Salicylic acid: biosynthesis, perception, and contributions to plant immunity
•Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstr...
Uloženo v:
| Vydáno v: | Current opinion in plant biology Ročník 50; s. 29 - 36 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
England
Elsevier Ltd
01.08.2019
|
| Témata: | |
| ISSN: | 1369-5266, 1879-0356, 1879-0356 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstream defence genes.•SA-binding inhibits NPR3/NPR4, leading to de-repression of SA-responsive genes.
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception. |
|---|---|
| AbstractList | •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional regulation of ICS1.•SA is perceived by two types of receptors, NPR1 and NPR3/NPR4.•SA-binding activates NPR1 to promote expression of downstream defence genes.•SA-binding inhibits NPR3/NPR4, leading to de-repression of SA-responsive genes.
Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception. Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception. Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception.Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants revealed complex regulation of pathogen-induced SA biosynthesis. Studies on SA-insensitive mutants led to the identification of the SA receptors and how SA regulates defense gene expression. Consistent with its critical roles in plant immunity, SA is required for the assembly of a normal root microbiome and various pathogen effectors have evolved to target components of SA biosynthesis or signaling. This review discusses recent advances in SA biology, focusing in particular on the regulation of SA biosynthesis and SA perception. |
| Author | Zhang, Yuelin Li, Xin |
| Author_xml | – sequence: 1 givenname: Yuelin surname: Zhang fullname: Zhang, Yuelin email: yuelin.zhang@ubc.ca organization: Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada – sequence: 2 givenname: Xin surname: Li fullname: Li, Xin organization: Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30901692$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU2L1TAUhoOMOB_6A9xIly6mNTltkltdyaCjMOJCXYc0PcVzaZOapML99-ZyRxezGBchHzzPIbzvJTvzwSNjLwVvBBfqzb5ZB2qAi77h0HDePWEXYqf7mrdSnZVzq_paglLn7DKlPedcgm6fsfOW98Xv4YJ9-WZncoeyKutofFsNFNLB55-YKF1XK0aHa6bgryvrx8oFnyMN2_ElVTlU62x9rmhZNk_58Jw9neyc8MX9fsV-fPzw_eZTfff19vPN-7vadRJyPSq0KAfX9Z0YQE-2Qy0HKbsdTAhC8bEF2-60BgnlzgftLGiclB6t7IRtr9jr09w1hl8bpmwWSg7n8hkMWzIAxQLFZfd_VPRKCi3UrqCv7tFtWHA0a6TFxoP5m1YBxAlwMaQUcfqHCG6OjZi9KY2YYyOGgymNFEc_cBxle8wvR0vzo-a7k4klyd-E0SRH6B2OFNFlMwZ6xP4DY-OkkQ |
| CitedBy_id | crossref_primary_10_3389_fpls_2023_1211825 crossref_primary_10_1021_acs_jafc_5c05099 crossref_primary_10_1038_s41438_020_00436_4 crossref_primary_10_1371_journal_pone_0281470 crossref_primary_10_1111_mpp_13415 crossref_primary_10_3390_jof10090635 crossref_primary_10_1016_j_plaphy_2023_108192 crossref_primary_10_1093_jxb_erae475 crossref_primary_10_1016_j_sajb_2024_04_012 crossref_primary_10_3389_fpls_2020_579772 crossref_primary_10_1016_j_bbrc_2021_10_058 crossref_primary_10_1093_jxb_erab084 crossref_primary_10_1186_s40538_023_00468_7 crossref_primary_10_3389_fmicb_2022_857160 crossref_primary_10_1007_s42976_021_00236_z crossref_primary_10_3390_ijms20246365 crossref_primary_10_1111_mec_70092 crossref_primary_10_3390_ijms222212093 crossref_primary_10_1007_s10340_022_01583_4 crossref_primary_10_1111_tpj_16890 crossref_primary_10_1007_s12298_024_01452_7 crossref_primary_10_1094_PHYTO_04_24_0125_R crossref_primary_10_3390_plants11030293 crossref_primary_10_1111_tpj_15445 crossref_primary_10_1021_acs_jafc_4c08160 crossref_primary_10_3390_ijms252413244 crossref_primary_10_3390_genes15091237 crossref_primary_10_3390_plants11091100 crossref_primary_10_1016_j_plaphy_2021_10_026 crossref_primary_10_1093_hr_uhaf013 crossref_primary_10_3390_biology14010018 crossref_primary_10_1111_pce_14560 crossref_primary_10_1111_pce_15098 crossref_primary_10_1111_ppl_14012 crossref_primary_10_1111_nph_17218 crossref_primary_10_1111_pbi_14097 crossref_primary_10_3389_fpls_2021_777884 crossref_primary_10_1111_tpj_70166 crossref_primary_10_1186_s12870_023_04569_1 crossref_primary_10_1007_s00344_024_11586_3 crossref_primary_10_1007_s44154_023_00140_y crossref_primary_10_1007_s13562_021_00764_z crossref_primary_10_1016_j_ijfoodmicro_2020_108807 crossref_primary_10_3390_genes14112030 crossref_primary_10_1186_s13007_024_01165_8 crossref_primary_10_1111_ppl_13975 crossref_primary_10_1016_j_plaphy_2021_10_011 crossref_primary_10_1186_s42483_024_00289_y crossref_primary_10_1016_j_sajb_2024_01_029 crossref_primary_10_3389_fpls_2020_603518 crossref_primary_10_3390_f12081090 crossref_primary_10_1016_j_jplph_2022_153616 crossref_primary_10_1111_ppl_13978 crossref_primary_10_1186_s12870_023_04156_4 crossref_primary_10_1093_plcell_koae329 crossref_primary_10_3390_horticulturae11060660 crossref_primary_10_1146_annurev_arplant_081320_092855 crossref_primary_10_1111_ppl_14387 crossref_primary_10_3389_fpls_2022_1038467 crossref_primary_10_3389_fpls_2021_805614 crossref_primary_10_3390_genes14040923 crossref_primary_10_1111_ppl_70172 crossref_primary_10_1094_PHYTO_12_21_0521_R crossref_primary_10_3390_ijms232112974 crossref_primary_10_1016_j_cell_2020_04_028 crossref_primary_10_1111_ppl_70174 crossref_primary_10_3389_fpls_2022_878076 crossref_primary_10_3390_plants11020156 crossref_primary_10_4103_wjtcm_wjtcm_20_21 crossref_primary_10_1007_s42729_020_00316_9 crossref_primary_10_3103_S0096392525600139 crossref_primary_10_3389_fpls_2022_836582 crossref_primary_10_1093_hr_uhad295 crossref_primary_10_1111_jipb_13780 crossref_primary_10_1016_j_pmpp_2025_102718 crossref_primary_10_3390_ijms24032583 crossref_primary_10_1016_j_aac_2023_09_002 crossref_primary_10_1002_npp2_70022 crossref_primary_10_3389_fpls_2022_971371 crossref_primary_10_12677_IJE_2023_122025 crossref_primary_10_1242_dev_189647 crossref_primary_10_3390_f15111896 crossref_primary_10_1002_ps_7600 crossref_primary_10_1038_s41467_023_44356_y crossref_primary_10_1073_pnas_2108242118 crossref_primary_10_14348_molcells_2023_0127 crossref_primary_10_3390_plants10050903 crossref_primary_10_1080_15592324_2019_1671122 crossref_primary_10_3390_plants10020282 crossref_primary_10_1016_j_postharvbio_2023_112589 crossref_primary_10_12677_ojns_2025_133072 crossref_primary_10_3390_jof9121169 crossref_primary_10_3389_fpls_2020_551201 crossref_primary_10_3389_fbioe_2023_1150842 crossref_primary_10_1002_pi_6131 crossref_primary_10_1038_s41586_025_09280_9 crossref_primary_10_1038_s41467_021_27489_w crossref_primary_10_32604_phyton_2022_023733 crossref_primary_10_1007_s42535_022_00358_7 crossref_primary_10_1016_j_plaphy_2020_04_006 crossref_primary_10_3389_fpls_2022_1106123 crossref_primary_10_3390_ijms252413397 crossref_primary_10_1111_mpp_13457 crossref_primary_10_3390_ijms23105568 crossref_primary_10_3390_agronomy12123151 crossref_primary_10_1186_s43897_025_00174_y crossref_primary_10_1007_s10658_021_02404_7 crossref_primary_10_1111_jipb_13611 crossref_primary_10_1080_01904167_2025_2538633 crossref_primary_10_1111_ppl_70136 crossref_primary_10_3389_fpls_2022_995178 crossref_primary_10_3389_fpls_2023_1213257 crossref_primary_10_1080_17429145_2023_2255597 crossref_primary_10_1111_mpp_13102 crossref_primary_10_3390_ijms241814210 crossref_primary_10_3390_ijms20092335 crossref_primary_10_3389_fpls_2020_00908 crossref_primary_10_3390_ijms23042175 crossref_primary_10_1016_j_tibs_2023_05_004 crossref_primary_10_1111_nph_17251 crossref_primary_10_1007_s10725_024_01147_9 crossref_primary_10_1016_j_cell_2020_07_020 crossref_primary_10_1016_j_stress_2025_100989 crossref_primary_10_3390_ijms23105438 crossref_primary_10_3390_ijms25137452 crossref_primary_10_3390_biology13040219 crossref_primary_10_3390_plants13081129 crossref_primary_10_1007_s00425_020_03467_2 crossref_primary_10_1007_s00425_024_04355_9 crossref_primary_10_3389_fpls_2023_1231013 crossref_primary_10_1016_j_tplants_2020_04_004 crossref_primary_10_1038_s41477_020_0741_0 crossref_primary_10_1007_s00299_022_02961_z crossref_primary_10_1093_plphys_kiae260 crossref_primary_10_3389_fgene_2021_751040 crossref_primary_10_1016_j_envexpbot_2020_104040 crossref_primary_10_3389_fagro_2021_781027 crossref_primary_10_1016_j_molp_2022_11_011 crossref_primary_10_3389_fpls_2021_787435 crossref_primary_10_15252_embj_2023113499 crossref_primary_10_1080_21541264_2020_1820300 crossref_primary_10_1111_nph_16270 crossref_primary_10_3390_ijms22095001 crossref_primary_10_3390_ijms232214019 crossref_primary_10_1007_s10811_023_03113_w crossref_primary_10_3390_ijms23105348 crossref_primary_10_1080_07388551_2021_2007842 crossref_primary_10_3390_biom11060788 crossref_primary_10_3390_molecules27186028 crossref_primary_10_3389_fpls_2020_00583 crossref_primary_10_1007_s10658_020_02067_w crossref_primary_10_1093_hr_uhae078 crossref_primary_10_1016_j_envexpbot_2022_105065 crossref_primary_10_1016_j_scienta_2022_111526 crossref_primary_10_3390_plants9040495 crossref_primary_10_1016_j_hpj_2022_04_005 crossref_primary_10_1016_j_pbi_2021_102039 crossref_primary_10_1016_j_plaphy_2023_107768 crossref_primary_10_3390_ijms232315436 crossref_primary_10_1111_tpj_17242 crossref_primary_10_3390_ijms21031097 crossref_primary_10_1111_tpj_15068 crossref_primary_10_1111_nph_18324 crossref_primary_10_1371_journal_pone_0306340 crossref_primary_10_3390_ijms242417448 crossref_primary_10_1038_s41438_021_00597_w crossref_primary_10_1093_plcell_koae142 crossref_primary_10_1111_1744_7917_12820 crossref_primary_10_1111_pce_14501 crossref_primary_10_1016_j_plaphy_2020_04_034 crossref_primary_10_1007_s11427_024_2684_8 crossref_primary_10_1016_j_cj_2023_08_001 crossref_primary_10_1016_j_plaphy_2020_10_026 crossref_primary_10_3390_life12101496 crossref_primary_10_1111_jipb_13621 crossref_primary_10_3389_fagro_2022_825087 crossref_primary_10_3389_fpls_2020_00338 crossref_primary_10_1111_tpj_16393 crossref_primary_10_3389_fpls_2021_690857 crossref_primary_10_3390_biology11060861 crossref_primary_10_3390_ijms232113576 crossref_primary_10_3390_plants12051013 crossref_primary_10_7717_peerj_13214 crossref_primary_10_1016_j_hpj_2022_07_009 crossref_primary_10_1002_ps_70073 crossref_primary_10_1007_s00299_024_03348_y crossref_primary_10_1007_s00344_022_10613_5 crossref_primary_10_1080_07388551_2025_2498463 crossref_primary_10_1007_s10327_024_01191_3 crossref_primary_10_3390_plants12101962 crossref_primary_10_1093_hr_uhab064 crossref_primary_10_1016_j_scienta_2023_112797 crossref_primary_10_1093_jxb_erac442 crossref_primary_10_1093_plcell_koaa045 crossref_primary_10_3103_S0095452722050048 crossref_primary_10_1093_plcell_koaa047 crossref_primary_10_15252_embj_2022110682 crossref_primary_10_1016_j_indcrop_2022_114948 crossref_primary_10_1080_15592324_2023_2270835 crossref_primary_10_3390_biology14050528 crossref_primary_10_3390_plants9030303 crossref_primary_10_1038_s41598_021_00209_6 crossref_primary_10_3390_horticulturae9101070 crossref_primary_10_3389_fpls_2023_1224736 crossref_primary_10_1007_s44372_025_00274_5 crossref_primary_10_1093_plcell_koaf051 crossref_primary_10_48130_ph_0025_0003 crossref_primary_10_1007_s00203_021_02200_1 crossref_primary_10_3390_plants12213785 crossref_primary_10_1016_j_chom_2022_07_001 crossref_primary_10_1111_plb_13647 crossref_primary_10_1007_s00425_022_04010_1 crossref_primary_10_1111_pce_13874 crossref_primary_10_3390_ijms23063377 crossref_primary_10_1016_j_cj_2024_05_012 crossref_primary_10_1080_15548627_2021_1987674 crossref_primary_10_1111_pce_14288 crossref_primary_10_1186_s12870_022_03939_5 crossref_primary_10_1093_hr_uhad116 crossref_primary_10_1093_genetics_iyaf116 crossref_primary_10_3390_plants11010057 crossref_primary_10_1111_pbi_13603 crossref_primary_10_1007_s11816_022_00806_5 crossref_primary_10_1111_tpj_15010 crossref_primary_10_1111_tpj_16223 crossref_primary_10_1371_journal_pone_0288169 crossref_primary_10_1016_j_scienta_2024_113714 crossref_primary_10_3390_plants13141925 crossref_primary_10_1016_j_plaphy_2025_109780 crossref_primary_10_3389_fpls_2023_1328250 crossref_primary_10_1039_D2DT01392D crossref_primary_10_1094_MPMI_07_23_0106_R crossref_primary_10_3389_fpls_2022_870882 crossref_primary_10_1016_j_jgg_2024_02_005 crossref_primary_10_3390_f13101629 crossref_primary_10_1093_hr_uhaf082 crossref_primary_10_3390_biom11050705 crossref_primary_10_1111_plb_13659 crossref_primary_10_1007_s11240_024_02944_w crossref_primary_10_1016_j_postharvbio_2020_111382 crossref_primary_10_1080_17429145_2021_1981471 crossref_primary_10_1002_ps_7433 crossref_primary_10_1016_j_envexpbot_2021_104434 crossref_primary_10_1016_j_molp_2019_12_008 crossref_primary_10_1016_j_virusres_2024_199334 crossref_primary_10_1016_j_envexpbot_2021_104432 crossref_primary_10_1016_j_plaphy_2022_08_019 crossref_primary_10_3390_ijms20235974 crossref_primary_10_1007_s00425_020_03410_5 crossref_primary_10_1093_jxb_erab257 crossref_primary_10_1007_s00425_024_04405_2 crossref_primary_10_1016_j_seppur_2020_116650 crossref_primary_10_3390_genes10050401 crossref_primary_10_3390_ijms232214288 crossref_primary_10_3390_ijms251910799 crossref_primary_10_3390_plants12244082 crossref_primary_10_1007_s11033_021_06344_7 crossref_primary_10_3390_life12060886 crossref_primary_10_1016_j_ijbiomac_2022_06_099 crossref_primary_10_1093_jxb_eraa609 crossref_primary_10_1111_jipb_13020 crossref_primary_10_1007_s00122_021_03830_1 crossref_primary_10_1016_j_plantsci_2024_111983 crossref_primary_10_1590_1807_1929_agriambi_v27n5p327_334 crossref_primary_10_1007_s13562_023_00858_w crossref_primary_10_3390_ijms24119473 crossref_primary_10_3390_plants12173115 crossref_primary_10_1016_j_indcrop_2023_117022 crossref_primary_10_1007_s00425_021_03801_2 crossref_primary_10_1021_acs_jafc_4c13130 crossref_primary_10_1186_s42483_025_00359_9 crossref_primary_10_3389_fmicb_2022_1015038 crossref_primary_10_1007_s10658_020_02119_1 crossref_primary_10_1093_plcell_koac135 crossref_primary_10_1016_j_pmpp_2024_102352 crossref_primary_10_3389_fpls_2022_1046418 crossref_primary_10_1093_plcell_koac015 crossref_primary_10_1093_plcell_koae317 crossref_primary_10_1038_s41586_024_07100_0 crossref_primary_10_1111_ppl_13194 crossref_primary_10_1186_s12870_023_04126_w crossref_primary_10_1016_j_jare_2025_04_035 crossref_primary_10_1016_j_molp_2024_07_010 crossref_primary_10_1080_15592324_2019_1666657 crossref_primary_10_1111_mpp_70129 crossref_primary_10_1093_treephys_tpac111 crossref_primary_10_1007_s40626_021_00230_0 crossref_primary_10_1038_s41598_021_98902_z crossref_primary_10_3390_polym13183105 crossref_primary_10_1111_ppl_14604 crossref_primary_10_1007_s00299_025_03547_1 crossref_primary_10_1111_jipb_13215 crossref_primary_10_1016_j_tplants_2020_06_008 crossref_primary_10_1038_s42003_024_06031_w crossref_primary_10_1111_mpp_13050 crossref_primary_10_1111_tpj_70374 crossref_primary_10_3390_ijms232214070 crossref_primary_10_1186_s12864_021_07571_9 crossref_primary_10_3390_ijms232314525 crossref_primary_10_3390_metabo15020102 crossref_primary_10_1371_journal_ppat_1011340 crossref_primary_10_1111_pbi_14325 crossref_primary_10_1111_tpj_15124 crossref_primary_10_1002_ajoc_202500285 crossref_primary_10_3390_plants13141997 crossref_primary_10_3389_fpls_2022_1032820 crossref_primary_10_3390_ijms252211879 crossref_primary_10_1111_jph_12938 crossref_primary_10_1007_s00299_021_02811_4 crossref_primary_10_1007_s12041_025_01494_0 crossref_primary_10_1016_j_ecoenv_2020_111797 crossref_primary_10_1111_pce_14003 crossref_primary_10_1111_pce_14123 crossref_primary_10_1007_s12042_025_09411_6 crossref_primary_10_1007_s00253_021_11588_1 crossref_primary_10_1111_jph_13347 crossref_primary_10_3389_fpls_2022_881212 crossref_primary_10_1093_jxb_erae309 crossref_primary_10_1007_s00344_025_11790_9 crossref_primary_10_3389_fpls_2023_1141697 crossref_primary_10_3390_horticulturae8121164 crossref_primary_10_1080_14620316_2022_2160381 crossref_primary_10_3389_fpls_2021_636877 crossref_primary_10_3389_fpls_2021_765003 crossref_primary_10_3389_fpls_2022_1015970 crossref_primary_10_3390_plants13233430 crossref_primary_10_1038_s41598_022_26693_y crossref_primary_10_1093_jxb_erad362 crossref_primary_10_1111_tpj_14914 crossref_primary_10_1016_j_plantsci_2022_111178 crossref_primary_10_1016_j_plaphy_2023_107804 crossref_primary_10_1111_mpp_70030 crossref_primary_10_1111_pce_15420 crossref_primary_10_3389_fpls_2022_841688 crossref_primary_10_1007_s00425_020_03511_1 crossref_primary_10_1093_hr_uhab088 crossref_primary_10_1093_jxb_eraa535 crossref_primary_10_1186_s12870_021_03045_y crossref_primary_10_3390_ijms23073730 crossref_primary_10_1111_tpj_17194 crossref_primary_10_3390_ijms23031354 crossref_primary_10_1111_pbi_13932 crossref_primary_10_1111_nph_18044 crossref_primary_10_1016_j_plaphy_2020_01_005 crossref_primary_10_12677_BR_2021_101005 crossref_primary_10_1186_s12864_024_10939_2 crossref_primary_10_1007_s00299_022_02938_y crossref_primary_10_1093_plcell_koaf075 crossref_primary_10_1186_s13059_023_02952_7 crossref_primary_10_1093_jxb_erac384 crossref_primary_10_3390_ijms25105156 crossref_primary_10_1093_jxb_erac140 crossref_primary_10_1016_j_scienta_2025_114072 crossref_primary_10_1016_j_cj_2025_05_013 crossref_primary_10_1186_s13007_022_00954_3 crossref_primary_10_3390_ijms23042228 crossref_primary_10_1016_j_postharvbio_2024_112849 crossref_primary_10_1111_mpp_70021 crossref_primary_10_1016_j_cbi_2021_109494 crossref_primary_10_3390_ijms22158354 crossref_primary_10_1093_plphys_kiad201 crossref_primary_10_1111_mpp_13280 crossref_primary_10_1111_pbi_14351 |
| Cites_doi | 10.1105/tpc.108.065193 10.1111/nph.14846 10.1094/MPMI.1997.10.1.69 10.1016/j.cell.2018.02.049 10.1126/science.250.4983.1002 10.1371/journal.pgen.1007708 10.1046/j.1365-313X.2003.01902.x 10.1104/pp.17.00941 10.1016/S0092-8674(00)81858-9 10.1371/journal.pgen.1000772 10.1371/journal.ppat.1000301 10.1105/tpc.114.131938 10.1105/tpc.112.103028 10.1093/abbs/gmt078 10.1111/nph.14078 10.1111/tpj.12205 10.1073/pnas.96.6.3292 10.1016/j.chom.2012.04.014 10.1126/science.266.5188.1247 10.1038/ncomms10159 10.1038/35107108 10.3389/fpls.2018.01133 10.1186/1471-2229-11-89 10.1111/j.1365-313X.2006.02903.x 10.1016/j.cell.2018.03.044 10.1016/j.phytochem.2017.07.001 10.1111/tpj.12803 10.1016/j.pbi.2005.05.010 10.1104/pp.107.097691 10.3389/fimmu.2016.00206 10.3389/fpls.2017.02145 10.1111/nph.14780 10.1073/pnas.1302702110 10.1105/tpc.112.103564 10.1126/science.1156970 10.1073/pnas.1005225107 10.1111/j.1365-3040.2010.02194.x 10.1104/pp.110.157370 10.1038/nature11162 10.1104/pp.17.00695 10.1104/pp.17.01530 10.1093/emboj/20.19.5400 10.1016/j.molp.2018.10.002 10.1016/S0092-8674(03)00429-X 10.2307/3869945 10.1105/tpc.12.2.279 10.1126/science.250.4983.1004 10.1146/annurev-arplant-050213-040012 10.1105/tpc.106.046953 10.1105/tpc.16.00486 10.1073/pnas.1113726108 10.1073/pnas.96.11.6523 10.1104/pp.17.00222 10.1073/pnas.92.14.6602 10.1016/0042-6822(79)90019-9 10.1126/science.261.5122.754 10.1073/pnas.1511182112 10.1371/journal.ppat.1003127 10.1016/j.celrep.2012.05.008 10.1111/j.1365-313X.2011.04655.x 10.1199/tab.0156 10.1016/j.coi.2015.01.014 10.1105/tpc.112.098343 10.1105/tpc.010376 10.1074/jbc.M806662200 10.3389/fpls.2014.00777 10.1126/science.aaa8764 10.1105/tpc.014894 10.1105/tpc.15.00371 10.1094/MPMI.2000.13.2.191 10.1104/pp.113.218156 10.1016/j.cell.2009.03.038 10.1104/pp.108.119420 10.1111/j.1365-313X.2007.03369.x 10.1016/j.chom.2015.07.005 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.pbi.2019.02.004 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Botany |
| EISSN | 1879-0356 |
| EndPage | 36 |
| ExternalDocumentID | 30901692 10_1016_j_pbi_2019_02_004 S136952661830116X |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A NCXOZ O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K Y6R ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c452t-d6eae5bc4941b27fa4e75b55482fe2160d32a3877252e210b7ca27ef67da541a3 |
| ISICitedReferencesCount | 386 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486357700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1369-5266 1879-0356 |
| IngestDate | Fri Oct 03 00:07:18 EDT 2025 Sun Sep 28 08:40:11 EDT 2025 Wed Feb 19 02:31:21 EST 2025 Tue Nov 18 22:23:06 EST 2025 Sat Nov 29 07:03:51 EST 2025 Fri Feb 23 02:42:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c452t-d6eae5bc4941b27fa4e75b55482fe2160d32a3877252e210b7ca27ef67da541a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| PMID | 30901692 |
| PQID | 2196517168 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2221026054 proquest_miscellaneous_2196517168 pubmed_primary_30901692 crossref_primary_10_1016_j_pbi_2019_02_004 crossref_citationtrail_10_1016_j_pbi_2019_02_004 elsevier_sciencedirect_doi_10_1016_j_pbi_2019_02_004 |
| PublicationCentury | 2000 |
| PublicationDate | August 2019 2019-08-00 20190801 |
| PublicationDateYYYYMMDD | 2019-08-01 |
| PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Current opinion in plant biology |
| PublicationTitleAlternate | Curr Opin Plant Biol |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Saleh, Withers, Mohan, Marques, Gu, Yan, Zavaliev, Nomoto, Tada, Dong (bib0310) 2015; 18 Volz, Kim, Mi, Mariappan, Guo, Bigeard, Alejandro, Pflieger, Rayapuram, Al-Babili (bib0185) 2018; 14 Hartmann, Zeier, Bernsdorff, Reichel-Deland, Kim, Hohmann, Scholten, Schuck, Brautigam, Holzel (bib0335) 2018; 173 Zheng, Zhou, Yoo, Pruneda-Paz, Spivey, Kay, Dong (bib0155) 2015; 112 Cao, Bowling, Gordon, Dong (bib0030) 1994; 6 Bonardi, Tang, Stallmann, Roberts, Cherkis, Dangl (bib0210) 2011; 108 Chen, Holmes, Rajniak, Kim, Tang, Fischer, Mudgett, Sattely (bib0330) 2018; 115 Noutoshi, Okazaki, Kida, Nishina, Morishita, Ogawa, Suzuki, Shibata, Jikumaru, Hanada (bib0095) 2012; 24 Mackelprang, Okrent, Wildermuth (bib0110) 2017; 143 Feys, Moisan, Newman, Parker (bib0395) 2001; 20 Rochon, Boyle, Wignes, Fobert, Després (bib0250) 2006; 18 Zhang, Cheng, Qu, Zhao, Bi, Li (bib0275) 2006; 48 Zhang, Xu, Ding, Wang, Cheng, He, Gao, Xu, Li, Zhu (bib0140) 2010; 107 Wang, Gao, Zhu, Dong, Wang, Ren, Zhou, Kuai (bib0150) 2015; 82 Metraux, Signer, Ryals, Ward, Wyss-Benz, Gaudin, Raschdorf, Schmid, Blum, Inverardi (bib0015) 1990; 250 Wang, Tsuda, Sato, Cohen, Katagiri, Glazebrook (bib0130) 2009; 5 Tsuda, Sato, Stoddard, Glazebrook, Katagiri (bib0360) 2009; 5 Canet, Dobon, Roig, Tornero (bib0225) 2010; 33 Huang, Gu, Lai, Fan, Shi, Zhou, Yu, Chen (bib0085) 2010; 153 Seguel, Jelenska, Herrera-Vasquez, Marr, Joyce, Gagesch, Shakoor, Jiang, Fonseca, Wildermuth (bib0215) 2018; 176 Radojicic, Li, Zhang (bib0375) 2018; 9 Tada, Spoel, Pajerowska-Mukhtar, Mou, Song, Wang, Zuo, Dong (bib0305) 2008; 321 Tateda, Zhang, Shrestha, Jelenska, Chinchilla, Greenberg (bib0365) 2014; 26 Cui, Tsuda, Parker (bib0385) 2015; 66 Manohar, Tian, Moreau, Park, Choi, Fei, Friso, Asif, Manosalva, von Dahl (bib0235) 2015; 5 White (bib0005) 1979; 99 Lee, Park, Seo, Kim, Sim, Kim, Park (bib0320) 2015; 27 Navarova, Bernsdorff, Doring, Zeier (bib0350) 2012; 24 Serrano, Wang, Aryal, Garcion, Abou-Mansour, Heck, Geisler, Mauch, Nawrath, Metraux (bib0070) 2013; 162 Shine, Yang, El-Habbak, Nagyabhyru, Fu, Navarre, Ghabrial, Kachroo, Kachroo (bib0090) 2016; 212 Canet, Dobon, Tornero (bib0285) 2012; 24 Jin, Choi, Kang, Yun, Kwon, Noh, Noh (bib0290) 2018; 46 Hartmann, Kim, Bernsdorff, Ajami-Rashidi, Scholten, Schreiber, Zeier, Schuck, Reichel-Deland, Zeier (bib0345) 2017; 174 Garcion, Lohmann, Lamodiere, Catinot, Buchala, Doermann, Metraux (bib0060) 2008; 147 Wildermuth, Dewdney, Wu, Ausubel (bib0055) 2001; 414 Zhang, Zhao, Zhao, Li, Wang, Guo, Gan, Liu, Zhang (bib0120) 2017; 175 van Verk, Bol, Linthorst (bib0160) 2011; 11 Peng, Sun, Zhang (bib0325) 2017; 8 Wiermer, Feys, Parker (bib0205) 2005; 8 Fu, Yan, Saleh, Wang, Ruble, Oka, Mohan, Spoel, Tada, Zheng (bib0280) 2012; 486 Ding, Sun, Ao, Peng, Zhang, Li, Zhang (bib0240) 2018; 173 Zhang, Tessaro, Lassner, Li (bib0270) 2003; 15 Zhang, Halitschke, Yin, Liu, Gan (bib0115) 2013; 110 Despres, DeLong, Glaze, Liu, Fobert (bib0255) 2000; 12 Okrent, Brooks, Wildermuth (bib0080) 2009; 284 Shah, Tsui, Klessig (bib0220) 1997; 10 Cao, Glazebrook, Clarke, Volko, Dong (bib0245) 1997; 88 Zhang, Fan, Kinkema, Li, Dong (bib0265) 1999; 96 Wang, Tsuda, Truman, Sato, Nguyen le, Katagiri, Glazebrook (bib0135) 2011; 67 Lebeis, Paredes, Lundberg, Breakfield, Gehring, McDonald, Malfatti, Glavina del Rio, Jones, Tringe (bib0045) 2015; 349 Chen, Shen, Wang, Li, He (bib0105) 2013; 45 Nawrath, Metraux (bib0025) 1999; 11 Wu, Zhang, Chu, Boyle, Wang, Brindle, De Luca, Despres (bib0230) 2012; 1 Li, Kapos, Zhang (bib0380) 2015; 32 Delaney, Uknes, Vernooij, Friedrich, Weymann, Negrotto, Gaffney, Gut-Rella, Kessmann, Ward, Ryals (bib0370) 1994; 266 Nawrath, Heck, Parinthawong, Metraux (bib0065) 2002; 14 Mou, Fan, Dong (bib0300) 2003; 113 Qi, Chen, Chang, Chen, Hall, Korin, Liu, Wang, Fu (bib0040) 2018; 11 Dempsey, Vlot, Wildermuth, Klessig (bib0050) 2011; 9 Klessig, Tian, Choi (bib0295) 2016; 7 Sun, Busta, Zhang, Ding, Jetter, Zhang (bib0180) 2018; 217 Gaffney, Friedrich, Vernooij, Negrotto, Nye, Uknes, Ward, Kessmann, Ryals (bib0020) 1993; 261 Ding, Rekhter, Ding, Feussner, Busta, Haroth, Xu, Li, Jetter, Feussner (bib0340) 2016; 28 Delaney, Friedrich, Ryals (bib0035) 1995; 92 Spoel, Mou, Tada, Spivey, Genschik, Dong (bib0315) 2009; 137 Kong, Sun, Qu, Ma, Li, Cheng, Zhang, Wu, Zhang, Zhang (bib0200) 2016; 171 Gao, Chen, Lin, Chen, Lu, Niu, Li, Cheng, McCormack, Sheen (bib0165) 2013; 9 Zhou, Trifa, Silva, Pontier, Lam, Shah, Klessig (bib0260) 2000; 13 Falk, Feys, Frost, Jones, Daniels, Parker (bib0390) 1999; 96 Chen, D’Auria, Tholl, Ross, Gershenzon, Noel, Pichersky (bib0100) 2003; 36 Zhou, Lu, Bethke, Harrison, Hatsugai, Katagiri, Glazebrook (bib0195) 2018; 217 Zheng, Spivey, Zeng, Liu, Fu, Klessig, He, Dong (bib0175) 2012; 11 Kim, Park, Gilmour, Thomashow (bib0190) 2013; 75 Huang, Zhu, Liu, Chen, Li, Hou (bib0125) 2018; 176 Sun, Zhang, Li, Zhang, Ding, Zhang (bib0145) 2015; 6 Chen, Xue, Chintamanani, Germain, Lin, Cui, Cai, Zuo, Tang, Li (bib0170) 2009; 21 Malamy, Carr, Klessig, Raskin (bib0010) 1990; 250 Nobuta, Okrent, Stoutemyer, Rodibaugh, Kempema, Wildermuth, Innes (bib0075) 2007; 144 Tsuda, Sato, Glazebrook, Cohen, Katagiri (bib0355) 2008; 53 Lebeis (10.1016/j.pbi.2019.02.004_sbref0045) 2015; 349 Kim (10.1016/j.pbi.2019.02.004_bib0190) 2013; 75 Fu (10.1016/j.pbi.2019.02.004_sbref0280) 2012; 486 Zhang (10.1016/j.pbi.2019.02.004_bib0275) 2006; 48 Garcion (10.1016/j.pbi.2019.02.004_bib0060) 2008; 147 Zhang (10.1016/j.pbi.2019.02.004_sbref0120) 2017; 175 Volz (10.1016/j.pbi.2019.02.004_bib0185) 2018; 14 Wang (10.1016/j.pbi.2019.02.004_bib0150) 2015; 82 Chen (10.1016/j.pbi.2019.02.004_bib0105) 2013; 45 Tada (10.1016/j.pbi.2019.02.004_bib0305) 2008; 321 Zheng (10.1016/j.pbi.2019.02.004_bib0175) 2012; 11 Klessig (10.1016/j.pbi.2019.02.004_bib0295) 2016; 7 Delaney (10.1016/j.pbi.2019.02.004_bib0035) 1995; 92 Wildermuth (10.1016/j.pbi.2019.02.004_sbref0055) 2001; 414 Zhou (10.1016/j.pbi.2019.02.004_bib0260) 2000; 13 Nawrath (10.1016/j.pbi.2019.02.004_bib0025) 1999; 11 Huang (10.1016/j.pbi.2019.02.004_bib0125) 2018; 176 Qi (10.1016/j.pbi.2019.02.004_bib0040) 2018; 11 Mackelprang (10.1016/j.pbi.2019.02.004_bib0110) 2017; 143 Navarova (10.1016/j.pbi.2019.02.004_bib0350) 2012; 24 Feys (10.1016/j.pbi.2019.02.004_bib0395) 2001; 20 White (10.1016/j.pbi.2019.02.004_bib0005) 1979; 99 Shine (10.1016/j.pbi.2019.02.004_bib0090) 2016; 212 Sun (10.1016/j.pbi.2019.02.004_sbref0180) 2018; 217 Shah (10.1016/j.pbi.2019.02.004_bib0220) 1997; 10 Canet (10.1016/j.pbi.2019.02.004_bib0225) 2010; 33 Wang (10.1016/j.pbi.2019.02.004_sbref0135) 2011; 67 Mou (10.1016/j.pbi.2019.02.004_bib0300) 2003; 113 Cao (10.1016/j.pbi.2019.02.004_bib0030) 1994; 6 Rochon (10.1016/j.pbi.2019.02.004_bib0250) 2006; 18 Bonardi (10.1016/j.pbi.2019.02.004_sbref0210) 2011; 108 Ding (10.1016/j.pbi.2019.02.004_sbref0240) 2018; 173 Noutoshi (10.1016/j.pbi.2019.02.004_bib0095) 2012; 24 Cao (10.1016/j.pbi.2019.02.004_bib0245) 1997; 88 Ding (10.1016/j.pbi.2019.02.004_bib0340) 2016; 28 Radojicic (10.1016/j.pbi.2019.02.004_bib0375) 2018; 9 Huang (10.1016/j.pbi.2019.02.004_bib0085) 2010; 153 Gaffney (10.1016/j.pbi.2019.02.004_bib0020) 1993; 261 Canet (10.1016/j.pbi.2019.02.004_bib0285) 2012; 24 Serrano (10.1016/j.pbi.2019.02.004_bib0070) 2013; 162 Lee (10.1016/j.pbi.2019.02.004_bib0320) 2015; 27 Tsuda (10.1016/j.pbi.2019.02.004_sbref0360) 2009; 5 Zhang (10.1016/j.pbi.2019.02.004_sbref0140) 2010; 107 Wang (10.1016/j.pbi.2019.02.004_bib0130) 2009; 5 Kong (10.1016/j.pbi.2019.02.004_bib0200) 2016; 171 Peng (10.1016/j.pbi.2019.02.004_bib0325) 2017; 8 Zheng (10.1016/j.pbi.2019.02.004_bib0155) 2015; 112 Okrent (10.1016/j.pbi.2019.02.004_bib0080) 2009; 284 Zhang (10.1016/j.pbi.2019.02.004_bib0265) 1999; 96 van Verk (10.1016/j.pbi.2019.02.004_bib0160) 2011; 11 Hartmann (10.1016/j.pbi.2019.02.004_bib0345) 2017; 174 Wu (10.1016/j.pbi.2019.02.004_sbref0230) 2012; 1 Saleh (10.1016/j.pbi.2019.02.004_bib0310) 2015; 18 Gao (10.1016/j.pbi.2019.02.004_bib0165) 2013; 9 Seguel (10.1016/j.pbi.2019.02.004_bib0215) 2018; 176 Hartmann (10.1016/j.pbi.2019.02.004_bib0335) 2018; 173 Dempsey (10.1016/j.pbi.2019.02.004_bib0050) 2011; 9 Tsuda (10.1016/j.pbi.2019.02.004_bib0355) 2008; 53 Metraux (10.1016/j.pbi.2019.02.004_bib0015) 1990; 250 Delaney (10.1016/j.pbi.2019.02.004_bib0370) 1994; 266 Chen (10.1016/j.pbi.2019.02.004_bib0100) 2003; 36 Zhang (10.1016/j.pbi.2019.02.004_bib0115) 2013; 110 Wiermer (10.1016/j.pbi.2019.02.004_bib0205) 2005; 8 Despres (10.1016/j.pbi.2019.02.004_bib0255) 2000; 12 Chen (10.1016/j.pbi.2019.02.004_bib0170) 2009; 21 Malamy (10.1016/j.pbi.2019.02.004_bib0010) 1990; 250 Jin (10.1016/j.pbi.2019.02.004_bib0290) 2018; 46 Spoel (10.1016/j.pbi.2019.02.004_bib0315) 2009; 137 Sun (10.1016/j.pbi.2019.02.004_bib0145) 2015; 6 Zhou (10.1016/j.pbi.2019.02.004_bib0195) 2018; 217 Manohar (10.1016/j.pbi.2019.02.004_bib0235) 2015; 5 Zhang (10.1016/j.pbi.2019.02.004_bib0270) 2003; 15 Cui (10.1016/j.pbi.2019.02.004_bib0385) 2015; 66 Falk (10.1016/j.pbi.2019.02.004_bib0390) 1999; 96 Nawrath (10.1016/j.pbi.2019.02.004_bib0065) 2002; 14 Nobuta (10.1016/j.pbi.2019.02.004_bib0075) 2007; 144 Li (10.1016/j.pbi.2019.02.004_bib0380) 2015; 32 Chen (10.1016/j.pbi.2019.02.004_bib0330) 2018; 115 Tateda (10.1016/j.pbi.2019.02.004_bib0365) 2014; 26 |
| References_xml | – volume: 96 start-page: 6523 year: 1999 end-page: 6528 ident: bib0265 article-title: Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene publication-title: Proc Natl Acad Sci U S A – volume: 175 start-page: 1082 year: 2017 end-page: 1093 ident: bib0120 article-title: S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis publication-title: Plant Physiol – volume: 75 start-page: 364 year: 2013 end-page: 376 ident: bib0190 article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis publication-title: Plant J – volume: 13 start-page: 191 year: 2000 end-page: 202 ident: bib0260 article-title: NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid publication-title: Mol Plant Microbe Interact – volume: 53 start-page: 763 year: 2008 end-page: 775 ident: bib0355 article-title: Interplay between MAMP-triggered and SA-mediated defense responses publication-title: Plant J – volume: 250 start-page: 1004 year: 1990 end-page: 1006 ident: bib0015 article-title: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber publication-title: Science – volume: 7 year: 2016 ident: bib0295 article-title: Multiple targets of salicylic acid and its derivatives in plants and animals publication-title: Front Immunol – volume: 349 start-page: 860 year: 2015 end-page: 864 ident: bib0045 article-title: PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa publication-title: Science – volume: 217 start-page: 700 year: 2018 end-page: 712 ident: bib0195 article-title: WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1 publication-title: New Phytol – volume: 321 start-page: 952 year: 2008 end-page: 956 ident: bib0305 article-title: Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins publication-title: Science – volume: 143 start-page: 19 year: 2017 end-page: 28 ident: bib0110 article-title: Preference of publication-title: Phytochemistry – volume: 48 start-page: 647 year: 2006 end-page: 656 ident: bib0275 article-title: Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs publication-title: Plant J – volume: 284 start-page: 9742 year: 2009 end-page: 9754 ident: bib0080 article-title: Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate publication-title: J Biol Chem – volume: 99 start-page: 410 year: 1979 end-page: 412 ident: bib0005 article-title: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco publication-title: Virology – volume: 250 start-page: 1002 year: 1990 end-page: 1004 ident: bib0010 article-title: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection publication-title: Science – volume: 11 start-page: 89 year: 2011 ident: bib0160 article-title: WRKY transcription factors involved in activation of SA biosynthesis genes publication-title: BMC Plant Biol – volume: 9 start-page: 1133 year: 2018 ident: bib0375 article-title: Salicylic acid: a double-edged sword for programed cell death in plants publication-title: Front Plant Sci – volume: 1 start-page: 639 year: 2012 end-page: 647 ident: bib0230 article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid publication-title: Cell Rep – volume: 11 start-page: 587 year: 2012 end-page: 596 ident: bib0175 article-title: Coronatine promotes publication-title: Cell Host Microbe – volume: 147 start-page: 1279 year: 2008 end-page: 1287 ident: bib0060 article-title: Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis publication-title: Plant Physiol – volume: 18 start-page: 3670 year: 2006 end-page: 3685 ident: bib0250 article-title: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines publication-title: Plant Cell – volume: 6 year: 2015 ident: bib0145 article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity publication-title: Nat Commun – volume: 28 start-page: 2603 year: 2016 end-page: 2615 ident: bib0340 article-title: Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance publication-title: Plant Cell – volume: 414 start-page: 562 year: 2001 end-page: 565 ident: bib0055 article-title: Isochorismate synthase is required to synthesize salicylic acid for plant defence publication-title: Nature – volume: 67 start-page: 1029 year: 2011 end-page: 1041 ident: bib0135 article-title: CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling publication-title: Plant J – volume: 12 start-page: 279 year: 2000 end-page: 290 ident: bib0255 article-title: The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors publication-title: Plant Cell – volume: 174 start-page: 124 year: 2017 end-page: 153 ident: bib0345 article-title: Biochemical principles and functional aspects of Pipecolic acid biosynthesis in plant immunity publication-title: Plant Physiol – volume: 15 start-page: 2647 year: 2003 end-page: 2653 ident: bib0270 article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance publication-title: Plant Cell – volume: 112 start-page: 9166 year: 2015 end-page: 9173 ident: bib0155 article-title: Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid publication-title: Proc Natl Acad Sci U S A – volume: 9 year: 2013 ident: bib0165 article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases publication-title: PLoS Pathog – volume: 82 start-page: 151 year: 2015 end-page: 162 ident: bib0150 article-title: TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in publication-title: Plant J – volume: 6 start-page: 1583 year: 1994 end-page: 1592 ident: bib0030 article-title: Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance publication-title: Plant Cell – volume: 176 start-page: 2515 year: 2018 end-page: 2531 ident: bib0215 article-title: PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis publication-title: Plant Physiol – volume: 5 year: 2009 ident: bib0360 article-title: Network properties of robust immunity in plants publication-title: PLoS Genet – volume: 32 start-page: 114 year: 2015 end-page: 121 ident: bib0380 article-title: NLRs in plants publication-title: Curr Opin Immunol – volume: 21 start-page: 2527 year: 2009 end-page: 2540 ident: bib0170 article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis publication-title: Plant Cell – volume: 18 start-page: 169 year: 2015 end-page: 182 ident: bib0310 article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses publication-title: Cell Host Microbe – volume: 176 start-page: 3103 year: 2018 end-page: 3119 ident: bib0125 article-title: Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids publication-title: Plant Physiol – volume: 46 start-page: 11712 year: 2018 end-page: 11725 ident: bib0290 article-title: Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis publication-title: Nucleic Acids Res – volume: 5 start-page: 777 year: 2015 ident: bib0235 article-title: Identification of multiple salicylic acid-binding proteins using two high throughput screens publication-title: Front Plant Sci – volume: 107 start-page: 18220 year: 2010 end-page: 18225 ident: bib0140 article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 4171 year: 2014 end-page: 4187 ident: bib0365 article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling publication-title: Plant Cell – volume: 20 start-page: 5400 year: 2001 end-page: 5411 ident: bib0395 article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 publication-title: EMBO J – volume: 113 start-page: 935 year: 2003 end-page: 944 ident: bib0300 article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes publication-title: Cell – volume: 217 start-page: 344 year: 2018 end-page: 354 ident: bib0180 article-title: TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g) publication-title: New Phytol – volume: 14 year: 2018 ident: bib0185 article-title: The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity publication-title: PLoS Genet – volume: 173 start-page: 1454 year: 2018 end-page: 1467 ident: bib0240 article-title: Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity publication-title: Cell – volume: 27 start-page: 3425 year: 2015 end-page: 3438 ident: bib0320 article-title: Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis publication-title: Plant Cell – volume: 144 start-page: 1144 year: 2007 end-page: 1156 ident: bib0075 article-title: The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis publication-title: Plant Physiol – volume: 24 start-page: 5123 year: 2012 end-page: 5141 ident: bib0350 article-title: Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity publication-title: Plant Cell – volume: 5 year: 2009 ident: bib0130 article-title: Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against publication-title: PLoS Pathog – volume: 88 start-page: 57 year: 1997 end-page: 63 ident: bib0245 article-title: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats publication-title: Cell – volume: 92 start-page: 6602 year: 1995 end-page: 6606 ident: bib0035 article-title: Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance publication-title: Proc Natl Acad Sci U S A – volume: 137 start-page: 860 year: 2009 end-page: 872 ident: bib0315 article-title: Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity publication-title: Cell – volume: 10 start-page: 69 year: 1997 end-page: 78 ident: bib0220 article-title: Characterization of a salicylic acid-insensitive mutant (sai1) of publication-title: Mol Plant Microbe Interact – volume: 11 start-page: 1393 year: 1999 end-page: 1404 ident: bib0025 article-title: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation publication-title: Plant Cell – volume: 115 start-page: E4920 year: 2018 end-page: E4929 ident: bib0330 article-title: N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis publication-title: Proc Natl Acad Sci U S A – volume: 45 start-page: 827 year: 2013 end-page: 836 ident: bib0105 article-title: Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis publication-title: Acta Biochim Biophys Sin (Shanghai) – volume: 24 start-page: 4220 year: 2012 end-page: 4235 ident: bib0285 article-title: Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid publication-title: Plant Cell – volume: 173 start-page: 456 year: 2018 end-page: 469 ident: bib0335 article-title: Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity publication-title: Cell – volume: 162 start-page: 1815 year: 2013 end-page: 1821 ident: bib0070 article-title: Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5 publication-title: Plant Physiol – volume: 153 start-page: 1526 year: 2010 end-page: 1538 ident: bib0085 article-title: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress publication-title: Plant Physiol – volume: 8 start-page: 383 year: 2005 end-page: 389 ident: bib0205 article-title: Plant immunity: the EDS1 regulatory node publication-title: Curr Opin Plant Biol – volume: 24 start-page: 3795 year: 2012 end-page: 3804 ident: bib0095 article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis publication-title: Plant Cell – volume: 486 start-page: 228 year: 2012 end-page: 232 ident: bib0280 article-title: NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants publication-title: Nature – volume: 171 start-page: 1344 year: 2016 end-page: 1354 ident: bib0200 article-title: Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis publication-title: Plant Physiol – volume: 261 start-page: 754 year: 1993 end-page: 756 ident: bib0020 article-title: Requirement of salicylic acid for the induction of systemic acquired resistance publication-title: Science – volume: 212 start-page: 627 year: 2016 end-page: 636 ident: bib0090 article-title: Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean publication-title: New Phytol – volume: 11 start-page: 1427 year: 2018 end-page: 1439 ident: bib0040 article-title: Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens publication-title: Mol Plant – volume: 14 start-page: 275 year: 2002 end-page: 286 ident: bib0065 article-title: EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family publication-title: Plant Cell – volume: 66 start-page: 487 year: 2015 end-page: 511 ident: bib0385 article-title: Effector-triggered immunity: from pathogen perception to robust defense publication-title: Annu Rev Plant Biol – volume: 108 start-page: 16463 year: 2011 end-page: 16468 ident: bib0210 article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors publication-title: Proc Natl Acad Sci U S A – volume: 266 start-page: 1247 year: 1994 end-page: 1250 ident: bib0370 article-title: A central role of salicylic acid in plant disease resistance publication-title: Science – volume: 33 start-page: 1911 year: 2010 end-page: 1922 ident: bib0225 article-title: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid publication-title: Plant Cell Environ – volume: 8 start-page: 2145 year: 2017 ident: bib0325 article-title: Perception of salicylic acid in publication-title: Front Plant Sci – volume: 110 start-page: 14807 year: 2013 end-page: 14812 ident: bib0115 article-title: Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism publication-title: Proc Natl Acad Sci U S A – volume: 96 start-page: 3292 year: 1999 end-page: 3297 ident: bib0390 article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases publication-title: Proc Natl Acad Sci U S A – volume: 36 start-page: 577 year: 2003 end-page: 588 ident: bib0100 article-title: An publication-title: Plant J – volume: 9 year: 2011 ident: bib0050 article-title: Salicylic acid biosynthesis and metabolism publication-title: Arabidopsis Book – volume: 21 start-page: 2527 year: 2009 ident: 10.1016/j.pbi.2019.02.004_bib0170 article-title: ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.108.065193 – volume: 217 start-page: 700 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0195 article-title: WRKY70 prevents axenic activation of plant immunity by direct repression of SARD1 publication-title: New Phytol doi: 10.1111/nph.14846 – volume: 10 start-page: 69 year: 1997 ident: 10.1016/j.pbi.2019.02.004_bib0220 article-title: Characterization of a salicylic acid-insensitive mutant (sai1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the tms2 gene publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.1997.10.1.69 – volume: 173 start-page: 456 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0335 article-title: Flavin monooxygenase-generated N-hydroxypipecolic acid is a critical element of plant systemic immunity publication-title: Cell doi: 10.1016/j.cell.2018.02.049 – volume: 250 start-page: 1002 year: 1990 ident: 10.1016/j.pbi.2019.02.004_bib0010 article-title: Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection publication-title: Science doi: 10.1126/science.250.4983.1002 – volume: 14 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0185 article-title: The Trihelix transcription factor GT2-like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial-triggered immunity publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007708 – volume: 36 start-page: 577 year: 2003 ident: 10.1016/j.pbi.2019.02.004_bib0100 article-title: An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01902.x – volume: 46 start-page: 11712 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0290 article-title: Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis publication-title: Nucleic Acids Res – volume: 176 start-page: 2515 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0215 article-title: PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.17.00941 – volume: 88 start-page: 57 year: 1997 ident: 10.1016/j.pbi.2019.02.004_bib0245 article-title: The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats publication-title: Cell doi: 10.1016/S0092-8674(00)81858-9 – volume: 5 year: 2009 ident: 10.1016/j.pbi.2019.02.004_sbref0360 article-title: Network properties of robust immunity in plants publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000772 – volume: 5 year: 2009 ident: 10.1016/j.pbi.2019.02.004_bib0130 article-title: Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1000301 – volume: 26 start-page: 4171 year: 2014 ident: 10.1016/j.pbi.2019.02.004_bib0365 article-title: Salicylic acid regulates Arabidopsis microbial pattern receptor kinase levels and signaling publication-title: Plant Cell doi: 10.1105/tpc.114.131938 – volume: 24 start-page: 4220 year: 2012 ident: 10.1016/j.pbi.2019.02.004_bib0285 article-title: Non-recognition-of-BTH4, an Arabidopsis mediator subunit homolog, is necessary for development and response to salicylic acid publication-title: Plant Cell doi: 10.1105/tpc.112.103028 – volume: 45 start-page: 827 year: 2013 ident: 10.1016/j.pbi.2019.02.004_bib0105 article-title: Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis publication-title: Acta Biochim Biophys Sin (Shanghai) doi: 10.1093/abbs/gmt078 – volume: 212 start-page: 627 year: 2016 ident: 10.1016/j.pbi.2019.02.004_bib0090 article-title: Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynthesis in soybean publication-title: New Phytol doi: 10.1111/nph.14078 – volume: 75 start-page: 364 year: 2013 ident: 10.1016/j.pbi.2019.02.004_bib0190 article-title: Roles of CAMTA transcription factors and salicylic acid in configuring the low-temperature transcriptome and freezing tolerance of Arabidopsis publication-title: Plant J doi: 10.1111/tpj.12205 – volume: 96 start-page: 3292 year: 1999 ident: 10.1016/j.pbi.2019.02.004_bib0390 article-title: EDS1, an essential component of R gene-mediated disease resistance in Arabidopsis has homology to eukaryotic lipases publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.6.3292 – volume: 11 start-page: 587 year: 2012 ident: 10.1016/j.pbi.2019.02.004_bib0175 article-title: Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.014 – volume: 266 start-page: 1247 year: 1994 ident: 10.1016/j.pbi.2019.02.004_bib0370 article-title: A central role of salicylic acid in plant disease resistance publication-title: Science doi: 10.1126/science.266.5188.1247 – volume: 6 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0145 article-title: ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity publication-title: Nat Commun doi: 10.1038/ncomms10159 – volume: 414 start-page: 562 year: 2001 ident: 10.1016/j.pbi.2019.02.004_sbref0055 article-title: Isochorismate synthase is required to synthesize salicylic acid for plant defence publication-title: Nature doi: 10.1038/35107108 – volume: 9 start-page: 1133 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0375 article-title: Salicylic acid: a double-edged sword for programed cell death in plants publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01133 – volume: 11 start-page: 1393 year: 1999 ident: 10.1016/j.pbi.2019.02.004_bib0025 article-title: Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation publication-title: Plant Cell – volume: 11 start-page: 89 year: 2011 ident: 10.1016/j.pbi.2019.02.004_bib0160 article-title: WRKY transcription factors involved in activation of SA biosynthesis genes publication-title: BMC Plant Biol doi: 10.1186/1471-2229-11-89 – volume: 48 start-page: 647 year: 2006 ident: 10.1016/j.pbi.2019.02.004_bib0275 article-title: Negative regulation of defense responses in Arabidopsis by two NPR1 paralogs publication-title: Plant J doi: 10.1111/j.1365-313X.2006.02903.x – volume: 173 start-page: 1454 year: 2018 ident: 10.1016/j.pbi.2019.02.004_sbref0240 article-title: Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in transcriptional regulation of plant immunity publication-title: Cell doi: 10.1016/j.cell.2018.03.044 – volume: 143 start-page: 19 year: 2017 ident: 10.1016/j.pbi.2019.02.004_bib0110 article-title: Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate publication-title: Phytochemistry doi: 10.1016/j.phytochem.2017.07.001 – volume: 82 start-page: 151 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0150 article-title: TCP transcription factors are critical for the coordinated regulation of isochorismate synthase 1 expression in Arabidopsis thaliana publication-title: Plant J doi: 10.1111/tpj.12803 – volume: 8 start-page: 383 year: 2005 ident: 10.1016/j.pbi.2019.02.004_bib0205 article-title: Plant immunity: the EDS1 regulatory node publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2005.05.010 – volume: 144 start-page: 1144 year: 2007 ident: 10.1016/j.pbi.2019.02.004_bib0075 article-title: The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.107.097691 – volume: 7 year: 2016 ident: 10.1016/j.pbi.2019.02.004_bib0295 article-title: Multiple targets of salicylic acid and its derivatives in plants and animals publication-title: Front Immunol doi: 10.3389/fimmu.2016.00206 – volume: 115 start-page: E4920 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0330 article-title: N-hydroxy-pipecolic acid is a mobile metabolite that induces systemic disease resistance in Arabidopsis publication-title: Proc Natl Acad Sci U S A – volume: 8 start-page: 2145 year: 2017 ident: 10.1016/j.pbi.2019.02.004_bib0325 article-title: Perception of salicylic acid in Physcomitrella patens publication-title: Front Plant Sci doi: 10.3389/fpls.2017.02145 – volume: 217 start-page: 344 year: 2018 ident: 10.1016/j.pbi.2019.02.004_sbref0180 article-title: TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (SARD1) and CALMODULIN-BINDING PROTEIN 60g (CBP60g) publication-title: New Phytol doi: 10.1111/nph.14780 – volume: 110 start-page: 14807 year: 2013 ident: 10.1016/j.pbi.2019.02.004_bib0115 article-title: Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1302702110 – volume: 24 start-page: 5123 year: 2012 ident: 10.1016/j.pbi.2019.02.004_bib0350 article-title: Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity publication-title: Plant Cell doi: 10.1105/tpc.112.103564 – volume: 321 start-page: 952 year: 2008 ident: 10.1016/j.pbi.2019.02.004_bib0305 article-title: Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins publication-title: Science doi: 10.1126/science.1156970 – volume: 107 start-page: 18220 year: 2010 ident: 10.1016/j.pbi.2019.02.004_sbref0140 article-title: Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005225107 – volume: 33 start-page: 1911 year: 2010 ident: 10.1016/j.pbi.2019.02.004_bib0225 article-title: Structure-function analysis of npr1 alleles in Arabidopsis reveals a role for its paralogs in the perception of salicylic acid publication-title: Plant Cell Environ doi: 10.1111/j.1365-3040.2010.02194.x – volume: 153 start-page: 1526 year: 2010 ident: 10.1016/j.pbi.2019.02.004_bib0085 article-title: Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress publication-title: Plant Physiol doi: 10.1104/pp.110.157370 – volume: 486 start-page: 228 year: 2012 ident: 10.1016/j.pbi.2019.02.004_sbref0280 article-title: NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants publication-title: Nature doi: 10.1038/nature11162 – volume: 175 start-page: 1082 year: 2017 ident: 10.1016/j.pbi.2019.02.004_sbref0120 article-title: S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis publication-title: Plant Physiol doi: 10.1104/pp.17.00695 – volume: 176 start-page: 3103 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0125 article-title: Modulation of plant salicylic acid-associated immune responses via glycosylation of dihydroxybenzoic acids publication-title: Plant Physiol doi: 10.1104/pp.17.01530 – volume: 171 start-page: 1344 year: 2016 ident: 10.1016/j.pbi.2019.02.004_bib0200 article-title: Two redundant receptor-like cytoplasmic kinases function downstream of pattern recognition receptors to regulate activation of SA biosynthesis publication-title: Plant Physiol – volume: 20 start-page: 5400 year: 2001 ident: 10.1016/j.pbi.2019.02.004_bib0395 article-title: Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4 publication-title: EMBO J doi: 10.1093/emboj/20.19.5400 – volume: 11 start-page: 1427 year: 2018 ident: 10.1016/j.pbi.2019.02.004_bib0040 article-title: Pandemonium breaks out: disruption of salicylic acid-mediated defense by plant pathogens publication-title: Mol Plant doi: 10.1016/j.molp.2018.10.002 – volume: 113 start-page: 935 year: 2003 ident: 10.1016/j.pbi.2019.02.004_bib0300 article-title: Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes publication-title: Cell doi: 10.1016/S0092-8674(03)00429-X – volume: 6 start-page: 1583 year: 1994 ident: 10.1016/j.pbi.2019.02.004_bib0030 article-title: Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance publication-title: Plant Cell doi: 10.2307/3869945 – volume: 12 start-page: 279 year: 2000 ident: 10.1016/j.pbi.2019.02.004_bib0255 article-title: The Arabidopsis NPR1/NIM1 protein enhances the DNA binding activity of a subgroup of the TGA family of bZIP transcription factors publication-title: Plant Cell doi: 10.1105/tpc.12.2.279 – volume: 250 start-page: 1004 year: 1990 ident: 10.1016/j.pbi.2019.02.004_bib0015 article-title: Increase in salicylic acid at the onset of systemic acquired resistance in cucumber publication-title: Science doi: 10.1126/science.250.4983.1004 – volume: 66 start-page: 487 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0385 article-title: Effector-triggered immunity: from pathogen perception to robust defense publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-050213-040012 – volume: 18 start-page: 3670 year: 2006 ident: 10.1016/j.pbi.2019.02.004_bib0250 article-title: The coactivator function of Arabidopsis NPR1 requires the core of its BTB/POZ domain and the oxidation of C-terminal cysteines publication-title: Plant Cell doi: 10.1105/tpc.106.046953 – volume: 28 start-page: 2603 year: 2016 ident: 10.1016/j.pbi.2019.02.004_bib0340 article-title: Characterization of a pipecolic acid biosynthesis pathway required for systemic acquired resistance publication-title: Plant Cell doi: 10.1105/tpc.16.00486 – volume: 108 start-page: 16463 year: 2011 ident: 10.1016/j.pbi.2019.02.004_sbref0210 article-title: Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1113726108 – volume: 96 start-page: 6523 year: 1999 ident: 10.1016/j.pbi.2019.02.004_bib0265 article-title: Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.96.11.6523 – volume: 174 start-page: 124 year: 2017 ident: 10.1016/j.pbi.2019.02.004_bib0345 article-title: Biochemical principles and functional aspects of Pipecolic acid biosynthesis in plant immunity publication-title: Plant Physiol doi: 10.1104/pp.17.00222 – volume: 92 start-page: 6602 year: 1995 ident: 10.1016/j.pbi.2019.02.004_bib0035 article-title: Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.92.14.6602 – volume: 99 start-page: 410 year: 1979 ident: 10.1016/j.pbi.2019.02.004_bib0005 article-title: Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco publication-title: Virology doi: 10.1016/0042-6822(79)90019-9 – volume: 261 start-page: 754 year: 1993 ident: 10.1016/j.pbi.2019.02.004_bib0020 article-title: Requirement of salicylic acid for the induction of systemic acquired resistance publication-title: Science doi: 10.1126/science.261.5122.754 – volume: 112 start-page: 9166 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0155 article-title: Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1511182112 – volume: 9 year: 2013 ident: 10.1016/j.pbi.2019.02.004_bib0165 article-title: Bifurcation of Arabidopsis NLR immune signaling via Ca2+-dependent protein kinases publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003127 – volume: 1 start-page: 639 year: 2012 ident: 10.1016/j.pbi.2019.02.004_sbref0230 article-title: The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid publication-title: Cell Rep doi: 10.1016/j.celrep.2012.05.008 – volume: 67 start-page: 1029 year: 2011 ident: 10.1016/j.pbi.2019.02.004_sbref0135 article-title: CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04655.x – volume: 9 year: 2011 ident: 10.1016/j.pbi.2019.02.004_bib0050 article-title: Salicylic acid biosynthesis and metabolism publication-title: Arabidopsis Book doi: 10.1199/tab.0156 – volume: 32 start-page: 114 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0380 article-title: NLRs in plants publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2015.01.014 – volume: 24 start-page: 3795 year: 2012 ident: 10.1016/j.pbi.2019.02.004_bib0095 article-title: Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.112.098343 – volume: 14 start-page: 275 year: 2002 ident: 10.1016/j.pbi.2019.02.004_bib0065 article-title: EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family publication-title: Plant Cell doi: 10.1105/tpc.010376 – volume: 284 start-page: 9742 year: 2009 ident: 10.1016/j.pbi.2019.02.004_bib0080 article-title: Arabidopsis GH3.12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate publication-title: J Biol Chem doi: 10.1074/jbc.M806662200 – volume: 5 start-page: 777 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0235 article-title: Identification of multiple salicylic acid-binding proteins using two high throughput screens publication-title: Front Plant Sci doi: 10.3389/fpls.2014.00777 – volume: 349 start-page: 860 year: 2015 ident: 10.1016/j.pbi.2019.02.004_sbref0045 article-title: PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa publication-title: Science doi: 10.1126/science.aaa8764 – volume: 15 start-page: 2647 year: 2003 ident: 10.1016/j.pbi.2019.02.004_bib0270 article-title: Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance publication-title: Plant Cell doi: 10.1105/tpc.014894 – volume: 27 start-page: 3425 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0320 article-title: Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.15.00371 – volume: 13 start-page: 191 year: 2000 ident: 10.1016/j.pbi.2019.02.004_bib0260 article-title: NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid publication-title: Mol Plant Microbe Interact doi: 10.1094/MPMI.2000.13.2.191 – volume: 162 start-page: 1815 year: 2013 ident: 10.1016/j.pbi.2019.02.004_bib0070 article-title: Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5 publication-title: Plant Physiol doi: 10.1104/pp.113.218156 – volume: 137 start-page: 860 year: 2009 ident: 10.1016/j.pbi.2019.02.004_bib0315 article-title: Proteasome-mediated turnover of the transcription coactivator NPR1 plays dual roles in regulating plant immunity publication-title: Cell doi: 10.1016/j.cell.2009.03.038 – volume: 147 start-page: 1279 year: 2008 ident: 10.1016/j.pbi.2019.02.004_bib0060 article-title: Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis publication-title: Plant Physiol doi: 10.1104/pp.108.119420 – volume: 53 start-page: 763 year: 2008 ident: 10.1016/j.pbi.2019.02.004_bib0355 article-title: Interplay between MAMP-triggered and SA-mediated defense responses publication-title: Plant J doi: 10.1111/j.1365-313X.2007.03369.x – volume: 18 start-page: 169 year: 2015 ident: 10.1016/j.pbi.2019.02.004_bib0310 article-title: Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.07.005 |
| SSID | ssj0005273 |
| Score | 2.6925807 |
| SecondaryResourceType | review_article |
| Snippet | •Salicylic acid (SA) is a plant defense hormone with critical roles in PTI, ETI and SAR.•Induction of SA synthesis is orchestrated via complex transcriptional... Salicylic acid (SA) has emerged as a key plant defense hormone with critical roles in different aspects of plant immunity. Analysis of Arabidopsis mutants... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 29 |
| SubjectTerms | Arabidopsis Arabidopsis Proteins biosynthesis gene expression Gene Expression Regulation, Plant immunity microbiome mutants Mutation pathogens Plant Diseases Plant Immunity receptors Salicylic Acid |
| Title | Salicylic acid: biosynthesis, perception, and contributions to plant immunity |
| URI | https://dx.doi.org/10.1016/j.pbi.2019.02.004 https://www.ncbi.nlm.nih.gov/pubmed/30901692 https://www.proquest.com/docview/2196517168 https://www.proquest.com/docview/2221026054 |
| Volume | 50 |
| WOSCitedRecordID | wos000486357700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0356 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005273 issn: 1369-5266 databaseCode: AIEXJ dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBbp5WEvY_d1l6LB2MNaF0e2Y2sPg26kbCPLBkvBb0KSZXAJtte4pf33O7o5yUpD97AXkyiyYs5nHx9J3_kOQm9jyiFqp0VQWFFtHgVCcRHAwyEhWi6FFKUpNpFOp1me05-DwUefC3M5T-s6u7qi7X-FGtoAbJ06-w9w94NCA3wG0OEIsMPxTsD_4lrpV2tXc1mZCs6iahbXNUR6Cyso0PZkFs_dNIR1V_nKSD60c7D4QWWSR7q1nV8v6KQTrRxP0nZ2ck43VqInOuO95_0Y8kDuGtxqg05wyvxqg3WQ0YjC5NVWSvEeNAkP2iNCg2jNFdKVl6r95Ya7tisHZ0etqDTLjlr51Hj5bvL78dMf7OR0MmGzcT571_4OdNUwvbvuSqhsoR2SJhS82s7x13H-bYXkYzgG_VX7fW3D8PvrX2-LTG6beZgIZPYA3XdTB3xsIX-IBqp-hHY_NRDeXz9G33vcscb9A15F_RAvMT_EgDheQxx3DTYgYo_4E3R6Mp59_hK4WhmBjBPSBcVIcZUIGdN4KEha8liliYBYMSOlIsNRWESERxnMpRIC30ORSk5SVY7SgifxkEdP0Xbd1Oo5wjBQNBpypbRUYBEJwcFRC5nGMUSTslB7KPR2YtIJyet6JnPmGYNnDEzLtGlZSBiYdg-9709prYrKps6xNz5zYaAN7xjcNptOe-OBYuAi9b4Xr1VzsWBEq2ZqWahsQx-i1z5gbg_jPLMo91cahVRrFpEXdzj7Jbq3fGxeoe3u_EK9RrvysqsW5_toK82zfXeT_gEQCJ2n |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Salicylic+acid%3A+biosynthesis%2C+perception%2C+and+contributions+to+plant+immunity&rft.jtitle=Current+opinion+in+plant+biology&rft.au=Zhang%2C+Lelin&rft.au=Li%2C+Xin&rft.date=2019-08-01&rft.issn=1369-5266&rft.volume=50+p.29-36&rft.spage=29&rft.epage=36&rft_id=info:doi/10.1016%2Fj.pbi.2019.02.004&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-5266&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-5266&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-5266&client=summon |