– volume: 11
  start-page: 1393
  year: 1999
  ident: 10.1016/j.pbi.2019.02.004_bib0025
  article-title: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation
  publication-title: Plant Cell
– volume: 11
  start-page: 89
  year: 2011
  ident: 10.1016/j.pbi.2019.02.004_bib0160
  article-title: WRKY transcription factors involved in activation of SA biosynthesis genes
  publication-title: BMC Plant Biol
  doi: 10.1186/1471-2229-11-89
– volume: 48
  start-page: 647
  year: 2006
  ident: 10.1016/j.pbi.2019.02.004_bib0275
  article-title: Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2006.02903.x
– volume: 173
  start-page: 1454
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_sbref0240
  article-title: Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.044
– volume: 143
  start-page: 19
  year: 2017
  ident: 10.1016/j.pbi.2019.02.004_bib0110
  article-title: Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate
  publication-title: Phytochemistry
  doi: 10.1016/j.phytochem.2017.07.001
– volume: 82
  start-page: 151
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0150
  article-title: TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana
  publication-title: Plant J
  doi: 10.1111/tpj.12803
– volume: 8
  start-page: 383
  year: 2005
  ident: 10.1016/j.pbi.2019.02.004_bib0205
  article-title: Plant immunity: the EDS1 regulatory node
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2005.05.010
– volume: 144
  start-page: 1144
  year: 2007
  ident: 10.1016/j.pbi.2019.02.004_bib0075
  article-title: The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.107.097691
– volume: 7
  year: 2016
  ident: 10.1016/j.pbi.2019.02.004_bib0295
  article-title: Multiple targets of salicylic acid and its derivatives in plants and animals
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00206
– volume: 115
  start-page: E4920
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0330
  article-title: N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  start-page: 2145
  year: 2017
  ident: 10.1016/j.pbi.2019.02.004_bib0325
  article-title: Perception of salicylic acid in Physcomitrella patens
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.02145
– volume: 217
  start-page: 344
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_sbref0180
  article-title: TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g)
  publication-title: New Phytol
  doi: 10.1111/nph.14780
– volume: 110
  start-page: 14807
  year: 2013
  ident: 10.1016/j.pbi.2019.02.004_bib0115
  article-title: Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1302702110
– volume: 24
  start-page: 5123
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_bib0350
  article-title: Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.103564
– volume: 321
  start-page: 952
  year: 2008
  ident: 10.1016/j.pbi.2019.02.004_bib0305
  article-title: Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins
  publication-title: Science
  doi: 10.1126/science.1156970
– volume: 107
  start-page: 18220
  year: 2010
  ident: 10.1016/j.pbi.2019.02.004_sbref0140
  article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1005225107
– volume: 33
  start-page: 1911
  year: 2010
  ident: 10.1016/j.pbi.2019.02.004_bib0225
  article-title: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid
  publication-title: Plant Cell Environ
  doi: 10.1111/j.1365-3040.2010.02194.x
– volume: 153
  start-page: 1526
  year: 2010
  ident: 10.1016/j.pbi.2019.02.004_bib0085
  article-title: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress
  publication-title: Plant Physiol
  doi: 10.1104/pp.110.157370
– volume: 486
  start-page: 228
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_sbref0280
  article-title: NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants
  publication-title: Nature
  doi: 10.1038/nature11162
– volume: 175
  start-page: 1082
  year: 2017
  ident: 10.1016/j.pbi.2019.02.004_sbref0120
  article-title: S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00695
– volume: 176
  start-page: 3103
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0125
  article-title: Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.01530
– volume: 171
  start-page: 1344
  year: 2016
  ident: 10.1016/j.pbi.2019.02.004_bib0200
  article-title: Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis
  publication-title: Plant Physiol
– volume: 20
  start-page: 5400
  year: 2001
  ident: 10.1016/j.pbi.2019.02.004_bib0395
  article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4
  publication-title: EMBO J
  doi: 10.1093/emboj/20.19.5400
– volume: 11
  start-page: 1427
  year: 2018
  ident: 10.1016/j.pbi.2019.02.004_bib0040
  article-title: Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.10.002
– volume: 113
  start-page: 935
  year: 2003
  ident: 10.1016/j.pbi.2019.02.004_bib0300
  article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes
  publication-title: Cell
  doi: 10.1016/S0092-8674(03)00429-X
– volume: 6
  start-page: 1583
  year: 1994
  ident: 10.1016/j.pbi.2019.02.004_bib0030
  article-title: Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance
  publication-title: Plant Cell
  doi: 10.2307/3869945
– volume: 12
  start-page: 279
  year: 2000
  ident: 10.1016/j.pbi.2019.02.004_bib0255
  article-title: The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors
  publication-title: Plant Cell
  doi: 10.1105/tpc.12.2.279
– volume: 250
  start-page: 1004
  year: 1990
  ident: 10.1016/j.pbi.2019.02.004_bib0015
  article-title: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber
  publication-title: Science
  doi: 10.1126/science.250.4983.1004
– volume: 66
  start-page: 487
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0385
  article-title: Effector-triggered immunity: from pathogen perception to robust defense
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-050213-040012
– volume: 18
  start-page: 3670
  year: 2006
  ident: 10.1016/j.pbi.2019.02.004_bib0250
  article-title: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines
  publication-title: Plant Cell
  doi: 10.1105/tpc.106.046953
– volume: 28
  start-page: 2603
  year: 2016
  ident: 10.1016/j.pbi.2019.02.004_bib0340
  article-title: Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.16.00486
– volume: 108
  start-page: 16463
  year: 2011
  ident: 10.1016/j.pbi.2019.02.004_sbref0210
  article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1113726108
– volume: 96
  start-page: 6523
  year: 1999
  ident: 10.1016/j.pbi.2019.02.004_bib0265
  article-title: Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.96.11.6523
– volume: 174
  start-page: 124
  year: 2017
  ident: 10.1016/j.pbi.2019.02.004_bib0345
  article-title: Biochemical principles and functional aspects of Pipecolic acid biosynthesis in plant immunity
  publication-title: Plant Physiol
  doi: 10.1104/pp.17.00222
– volume: 92
  start-page: 6602
  year: 1995
  ident: 10.1016/j.pbi.2019.02.004_bib0035
  article-title: Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.92.14.6602
– volume: 99
  start-page: 410
  year: 1979
  ident: 10.1016/j.pbi.2019.02.004_bib0005
  article-title: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco
  publication-title: Virology
  doi: 10.1016/0042-6822(79)90019-9
– volume: 261
  start-page: 754
  year: 1993
  ident: 10.1016/j.pbi.2019.02.004_bib0020
  article-title: Requirement of salicylic acid for the induction of systemic acquired resistance
  publication-title: Science
  doi: 10.1126/science.261.5122.754
– volume: 112
  start-page: 9166
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0155
  article-title: Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1511182112
– volume: 9
  year: 2013
  ident: 10.1016/j.pbi.2019.02.004_bib0165
  article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003127
– volume: 1
  start-page: 639
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_sbref0230
  article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2012.05.008
– volume: 67
  start-page: 1029
  year: 2011
  ident: 10.1016/j.pbi.2019.02.004_sbref0135
  article-title: CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2011.04655.x
– volume: 9
  year: 2011
  ident: 10.1016/j.pbi.2019.02.004_bib0050
  article-title: Salicylic acid biosynthesis and metabolism
  publication-title: Arabidopsis Book
  doi: 10.1199/tab.0156
– volume: 32
  start-page: 114
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0380
  article-title: NLRs in plants
  publication-title: Curr Opin Immunol
  doi: 10.1016/j.coi.2015.01.014
– volume: 24
  start-page: 3795
  year: 2012
  ident: 10.1016/j.pbi.2019.02.004_bib0095
  article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.098343
– volume: 14
  start-page: 275
  year: 2002
  ident: 10.1016/j.pbi.2019.02.004_bib0065
  article-title: EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family
  publication-title: Plant Cell
  doi: 10.1105/tpc.010376
– volume: 284
  start-page: 9742
  year: 2009
  ident: 10.1016/j.pbi.2019.02.004_bib0080
  article-title: Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M806662200
– volume: 5
  start-page: 777
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0235
  article-title: Identification of multiple salicylic acid-binding proteins using two high throughput screens
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2014.00777
– volume: 349
  start-page: 860
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_sbref0045
  article-title: PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
  publication-title: Science
  doi: 10.1126/science.aaa8764
– volume: 15
  start-page: 2647
  year: 2003
  ident: 10.1016/j.pbi.2019.02.004_bib0270
  article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.014894
– volume: 27
  start-page: 3425
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0320
  article-title: Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.15.00371
– volume: 13
  start-page: 191
  year: 2000
  ident: 10.1016/j.pbi.2019.02.004_bib0260
  article-title: NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.2000.13.2.191
– volume: 162
  start-page: 1815
  year: 2013
  ident: 10.1016/j.pbi.2019.02.004_bib0070
  article-title: Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5
  publication-title: Plant Physiol
  doi: 10.1104/pp.113.218156
– volume: 137
  start-page: 860
  year: 2009
  ident: 10.1016/j.pbi.2019.02.004_bib0315
  article-title: Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.038
– volume: 147
  start-page: 1279
  year: 2008
  ident: 10.1016/j.pbi.2019.02.004_bib0060
  article-title: Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis
  publication-title: Plant Physiol
  doi: 10.1104/pp.108.119420
– volume: 53
  start-page: 763
  year: 2008
  ident: 10.1016/j.pbi.2019.02.004_bib0355
  article-title: Interplay between MAMP-triggered and SA-mediated defense responses
  publication-title: Plant J
  doi: 10.1111/j.1365-313X.2007.03369.x
– volume: 18
  start-page: 169
  year: 2015
  ident: 10.1016/j.pbi.2019.02.004_bib0310
  article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.07.005
SSID ssj0005273
Score 2.6925807
SecondaryResourceType review_article
Snippet •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional...
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29
SubjectTerms Arabidopsis
Arabidopsis Proteins
biosynthesis
gene expression
Gene Expression Regulation, Plant
immunity
microbiome
mutants
Mutation
pathogens
Plant Diseases
Plant Immunity
receptors
Salicylic Acid
Title Salicylic acid: biosynthesis, perception, and contributions to plant immunity
URI https://dx.doi.org/10.1016/j.pbi.2019.02.004
https://www.ncbi.nlm.nih.gov/pubmed/30901692
https://www.proquest.com/docview/2196517168
https://www.proquest.com/docview/2221026054
Volume 50
WOSCitedRecordID wos000486357700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005273
  issn: 1369-5266
  databaseCode: AIEXJ
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBabx6GXkr7TtMGFntq42PJDUm9pSWkLDYVNwT0Z2dKCw2KbrDck_74zeng3DVnaQi9mVyvZYmZ2PCN984mQ11InkZppGcaxUGGqIuSA1DrkSQ7ZCJNxJSpz2AQ7PeVFIb5PJlNfC3M5Z23Lr65E_19VDW2gbCyd_Qt1jzeFBvgMSocrqB2uf6T4qUSmX-SulnVjTnCumm5x3UKkt7CEAv0IZvHYTQNYdydfGcqHfg4Sf9uY4pHhxs6vJ3TCQiuHk7SdHZ3TrZXon0sseR-BPwY9ULgGt9yAFU58fblhrINZgY7QbSa5gJQ2d6TWto0zGJxY2nDvay3JrHeWYu21a2lQbjl0u7Zw_q6vGsThCUuwmq7eXiOmcIqTwDmAk8LdpWKL7FCWCXB1O8dfToqva8gfAzwYJ-03uw3s77cH3RWu3JWOmLDkbI_cd_lEcGzt4AGZ6PYh2f3QQcx__Yh8G40hQGN4H6ybwlGwMoSjAMwguGEGwdAFRrOBN4PH5Menk7OPn0N3gEZYpxkdQpVrqbOqTkUaV5TNZKpZVkEAyelM0ziPVEJlwiHByih8jypWS8r0LGdKZmkskydku-1a_YwE8ANktkrVrK5SlSZSKgmx70zxikNQS_dJ5OVU1o5dHg85mZceRnhegmhLFG0Z0RJEu0_ejEN6S62yqXPqhV-62NDGfCVYyqZhr7yiSvCbuBkmW90tFyVFKk3kiuIb-lBcEIGEH-7z1Gp5nGkSCSQyos__bWIH5N7q3_WCbA8XS_2S7NaXQ7O4OCRbrOCHzm5_AT8xqQw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salicylic+acid%3A+biosynthesis%2C+perception%2C+and+contributions+to+plant+immunity&rft.jtitle=Current+opinion+in+plant+biology&rft.au=Zhang%2C+Yuelin&rft.au=Li%2C+Xin&rft.date=2019-08-01&rft.pub=Elsevier+Ltd&rft.issn=1369-5266&rft.eissn=1879-0356&rft.volume=50&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.pbi.2019.02.004&rft.externalDocID=S136952661830116X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5266&client=summon