Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms
Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it...
Gespeichert in:
| Veröffentlicht in: | The Artificial intelligence review Jg. 56; H. 1; S. 615 - 651 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Dordrecht
Springer Netherlands
01.01.2023
Springer Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0269-2821, 1573-7462 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it difficult to determine the prostate boundaries in ultrasound images. In this paper, we provide a systematic review of advances in the field of ultrasound prostate image segmentation. In particular, three categories of algorithms are reviewed and compared, including edge-based segmentation, region-based segmentation, and those based on specific theoretical models. To understand the state of the art of different segmentations of the prostate ultrasound images, we conduct a literature analysis and a series of comparisons between different algorithms. The features and limitations of each category of segmentation algorithms are further discussed. Finally, we identified promising research directions in advancing the segmentation algorithms for the processing of ultrasound prostate images. |
|---|---|
| AbstractList | Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it difficult to determine the prostate boundaries in ultrasound images. In this paper, we provide a systematic review of advances in the field of ultrasound prostate image segmentation. In particular, three categories of algorithms are reviewed and compared, including edge-based segmentation, region-based segmentation, and those based on specific theoretical models. To understand the state of the art of different segmentations of the prostate ultrasound images, we conduct a literature analysis and a series of comparisons between different algorithms. The features and limitations of each category of segmentation algorithms are further discussed. Finally, we identified promising research directions in advancing the segmentation algorithms for the processing of ultrasound prostate images. |
| Audience | Academic |
| Author | Jiang, Jingang Bi, Zhuming Yu, Guang Wang, Jinke Huang, Zhiyuan Guo, Yafeng |
| Author_xml | – sequence: 1 givenname: Jingang orcidid: 0000-0003-0491-9236 surname: Jiang fullname: Jiang, Jingang email: jiangjingang@hrbust.edu.cn organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology – sequence: 2 givenname: Yafeng surname: Guo fullname: Guo, Yafeng organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology – sequence: 3 givenname: Zhuming surname: Bi fullname: Bi, Zhuming organization: Department of Civil and Mechanical Engineering, Purdue University Fort Wayne – sequence: 4 givenname: Zhiyuan surname: Huang fullname: Huang, Zhiyuan organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology – sequence: 5 givenname: Guang surname: Yu fullname: Yu, Guang organization: Department of Mechanical Engineering, Tsinghua University – sequence: 6 givenname: Jinke surname: Wang fullname: Wang, Jinke organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology |
| BookMark | eNp9kU1LHjEQx0Ox0EfbL9DTgue1k_d9vImoLQge2p5DzMsa2RdNsge_vbPdgq2I5JDMzP83YeZ_SA6meQqEfKVwQgH0t0JBKNYCYy0Fqvet-EB2VGreaswfkB0wtW9Zx-gncljKPQBIJviOLD9DP4ap2prmqZlj85DnglFolqFmW-Zl8k0abR_KaVPvQrMVUbgGNtfGomB9x6UuOTQ-5eDWZmUVlX-726Gfc6p3Y_lMPkY7lPDl731Efl9e_Dr_3l7fXP04P7tunZCstq6jDoSnOlrFnFU-atjfdnIvnadeeSm1EF4pYR2HSK3m3PNOcy95J2-Z4kfkeOuLUz0uoVRzPy95wi8N0wo04IbYi6q3QzBpijNO7sZUnDlb69BxuapO3lDh8WFMDu2ICfP_Ad0GOFxpySEal7ZNIJgGQ8Gs3pnNO4PemT_eGYEoe4U-ZDQhP70P8Q0qKJ76kF-GfYd6Bqamrcc |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125743 crossref_primary_10_1016_j_eswa_2025_126853 crossref_primary_10_1063_5_0245331 crossref_primary_10_1109_TMI_2024_3472672 crossref_primary_10_1016_j_patcog_2024_110776 crossref_primary_10_1038_s41598_025_08711_x crossref_primary_10_1007_s10489_023_04676_4 crossref_primary_10_1016_j_bbe_2023_08_002 crossref_primary_10_1016_j_compmedimag_2024_102339 crossref_primary_10_3390_app14156550 crossref_primary_10_1088_1361_6560_acf5c5 |
| Cites_doi | 10.3322/caac.21654 10.1109/TMI.2005.862744 10.1109/TMI.2014.2371823 10.1109/IEMBS.2005.1616500 10.1109/DICTA.2012.6411706 10.1109/ICASID.2019.8925236 10.1117/12.912188 10.1007/s11548-015-1233-y 10.1006/jcat.1999.2746 10.1016/j.jocs.2017.04.016 10.1118/1.1286722 10.1109/CIC.2004.1442939 10.1109/TMI.2019.2930068 10.1016/j.media.2005.06.003 10.1002/mp.13577 10.1109/JBHI.2015.2477829 10.1109/HIS.2009.47 10.1007/11499145_127 10.1109/ICIP.2008.4712415 10.1007/11866763_3 10.1007/11867661_5 10.1109/IJCNN.2007.4370968 10.1109/TMI.2006.884630 10.3745/JIPS.2013.9.1.103 10.1016/j.media.2004.06.008 10.1109/ACCESS.2020.3006197 10.1109/TMI.2003.809057 10.1109/ACCESS.2020.3008868 10.1038/sj.pcan.4500326 10.1109/ICCCNT45670.2019.8944847 10.1016/j.cmpb.2019.105097 10.7863/jum.2003.22.6.605 10.1109/TMI.2004.824237 10.1007/BF02525522 10.1109/TBME.2009.2037491 10.1016/0161-7346(92)90005-G 10.4018/978-1-5225-2848-7.ch002 10.1016/0301-5629(94)90011-6 10.1109/ICASSP.2004.1326595 10.1109/TMI.2012.2209204 10.1002/mp.14895 10.1109/ACCESS.2018.2873696 10.1109/ICIP.2007.4379756 10.1109/IEMBS.2005.1617198 10.1109/AIM.2016.7576934 10.1067/mnc.2000.109970 10.1007/3-540-45787-9_49 10.1109/CCECE.2008.4564756 10.1016/j.media.2010.10.002 10.1109/ISBI45749.2020.9098338 10.1007/BFb0054760 10.1016/0021-9991(88)90002-2 10.1109/ISBI.2008.4540949 10.1109/IEMBS.2008.4649831 10.1117/12.2216396 10.1002/rcs.2190 10.1109/EMBC.2012.6346431 10.1016/j.compbiomed.2016.05.002 10.1118/1.4950721 10.1118/1.1388221 10.1109/ULTSYM.2018.8580157 10.1109/ICASSP.2005.1416379 10.1109/TMI.2020.2988198 10.1016/j.eswa.2021.115686 10.1007/BF00133570 10.1016/j.cmpb.2006.07.001 10.1109/TITB.2011.2163724 10.1016/j.cmpb.2012.04.006 10.1109/TBME.2010.2094195 10.1109/TUFFC.2010.1613 10.1109/ICInfA.2015.7279410 10.1109/TMI.2015.2502540 10.1109/TMI.2014.2300694 10.1109/JPROC.2003.817879 10.1016/S0031-3203(98)00177-0 10.1109/IWSSIP48289.2020.9145218 10.1109/TIP.2008.2002304 10.1016/j.ejmp.2018.12.03 10.1007/BF02518882 10.1016/j.compmedimag.2004.07.007 10.1117/12.2070559 10.1109/TMI.2015.2388699 10.1109/IEMBS.2007.4353617 10.1186/1475-925X-4-58 10.1109/ISBI.2008.4540938 10.1109/ULTSYM.2019.8925823 10.1109/WICT.2011.6141367 10.1109/TPAMI.2002.1017623 10.1007/BFb0013779 10.1109/ISPACS.2007.4445885 10.1109/ISBI.2002.1029332 10.1109/83.902291 10.1007/s11548-011-0616-y 10.1109/42.897813 10.1002/cncr.27911 10.1016/j.bspc.2013.07.002 10.1109/HiTech.2018.8566503 10.1109/TMI.2006.877092 10.1109/ICIP.2005.1530293 10.1109/TMI.2019.2913184 10.1117/12.877955 10.1109/JBHI.2019.2944643 10.1109/BioCAS.2014.6981659 10.1109/TBME.2018.2865428 10.1118/1.4709607 10.1109/ISCCSP.2008.4537183 10.1016/j.media.2013.04.001 10.1109/ISSPIT.2006.270795 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2022 COPYRIGHT 2023 Springer The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022 – notice: COPYRIGHT 2023 Springer – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022. |
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ALSLI ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU CNYFK DWQXO E3H F2A FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M1O P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PRQQA PSYQQ Q9U |
| DOI | 10.1007/s10462-022-10179-4 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Social Science Premium Collection Health Research Premium Collection ProQuest Central Essentials ProQuest Central Business Premium Collection (Proquest) Technology Collection ProQuest One Community College Library & Information Science Collection ProQuest Central Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Library Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Social Sciences ProQuest One Psychology ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student Library and Information Science Abstracts (LISA) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences Library & Information Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection Business Premium Collection Social Science Premium Collection ABI/INFORM Global ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Library Science ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ProQuest One Social Sciences ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7462 |
| EndPage | 651 |
| ExternalDocumentID | A732308352 10_1007_s10462_022_10179_4 |
| GrantInformation_xml | – fundername: Natural Science Foundation of Heilongjiang Province grantid: LH2021E081 – fundername: Heilongjiang Postdoctoral Science Foundation Special Funded Project grantid: LBH-TZ1705 – fundername: Fundamental Research Foundation for Universities of Heilongjiang Province grantid: LGYC2018JQ016 – fundername: China Postdoctoral Science Foundation Special Funded Project grantid: 2018T110313 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23N 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6J9 6NX 77K 7WY 8AO 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C24 C6C CAG CCPQU CNYFK COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M1O M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~A9 ~EX 77I AAFWJ AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFFHD AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION ICD PHGZM PHGZT PQGLB PRQQA 7SC 7XB 8AL 8FD 8FK E3H F2A JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c452t-c81c04d17fa62ca6df709b8595cd1d6d55744d664ac30f1a733d3873d5385b263 |
| IEDL.DBID | 7WY |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782332700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0269-2821 |
| IngestDate | Sat Nov 15 13:12:44 EST 2025 Sat Nov 29 14:12:06 EST 2025 Sat Nov 29 10:28:02 EST 2025 Sat Nov 29 02:43:26 EST 2025 Tue Nov 18 22:43:19 EST 2025 Fri Feb 21 02:46:36 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Image segmentation Diagnosis of prostate cancer Ultrasound images Prostate cancer Segmentation algorithms Citespace |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-c81c04d17fa62ca6df709b8595cd1d6d55744d664ac30f1a733d3873d5385b263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0491-9236 |
| PQID | 2760705732 |
| PQPubID | 36790 |
| PageCount | 37 |
| ParticipantIDs | proquest_journals_2760705732 gale_infotracmisc_A732308352 gale_infotracacademiconefile_A732308352 crossref_citationtrail_10_1007_s10462_022_10179_4 crossref_primary_10_1007_s10462_022_10179_4 springer_journals_10_1007_s10462_022_10179_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Science and Engineering Journal |
| PublicationTitle | The Artificial intelligence review |
| PublicationTitleAbbrev | Artif Intell Rev |
| PublicationYear | 2023 |
| Publisher | Springer Netherlands Springer Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
| References | Yu Y, Cheng J, Li J, Chen W, Chiu B (2014) Automatic prostate segmentation from transrectal ultrasound images. In: Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, October 22–24, 2014. pp 117–120. https://doi.org/10.1109/BioCAS.2014.6981659 Kachouie NN, Fieguth P (2007) A medical texture local binary pattern for TRUS prostate segmentation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 22–26, 2007, pp 5605–5608. https://doi.org/10.1109/IEMBS.2007.4353617 Wang Y, Dou H, Hu X, Zhu L, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. In: Proceedings of the IEEE Transactions on Medical Imaging 38 (12), pp 2768–2778. https://doi.org/10.1109/TMI.2019.2913184 WuPFLiuYGLiYZShiYTTRUS image segmentation with non-parametric kernel density estimation shape priorBiomed Signal Proces20138676477110.1016/j.bspc.2013.07.002 NouranianSRamezaniMSpadingerIMorrisJWSalcudeanESLearning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapyIEEE Trans Med Imaging201635392193110.1109/TMI.2015.2502540 SahbaFTizhooshHRSalamaMMA coarse-to-fine approach to prostate boundary segmentation in ultrasound imagesBiomed Eng Online200545811310.1186/1475-925X-4-58 SiegelRLMillerKDFuchsHEJemalACancer Statistics, 2021CA-A Cancer J Clin202170173310.3322/caac.21654 ZhuYWilliamsSZwiggelaarRComputer technology in detection and staging of prostate carcinoma: a review MedImage Anal200610217819910.1016/j.media.2005.06.003 JaouenVBertJMountrisKABoussionNVisvikisDProstate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfacesIEEE t Bio-Med Eng201966492093310.1109/TBME.2018.2865428 Zhang Y, Qian W, Sankar R (2005) Prostate boundary detection in transrectal ultrasound images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing, Philadelphia, PA, USA, March 23–23, 2005. pp 617–620. https://doi.org/10.1109/ICASSP.2005.1416379. Huang XF, Chen M, Liu PZ (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: Proceedings of the IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, China, October 25–27, 2019, pp 183–187. https://doi.org/10.1109/ICASID.2019.8925236 ZhanYQShenDGDeformable segmentation of 3-D ultrasound prostate images using statistical texture matching methodIEEE Trans Med Imaging200625325627210.1109/TMI.2005.862744 NobleJABoukerrouiDUltrasound image segmentation: a surveyIEEE Trans Med Imaging2006258987101010.1109/TMI.2006.877092 Vafaie R, Alirezaie J, Babyn P (2012) Fully automated model-based prostate boundary segmentation using Markov random field in ultrasound images. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, December 3–5, 2012. pp 1–8. https://doi.org/10.1109/DICTA.2012.6411706 LadakHMMaoFWangYQDowneyDBSteinmanDAFensterAProstate boundary segmentation from 2D ultrasound imagesMed Phys20002781777178810.1118/1.1286722 Carriere J, Rossa C, Sloboda R, Usmani N, Tavakoli M (2016) Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, July 12–15, 2016, pp 1204–1209. https://doi.org/10.1109/AIM.2016.7576934 Hu N, Downey DB, Fenster A, Ladak HM (2002) Prostate surface segmentation from 3D ultrasound images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, July 7–10, 2002, pp 613–616. https://doi.org/10.1109/ISBI.2002.1029332 WaineMRossaCSlobodaRUsmaniNTavakoliM3D needle shape estimation in TRUS-guided prostate brachytherapy using 2D ultrasound imagesIEEE J Biomed Health20152061621163110.1109/JBHI.2015.2477829 LiXLiCFedorovAKapurTYangXSegmentation of prostate from ultrasound images using level sets on active band and intensity variation across edgesMed Phys20164363090310310.1118/1.4950721 GhoseSOliverAMitraJMartíRMeriaudeauFSupervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound imagesMed Image Anal201317658760010.1016/j.media.2013.04.001 HodgeACFensterADowneyDBLadakHMProstate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3DComput Methods Programs Biomed2006842–39911310.1016/j.cmpb.2006.07.001 Manavalan R, Thangavel K (2011) TRUS image segmentation using morphological operators and DBSCAN clustering. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, December 11–14, 2011, pp 898–903. https://doi.org/10.1109/WICT.2011.6141367 Wildeboer RR, Mannaerts CK, Sloun RJG, Wijkstra H, Mischi M (2019) Machine learning for multiparametric ultrasound classification of prostate cancer using B-mode, Shear-wave elastography, and contrast-enhanced ultrasound radiomics. In: Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, Scotland, October6–9, 2019. pp 1902–1905. https://doi.org/10.1109/ULTSYM.2019.8925823 Zaim A (2008b) FSM: A new finite sphere method for modeling 3D geometry of the prostate. In: Proceedings of the 2008b 15th IEEE International Conference on Image Processing, San Diego, CA, USA, October 12–15, 2008b, pp 2956–2959. https://doi.org/10.1109/ICIP.2008.4712415 YanPXuSTurkbeyBKrueckerJDiscrete deformable model guided by partial active shape model for TRUS image segmentationIEEE Trans Biomed Eng20105751158116610.1109/TBME.2009.2037491 Georgieva V, Mihaylova A, Petrov P (2018) Prostate segmentation in ultrasound images using hybrid method. In: Proceedings of the International Conference on High Technology for Sustainable Development, Sofia, Bulgaria, June 11–14, 2018, pp 1–4. https://doi.org/10.1109/HiTech.2018.8566503 Saroul L, Bernard O, Vray D, Friboulet D (2008) Prostate segmentation in echographic images: a variational approach using deformable super-ellipse and rayleigh distribution. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Villeurbanne, France, May 14–17, 2008, pp 129–132. https://doi.org/10.1109/ISBI.2008.4540949 SinghRPGuptaSAcharyaURSegmentation of prostate contours for automated diagnosis using ultrasound images: A surveyJ Comput Sci-Neth20172122323110.1016/j.jocs.2017.04.016 GongLPathakSDHaynorDRChoPSKimYParametric shape modeling using deformable superellipses for prostate segmentationIEEE Trans Med Imaging200423334034910.1109/TMI.2004.824237 KaurAChauhanAPSAggarwalAKAn automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional networkExpert Syst Appl20211863010.1016/j.eswa.2021.115686 SartiACorsiCMazziniELambertiCMaximum likelihood segmentation of ultrasound images with Rayleigh distributionIEEE Trans Ultrason Ferr200552694796010.1109/CIC.2004.1442939 YanPXuSTurkbeyBKrueckerJAdaptively learning local shape statistics for prostate segmentation in ultrasoundIEEE Trans Biomed Eng201158363364110.1109/TBME.2010.2094195 BridalSLCorreasJ-MSaiedALaugierPMilestones on the road to higher resolution, quantitative, and functional ultrasonic imagingProc IEEE200391101543156110.1109/JPROC.2003.817879 SahbaFTizhooshHRSalamaMMAApplication of reinforcement learning for segmentation of transrectal ultrasound imagesBMC Med Imaging200888110 Houshmand K, Tizhoosh HR (2008) Increasing segmentation accuracy in ultrasound imaging using filtering and snakes. In: Proceedings of the Conference on Electrical & Computer Engineering. Niagara Falls, ON, Canada, May 4–7, 2008. pp 1333–1336. https://doi.org/10.1109/CCECE.2008.4564756 BetrouniNVermandelMPasquierDMaoucheSRousseauJSegmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filterComput Med Imaging Graph2005291435110.1016/j.compmedimag.2004.07.007 HuynenALGiesenRJBRosetteJJMCHAarninkRGDebruyneFMJWijkstraHAnalysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert systemUltrasound Med Biol199420111010.1016/0301-5629(94)90011-6 MICCAI (2009) 2009 Prostate segmentation challenge MICCAI. http://wiki.namic.org/Wiki/index.php (accessed 1 Apr 11) El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically-inspired spiking neural network. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, November 28-December 1, 2007, pp 308–311. https://doi.org/10.1109/ISPACS.2007.4445885 Ghose S, Mitra J, Oliver A, Marti R, Mériaudeau F (2012a) Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: Proceedings of the 2012a Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, August 28 - September 1, 2012a, pp 2335–2338. https://doi.org/10.1109/EMBC.2012.6346431 Abolmaesumi R, Sirouspour MR (2004) Segmentation of prostate contours from ultrasound images. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004. pp 517–520. https://doi.org/10.1109/ICASSP.2004.1326595 LeiYWangTHRoperJJaniABPatelSACurranWJPatelPLiuTYangXFMale Pelvic multi-organ segmentation on transrectal ultrasound using Anchor free mask CNNMed Phys202110.1002/mp.14895 TutarIBPathakSDGongLChoPSWallnerKKimYSemiautomatic 3-D prostate segmentation from trus images using spherical harmonicsIEEE t Med Imaging200625121645165410.1109/TMI.2006.884630 Ding M, Galloway RL, Gyacskov I, Yuan X, Drangova M, Fenster A (2004) Slice-based prostate segmentation in 3D US images based on continuity constraint. In X Li (10179_CR50) 2019; 57 M Kass (10179_CR38) 1988; 1 10179_CR30 10179_CR34 Y Zhu (10179_CR113) 2006; 10 H Akbari (10179_CR2) 2012; 39 10179_CR35 AC Hodge (10179_CR31) 2006; 84 F Sahba (10179_CR73) 2008; 8 SS Mahdavi (10179_CR55) 2012; 31 10179_CR28 D Karimi (10179_CR36) 2020; 24 Y Shao (10179_CR79) 2020; 39 YQ Zhan (10179_CR111) 2006; 25 N Betrouni (10179_CR6) 2005; 29 D Karimi (10179_CR37) 2020; 39 CK Kwoh (10179_CR42) 1998; 36 SD Pathak (10179_CR66) 2000; 19 S Nouranian (10179_CR63) 2016; 35 IB Tutar (10179_CR86) 2006; 25 10179_CR44 C Knoll (10179_CR41) 1999; 32 H Bi (10179_CR7) 2019; 184 10179_CR47 RL Siegel (10179_CR81) 2021; 70 10179_CR102 10179_CR101 10179_CR108 10179_CR107 10179_CR105 10179_CR56 10179_CR53 10179_CR59 10179_CR57 WR Wang (10179_CR89) 2021; 17 TF Cootes (10179_CR13) 1993; 12 10179_CR58 WJ Morris (10179_CR60) 2013; 119 CM Li (10179_CR48) 2008; 17 RS Xu (10179_CR97) 2010; 57 A Zaim (10179_CR106) 2005 AL Huynen (10179_CR29) 1994; 20 S Ghose (10179_CR23) 2013; 17 HM Ladak (10179_CR43) 2000; 27 P Wu (10179_CR94) 2015; 34 T Ojala (10179_CR64) 2002; 24 D Angelova (10179_CR3) 2011; 22 F Shao (10179_CR78) 2003; 22 RP Singh (10179_CR83) 2017; 21 M Yu (10179_CR104) 2017; 31 L Gong (10179_CR25) 2004; 23 Y Wang (10179_CR90) 2003; 30 JS Prater (10179_CR68) 1992; 14 Y Lei (10179_CR46) 2021 S Ghose (10179_CR21) 2011; 7962 Y Jing (10179_CR32) 2004; 8 10179_CR70 10179_CR74 10179_CR72 Y Yu (10179_CR103) 2016; 74 W Qiu (10179_CR69) 2014; 33 10179_CR77 10179_CR76 S Nouranian (10179_CR62) 2015; 34 X Li (10179_CR51) 2018; 6 SK Prabhakar (10179_CR67) 2020; 8 M Waine (10179_CR88) 2015; 20 P Yan (10179_CR99) 2011; 58 L Duran-Lopez (10179_CR16) 2020; 8 10179_CR112 10179_CR84 10179_CR85 10179_CR82 SL Bridal (10179_CR8) 2003; 91 A Wong (10179_CR93) 2011; 15 10179_CR87 TF Chan (10179_CR10) 2001; 10 A Kaur (10179_CR39) 2021; 186 10179_CR9 X Yang (10179_CR100) 2012 Y Lei (10179_CR45) 2019; 46 10179_CR5 O Zettinig (10179_CR110) 2015; 10 10179_CR1 10179_CR109 X Li (10179_CR49) 2016; 43 SS Mahdavi (10179_CR54) 2011; 15 10179_CR91 10179_CR92 S Ghose (10179_CR22) 2012; 7 10179_CR11 P Yan (10179_CR98) 2010; 57 10179_CR15 10179_CR14 F Sahba (10179_CR71) 2005; 4 DG Shen (10179_CR80) 2003; 22 RY Wu (10179_CR96) 2000; 19 SG Kim (10179_CR40) 2013; 9 A Sarti (10179_CR75) 2005; 52 V Jaouen (10179_CR33) 2019; 66 A Ghanei (10179_CR19) 2001; 28 JA Noble (10179_CR61) 2006; 25 YJ Liu (10179_CR52) 1997; 35 S Ghose (10179_CR24) 2012; 108 K Arora (10179_CR4) 2018 10179_CR20 10179_CR26 10179_CR27 10179_CR17 PF Wu (10179_CR95) 2013; 8 10179_CR18 TF Cootes (10179_CR12) 1998; 23 S Osher (10179_CR65) 1988; 79 |
| References_xml | – reference: SartiACorsiCMazziniELambertiCMaximum likelihood segmentation of ultrasound images with Rayleigh distributionIEEE Trans Ultrason Ferr200552694796010.1109/CIC.2004.1442939 – reference: ZhuYWilliamsSZwiggelaarRComputer technology in detection and staging of prostate carcinoma: a review MedImage Anal200610217819910.1016/j.media.2005.06.003 – reference: ZhanYQShenDGDeformable segmentation of 3-D ultrasound prostate images using statistical texture matching methodIEEE Trans Med Imaging200625325627210.1109/TMI.2005.862744 – reference: GhoseSOliverAMartíRLladóXFreixenetJMitraJVilanovaJCComet-BatlleJMeriaudeauFStatistical shape and texture model of quadrature phase information for prostate segmentationInt J CARS20127435510.1007/s11548-011-0616-y – reference: Sabourin GR, Albu AB, Laurendeau D, Beaulieu L (2008) Automatic contour retrieval in annotated TRUS prostate images. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, May 14–17, 2008. pp 85–88. https://doi.org/10.1109/ISBI.2008.4540938 – reference: Shao F, Ling KV, Ng WS (2002). 3D prostate surface detection from ultrasound images based on level set method. In: Proceedings of the Medical Image Computing & Computer-assisted Intervention-Miccai, International Conference, Tokyo, Japan, 2002, pp 389-396 – reference: AroraKAggarwalAKAnwarMIApproaches for image database retrieval based on color, texture, and shape featuresHandbook of research on advanced concepts in real-time image and video processing2018HersheyIGI Global285010.4018/978-1-5225-2848-7.ch002 – reference: BridalSLCorreasJ-MSaiedALaugierPMilestones on the road to higher resolution, quantitative, and functional ultrasonic imagingProc IEEE200391101543156110.1109/JPROC.2003.817879 – reference: Layek K, Basak B, Samanta S, Maity SP, Barui A (2019) Segmentation of prostate sonoelastography images using quantitative elasticity measures. In: Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, July 6–8, 2019, pp 1–6. https://doi.org/10.1109/ICCCNT45670.2019.8944847 – reference: WaineMRossaCSlobodaRUsmaniNTavakoliM3D needle shape estimation in TRUS-guided prostate brachytherapy using 2D ultrasound imagesIEEE J Biomed Health20152061621163110.1109/JBHI.2015.2477829 – reference: PrabhakarSKLeeSWTransformation based tri-level feature selection approach using wavelets and swarm computing for prostate cancer classificationIEEE Access2020812746212747610.1109/ACCESS.2020.3006197 – reference: SahbaFTizhooshHRSalamaMMA coarse-to-fine approach to prostate boundary segmentation in ultrasound imagesBiomed Eng Online200545811310.1186/1475-925X-4-58 – reference: El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically-inspired spiking neural network. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, November 28-December 1, 2007, pp 308–311. https://doi.org/10.1109/ISPACS.2007.4445885 – reference: ZettinigOShahAHennerspergerCEiberMNavabNMultimodal image-guided prostate fusion biopsy based on automatic deformable registrationInt J CARS201510121997200710.1007/s11548-015-1233-y – reference: AkbariHFeiB3D ultrasound image segmentation using wavelet support vector machinesMed Phys20123962972298410.1118/1.4709607 – reference: MahdaviSSMoradiMMorrisWJGoldenbergSLSalcudeanSEFusion of ultrasound B-mode and vibro-elastography images for automatic 3-D segmentation of the prostateIEEE Trans Med Imaging201231112073208210.1109/TMI.2012.2209204 – reference: PathakSDHaynorDRKimYEdge-guided boundary delineation in prostate ultrasound imagesIEEE Trans Med Imaging200019121211121910.1109/42.897813 – reference: Silva GLFD, Franca JVF, Diniz PS, Silva AC, Cavalcanti EAA (2020) Automatic prostate segmentation on 3D MRI scans using convolutional neural networks with residual connections and superpixels. In: Proceedings of the International Conference on Systems, Signals and Image Processing, Niteroi, Brazil, July 1–7, 2020, pp 51–56. https://doi.org/10.1109/IWSSIP48289.2020.9145218 – reference: Cosío FA, Acostab HG, Conde E (2015) Improved edge detection for object segmentation in ultrasound images using Active Shape Models. In: Proceedings of the 10th International Symposium on Medical Information Processing and Analysis. Cartagena de Indias, Colombia, January 28, 2015. Proc. SPIE, 9287, pp 9287141–6. https://doi.org/10.1117/12.2070559 – reference: WangYCardinalHNDowneyDBFensterASemiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound imagesMed Phys200330588789710.1006/jcat.1999.2746 – reference: HuynenALGiesenRJBRosetteJJMCHAarninkRGDebruyneFMJWijkstraHAnalysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert systemUltrasound Med Biol199420111010.1016/0301-5629(94)90011-6 – reference: KarimiDNirGFazliLBlackPCGoldenbergLSalcudeanSEDeep learning-based gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentationIEEE J Biomed Health20202451413142610.1109/JBHI.2019.2944643 – reference: SinghRPGuptaSAcharyaURSegmentation of prostate contours for automated diagnosis using ultrasound images: A surveyJ Comput Sci-Neth20172122323110.1016/j.jocs.2017.04.016 – reference: AngelovaDMihaylovaLContour segmentation in 2D ultrasound medical images with particle filteringMach Vision Appl201122551561 – reference: WuPFLiuYGLiYZShiYTTRUS image segmentation with non-parametric kernel density estimation shape priorBiomed Signal Proces20138676477110.1016/j.bspc.2013.07.002 – reference: CootesTFHillATaylorCJHaslamJThe use of active shape models for locating structures in medical imagesImage Vis Comput199312635536510.1007/BFb0013779 – reference: Vafaie R, Alirezaie J, Babyn P (2012) Fully automated model-based prostate boundary segmentation using Markov random field in ultrasound images. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, December 3–5, 2012. pp 1–8. https://doi.org/10.1109/DICTA.2012.6411706 – reference: TutarIBPathakSDGongLChoPSWallnerKKimYSemiautomatic 3-D prostate segmentation from trus images using spherical harmonicsIEEE t Med Imaging200625121645165410.1109/TMI.2006.884630 – reference: Ghose S, Mitra J, Oliver A, Marti R, Mériaudeau F (2012a) Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: Proceedings of the 2012a Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, August 28 - September 1, 2012a, pp 2335–2338. https://doi.org/10.1109/EMBC.2012.6346431 – reference: HodgeACFensterADowneyDBLadakHMProstate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3DComput Methods Programs Biomed2006842–39911310.1016/j.cmpb.2006.07.001 – reference: Li B, Patil AV, Hossack JA, Acton ST (2007) 3D segmentation of the prostate via poisson inverse gradient initialization. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, TX, USA, September 16–October 19, 2007, pp 25–28. https://doi.org/10.1109/ICIP.2007.4379756 – reference: Sahba F, Tizhoosh HR, Salama MMA (2005b) Segmentation of prostate boundaries using regional contrast enhancement. In: Proceedings of the IEEE International Conference on Image Processing 2005b, Genova, Italy, September 14–14, 2005b. pp 1266–1269. https://doi.org/10.1109/ICIP.2005.1530293 – reference: Zaim A, Yi T, Keck R (2007) Feature-based classification of prostate ultrasound images using Multiwavelet and Kernel Support Vector Machines. In: Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, August 12–17, 2007, pp 278–281. https://doi.org/10.1109/IJCNN.2007.4370968 – reference: Grand challenge (2012) Prostate MR image segmentation Oct. Available: http://promise12.grand-challenge.org/ – reference: Kachouie NN, Fieguth P (2007) A medical texture local binary pattern for TRUS prostate segmentation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 22–26, 2007, pp 5605–5608. https://doi.org/10.1109/IEMBS.2007.4353617 – reference: ZaimAAutomatic segmentation of the prostate from ultrasound data using feature-based self organizing mapImage Anal200510.1007/11499145_127 – reference: Mahdavi S, Salcudean SE (2008) 3D prostate segmentation based on ellipsoid fitting, image tapering and warping. In: Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, August 20–25, 2008, pp 2988–2991. https://doi.org/10.1109/IEMBS.2008.4649831 – reference: MorrisWJKeyesMSpadingerIKwanWLiuMMckenzieMPaiHPicklesTTyldesleySPopulation-based 10-year oncologic outcomes after low-dose-rate brachytherapy for low-risk and intermediate-risk prostate cancerCancer201311981537154610.1002/cncr.27911 – reference: NouranianSMahdaviSSSpadingerIMorrisWJSalcudeanSEAbolmaesumiPA multi-atlas-based segmentation framework for prostate brachytherapyIEEE Trans Med Imaging201534495096110.1109/TMI.2014.2371823 – reference: GongLPathakSDHaynorDRChoPSKimYParametric shape modeling using deformable superellipses for prostate segmentationIEEE Trans Med Imaging200423334034910.1109/TMI.2004.824237 – reference: BetrouniNVermandelMPasquierDMaoucheSRousseauJSegmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filterComput Med Imaging Graph2005291435110.1016/j.compmedimag.2004.07.007 – reference: YanPXuSTurkbeyBKrueckerJDiscrete deformable model guided by partial active shape model for TRUS image segmentationIEEE Trans Biomed Eng20105751158116610.1109/TBME.2009.2037491 – reference: QiuWYuanJUkwattaESunYRajchlMFensterAProstate segmentation: an Efficient convex optimization approach with axial symmetry using 3-D TRUS and MR imagesIEEE Trans Med Imaging201433494796010.1109/TMI.2014.2300694 – reference: MahdaviSSChngNSpadingerIMorrisWJSalcudeanSESemi-automatic segmentation for prostate interventionsBrachytherapy201115222623710.1016/j.media.2010.10.002 – reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell199823668168510.1007/BFb0054760 – reference: Duran-LopezLDominguez-MoralesJPConde-MartinAFVicente-DiazSLinares-BarrancoAPROMETEO: A CNN-based computer-aided diagnosis system for WSI prostate cancer detectionIEEE Access2020812861312862810.1109/ACCESS.2020.3008868 – reference: Kachouie NN, Fieguth P, Rahnamayan S (2006) An elliptical level set method for automatic TRUS prostate image segmentation. In: Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology, Vancouver, BC, Canada, August 27–30, 2006, pp 191–196. https://doi.org/10.1109/ISSPIT.2006.270795 – reference: Abolmaesumi R, Sirouspour MR (2004) Segmentation of prostate contours from ultrasound images. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004. pp 517–520. https://doi.org/10.1109/ICASSP.2004.1326595 – reference: ChanTFVeseLAActive contours without edgesIEEE Trans Image Process200110226627710.1109/83.9022911039.68779 – reference: JingYDuncanJS3D image segmentation of deformable objects with joint shape-intensity prior models using level setsMed Image Anal20048328529410.1016/j.media.2004.06.008 – reference: BiHJiangYBTangHYangGYShuHZDillensegerJLFast and accurate segmentation method of active shape model with rayleigh mixture model clustering for prostate ultrasound imagesComput Meth Prog Bio201918410509710509710.1016/j.cmpb.2019.105097 – reference: WongAScharcanskiJFisher-Tippett region-merging approach to transrectal ultrasound prostate lesion segmentationIEEE Trans Inf Technol Biomed201115690090710.1109/TITB.2011.2163724 – reference: LiXLiHA visual analysis of research on information security risk by using CiteSpaceIEEE Access20186632436325710.1109/ACCESS.2018.2873696 – reference: LeiYWangTHRoperJJaniABPatelSACurranWJPatelPLiuTYangXFMale Pelvic multi-organ segmentation on transrectal ultrasound using Anchor free mask CNNMed Phys202110.1002/mp.14895 – reference: GhoseSOliverAMartíRLladóXVilanovaJCFreixenetJMitraJSidibéDMeriaudeauFA survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography imagesComput Meth Prog Bio2012108126228710.1016/j.cmpb.2012.04.006 – reference: LiXLiCFedorovAKapurTYangXSegmentation of prostate from ultrasound images using level sets on active band and intensity variation across edgesMed Phys20164363090310310.1118/1.4950721 – reference: Chang C, Wu Y, Tsai Y (2009) Integrating the validation incremental neural network and radial-basis function neural network for segmenting prostate in ultrasound images. In: Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, August 12–14, 2009, pp 198–203. https://doi.org/10.1109/HIS.2009.47 – reference: Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, October 2006, pp 17–24. https://doi.org/10.1007/11866763_3 – reference: YuYChenYChiuBFully automatic prostate segmentation from transrectal ultrasound images based on radial bas-relief initialization and slice-based propagationComput Biol Med2016741749010.1016/j.compbiomed.2016.05.002 – reference: YangXFeiB3D prostate segmentation of ultrasound images combining longitudinal medical imagingProc SPIE Int Soc Opt Eng201210.1117/12.912188 – reference: OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsIEEE Trans Pattern Anal200224797198710.1109/TPAMI.2002.10176230977.68853 – reference: YuMDongYHuYAnalysis of research hotspots and trend of CiteSpace-based blended learningChina Med Educ Technol2017316644650 – reference: Ding M, Galloway RL, Gyacskov I, Yuan X, Drangova M, Fenster A (2004) Slice-based prostate segmentation in 3D US images based on continuity constraint. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2004. pp 662–665. https://doi.org/10.1109/IEMBS.2005.1616500 – reference: KaurAChauhanAPSAggarwalAKAn automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional networkExpert Syst Appl20211863010.1016/j.eswa.2021.115686 – reference: Yang X, Rossi PJ, Jani AB, Hui M Tian L (2016) 3d transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework. In: Proceedings of the Proceedings of Spie the International Society for Optical Engineering, Proc. SPIE 9784, pp 97842F1–7. https://doi.org/10.1117/12.2216396 – reference: Carriere J, Rossa C, Sloboda R, Usmani N, Tavakoli M (2016) Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, July 12–15, 2016, pp 1204–1209. https://doi.org/10.1109/AIM.2016.7576934 – reference: LiXLiCMLiuHRYangXPA modifified level set algorithm based on point distance shape constraint for lesion and organ segmentationPhys Med20195712313610.1016/j.ejmp.2018.12.03 – reference: Zaim A (2008a) An edge-based approach for segmentation of prostate ultrasonic images using phase symmetry. In: Proceedings of the 2008a 3rd International Symposium on Communications, Control and Signal Processing, St, Julians, March 12–14, 2008a. pp 10–13. https://doi.org/10.1109/ISCCSP.2008.4537183 – reference: GhaneiASoltanian-ZadehHRatkewiczAYinFFA three-dimensional deformable model for segmentation of human prostate from ultrasound imagesMed Phys200128102147215310.1118/1.1388221 – reference: KwohCKTeoMYNgWSTanSNJonesLMOutlining the prostate boundary using the harmonics methodMed Biol Eng Comput199836676877110.1007/BF02518882 – reference: XuRSInformation tracking approach to segmentation of ultrasound imagery of the prostateIEEE Trans Ultrason Ferr20105781748176110.1109/TUFFC.2010.1613 – reference: Sedelaar, J. P. M., Rosette, J. J. M. C. H., Beerlage, H. P., Wijkstra, H., Debruyne, F. M. J., Aarnink, R. G., 1999. Transrectal ultrasound imaging of the prostate: review and perspectives of recent developments. Prostate Cancer P. D. 2 (5/6), 241–252. doi:https://doi.org/10.1038/sj.pcan.4500326. – reference: Zhang Y, Qian W, Sankar R (2005) Prostate boundary detection in transrectal ultrasound images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing, Philadelphia, PA, USA, March 23–23, 2005. pp 617–620. https://doi.org/10.1109/ICASSP.2005.1416379. – reference: WangWRPanBYanJWFuYLLiuYJMRI and TRUS prostate image segmentation based on improved level set for robotic prostate biopsy navigationInt J Med Robot Comput Assist Surg202117111410.1002/rcs.2190 – reference: Song J, Shi Y (2015) Rough location of the prostate TRUS images. In: Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, August 8–10, 2015, pp 881–885. https://doi.org/10.1109/ICInfA.2015.7279410 – reference: Huang XF, Chen M, Liu PZ (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: Proceedings of the IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, China, October 25–27, 2019, pp 183–187. https://doi.org/10.1109/ICASID.2019.8925236 – reference: GhoseSOliverAMartiRLladoXMeriaudeauFProstate segmentation with local binary patterns guided active appearance modelsProc SPIE20117962414014410.1117/12.877955 – reference: ShaoFLingKVNgWSWuRYProstate boundary detection from ultrasonographic imagesJ Ultras Med200322660562310.7863/jum.2003.22.6.605 – reference: LiuYJNgWSTeoMYLimHCComputerised prostate boundary estimation of ultrasound images using radial bas-relief methodMed Biol Eng Comput199735544545410.1007/BF02525522 – reference: NobleJABoukerrouiDUltrasound image segmentation: a surveyIEEE Trans Med Imaging2006258987101010.1109/TMI.2006.877092 – reference: Mohamed SS, Youssef AM, El-Saadany EF, Salama MMA (2006) Prostate tissue characterization using TRUS image spectral features. In: Proceedings of the International Conference Image Analysis & Recognition, Berlin, Heidelberg, 2006, pp 589–601. https://doi.org/10.1007/11867661_5 – reference: Georgieva V, Mihaylova A, Petrov P (2018) Prostate segmentation in ultrasound images using hybrid method. In: Proceedings of the International Conference on High Technology for Sustainable Development, Sofia, Bulgaria, June 11–14, 2018, pp 1–4. https://doi.org/10.1109/HiTech.2018.8566503 – reference: LadakHMMaoFWangYQDowneyDBSteinmanDAFensterAProstate boundary segmentation from 2D ultrasound imagesMed Phys20002781777178810.1118/1.1286722 – reference: Medina R, Bravo A, Windyga P, Toro J, Yan P, Onik G (2005) A 2-D active appearance model for prostate segmentation in ultrasound images. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2005, pp 3363–3366. https://doi.org/10.1109/IEMBS.2005.1617198 – reference: Saroul L, Bernard O, Vray D, Friboulet D (2008) Prostate segmentation in echographic images: a variational approach using deformable super-ellipse and rayleigh distribution. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Villeurbanne, France, May 14–17, 2008, pp 129–132. https://doi.org/10.1109/ISBI.2008.4540949 – reference: LeiYTianSBHeXXWangTHWangBPatelPJaniABMaoHCurranWJLiuTYangXFUltrasound prostate segmentation based on multidirectional deeply supervised V-NetMed Phys20194673194320610.1002/mp.13577 – reference: KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis19881432133110.1007/BF001335700646.68105 – reference: WuPLiuYLiYLiuBRobust Prostate Segmentation Using Intrinsic Properties of TRUS ImagesIEEE Trans Med Imaging20153461321133510.1109/TMI.2015.2388699 – reference: Hu N, Downey DB, Fenster A, Ladak HM (2002) Prostate surface segmentation from 3D ultrasound images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, July 7–10, 2002, pp 613–616. https://doi.org/10.1109/ISBI.2002.1029332 – reference: KimSGSeoYGA TRUS prostate segmentation using Gabor texture features and snake-like contourJ Inf Process Syst20139119319810.3745/JIPS.2013.9.1.103 – reference: SahbaFTizhooshHRSalamaMMAApplication of reinforcement learning for segmentation of transrectal ultrasound imagesBMC Med Imaging200888110 – reference: ShaoYWangJWodlingerBSalcudeanSEImproving prostate cancer (PCa) classification performance by using three-player minimax game to reduce data source heterogeneityIEEE Trans Med Imaging2020391011110.1109/TMI.2020.2988198 – reference: KarimiDSalcudeanSEReducing the Hausdorff distance in medical image segmentation with convolutional neural networksIEEE Trans Med Imaging202039249951310.1109/TMI.2019.2930068 – reference: JaouenVBertJMountrisKABoussionNVisvikisDProstate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfacesIEEE t Bio-Med Eng201966492093310.1109/TBME.2018.2865428 – reference: Sloun RJG, Wildeboer RR, Postema AW, Mannaerts CK, Gayer M, Wijkstra H, Mischi M (2018) Zonal Segmentation in Transrectal Ultrasound Images of the Prostate Through Deep Learning. In: Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, October 22–25, 2018, pp 1–4. https://doi.org/10.1109/ULTSYM.2018.8580157 – reference: OsherSSethianJAFronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulationsJ Comput Phys1988791124996586010.1016/0021-9991(88)90002-20659.65132 – reference: Yu X, Lou B, Shi B, Winkel D, Szolar D (2020) False positive reduction using multiscale contextual features for prostate cancer detection in multi-parametric MRI scans. In: Proceedings of the IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA, April 3–7, 2020, pp 1355–1359. https://doi.org/10.1109/ISBI45749.2020.9098338 – reference: KnollCAlcanizMGrauVMonserratCJuanMCOutlining of the prostate using snakes with shape restrictions based on the wavelet transform (Doctoral Thesis: Dissertation)Pattern Recogn1999321767178110.1016/S0031-3203(98)00177-0 – reference: Zaim A (2008b) FSM: A new finite sphere method for modeling 3D geometry of the prostate. In: Proceedings of the 2008b 15th IEEE International Conference on Image Processing, San Diego, CA, USA, October 12–15, 2008b, pp 2956–2959. https://doi.org/10.1109/ICIP.2008.4712415 – reference: PraterJSRichardWDSegmenting ultrasound images of the prostate using neural networksUltrason Imaging199214215918510.1016/0161-7346(92)90005-G – reference: Wang Y, Dou H, Hu X, Zhu L, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. In: Proceedings of the IEEE Transactions on Medical Imaging 38 (12), pp 2768–2778. https://doi.org/10.1109/TMI.2019.2913184 – reference: YanPXuSTurkbeyBKrueckerJAdaptively learning local shape statistics for prostate segmentation in ultrasoundIEEE Trans Biomed Eng201158363364110.1109/TBME.2010.2094195 – reference: MICCAI (2009) 2009 Prostate segmentation challenge MICCAI. http://wiki.namic.org/Wiki/index.php (accessed 1 Apr 11) – reference: WuRYLingKVNgWSAutomatic prostate boundary recognition in sonographic images using feature model and genetic algorithmJ Am Inst Ultrasound Med2000191177178210.1067/mnc.2000.109970 – reference: Manavalan R, Thangavel K (2011) TRUS image segmentation using morphological operators and DBSCAN clustering. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, December 11–14, 2011, pp 898–903. https://doi.org/10.1109/WICT.2011.6141367 – reference: GhoseSOliverAMitraJMartíRMeriaudeauFSupervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound imagesMed Image Anal201317658760010.1016/j.media.2013.04.001 – reference: ShenDGZhanYQDavatzikosCSegmentation of prostate boundaries from ultrasound images using statistical shape modelIEEE Trans Med Imaging200322453955110.1109/TMI.2003.809057 – reference: LiCMKaoCYGoreJCDingZHMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process2008171019401949251727710.1109/TIP.2008.20023041371.94225 – reference: SiegelRLMillerKDFuchsHEJemalACancer Statistics, 2021CA-A Cancer J Clin202170173310.3322/caac.21654 – reference: NouranianSRamezaniMSpadingerIMorrisJWSalcudeanESLearning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapyIEEE Trans Med Imaging201635392193110.1109/TMI.2015.2502540 – reference: Wildeboer RR, Mannaerts CK, Sloun RJG, Wijkstra H, Mischi M (2019) Machine learning for multiparametric ultrasound classification of prostate cancer using B-mode, Shear-wave elastography, and contrast-enhanced ultrasound radiomics. In: Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, Scotland, October6–9, 2019. pp 1902–1905. https://doi.org/10.1109/ULTSYM.2019.8925823 – reference: Houshmand K, Tizhoosh HR (2008) Increasing segmentation accuracy in ultrasound imaging using filtering and snakes. In: Proceedings of the Conference on Electrical & Computer Engineering. Niagara Falls, ON, Canada, May 4–7, 2008. pp 1333–1336. https://doi.org/10.1109/CCECE.2008.4564756 – reference: Yu Y, Cheng J, Li J, Chen W, Chiu B (2014) Automatic prostate segmentation from transrectal ultrasound images. In: Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, October 22–24, 2014. pp 117–120. https://doi.org/10.1109/BioCAS.2014.6981659 – volume: 70 start-page: 7 issue: 1 year: 2021 ident: 10179_CR81 publication-title: CA-A Cancer J Clin doi: 10.3322/caac.21654 – volume: 25 start-page: 256 issue: 3 year: 2006 ident: 10179_CR111 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2005.862744 – volume: 34 start-page: 950 issue: 4 year: 2015 ident: 10179_CR62 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2371823 – ident: 10179_CR15 doi: 10.1109/IEMBS.2005.1616500 – ident: 10179_CR87 doi: 10.1109/DICTA.2012.6411706 – ident: 10179_CR30 doi: 10.1109/ICASID.2019.8925236 – year: 2012 ident: 10179_CR100 publication-title: Proc SPIE Int Soc Opt Eng doi: 10.1117/12.912188 – volume: 10 start-page: 1997 issue: 12 year: 2015 ident: 10179_CR110 publication-title: Int J CARS doi: 10.1007/s11548-015-1233-y – volume: 30 start-page: 887 issue: 5 year: 2003 ident: 10179_CR90 publication-title: Med Phys doi: 10.1006/jcat.1999.2746 – volume: 21 start-page: 223 year: 2017 ident: 10179_CR83 publication-title: J Comput Sci-Neth doi: 10.1016/j.jocs.2017.04.016 – volume: 27 start-page: 1777 issue: 8 year: 2000 ident: 10179_CR43 publication-title: Med Phys doi: 10.1118/1.1286722 – volume: 52 start-page: 947 issue: 6 year: 2005 ident: 10179_CR75 publication-title: IEEE Trans Ultrason Ferr doi: 10.1109/CIC.2004.1442939 – volume: 39 start-page: 499 issue: 2 year: 2020 ident: 10179_CR37 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2930068 – volume: 10 start-page: 178 issue: 2 year: 2006 ident: 10179_CR113 publication-title: Image Anal doi: 10.1016/j.media.2005.06.003 – volume: 46 start-page: 3194 issue: 7 year: 2019 ident: 10179_CR45 publication-title: Med Phys doi: 10.1002/mp.13577 – volume: 20 start-page: 1621 issue: 6 year: 2015 ident: 10179_CR88 publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2015.2477829 – ident: 10179_CR11 doi: 10.1109/HIS.2009.47 – year: 2005 ident: 10179_CR106 publication-title: Image Anal doi: 10.1007/11499145_127 – ident: 10179_CR108 doi: 10.1109/ICIP.2008.4712415 – ident: 10179_CR5 doi: 10.1007/11866763_3 – ident: 10179_CR59 doi: 10.1007/11867661_5 – ident: 10179_CR109 doi: 10.1109/IJCNN.2007.4370968 – volume: 25 start-page: 1645 issue: 12 year: 2006 ident: 10179_CR86 publication-title: IEEE t Med Imaging doi: 10.1109/TMI.2006.884630 – volume: 9 start-page: 193 issue: 1 year: 2013 ident: 10179_CR40 publication-title: J Inf Process Syst doi: 10.3745/JIPS.2013.9.1.103 – volume: 8 start-page: 285 issue: 3 year: 2004 ident: 10179_CR32 publication-title: Med Image Anal doi: 10.1016/j.media.2004.06.008 – volume: 8 start-page: 1 issue: 8 year: 2008 ident: 10179_CR73 publication-title: BMC Med Imaging – volume: 8 start-page: 127462 year: 2020 ident: 10179_CR67 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006197 – volume: 22 start-page: 539 issue: 4 year: 2003 ident: 10179_CR80 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2003.809057 – volume: 8 start-page: 128613 year: 2020 ident: 10179_CR16 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008868 – ident: 10179_CR76 doi: 10.1038/sj.pcan.4500326 – ident: 10179_CR44 doi: 10.1109/ICCCNT45670.2019.8944847 – volume: 184 start-page: 105097 year: 2019 ident: 10179_CR7 publication-title: Comput Meth Prog Bio doi: 10.1016/j.cmpb.2019.105097 – volume: 22 start-page: 605 issue: 6 year: 2003 ident: 10179_CR78 publication-title: J Ultras Med doi: 10.7863/jum.2003.22.6.605 – volume: 23 start-page: 340 issue: 3 year: 2004 ident: 10179_CR25 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.824237 – volume: 35 start-page: 445 issue: 5 year: 1997 ident: 10179_CR52 publication-title: Med Biol Eng Comput doi: 10.1007/BF02525522 – volume: 57 start-page: 1158 issue: 5 year: 2010 ident: 10179_CR98 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2037491 – volume: 14 start-page: 159 issue: 2 year: 1992 ident: 10179_CR68 publication-title: Ultrason Imaging doi: 10.1016/0161-7346(92)90005-G – start-page: 28 volume-title: Handbook of research on advanced concepts in real-time image and video processing year: 2018 ident: 10179_CR4 doi: 10.4018/978-1-5225-2848-7.ch002 – volume: 20 start-page: 1 issue: 1 year: 1994 ident: 10179_CR29 publication-title: Ultrasound Med Biol doi: 10.1016/0301-5629(94)90011-6 – ident: 10179_CR1 doi: 10.1109/ICASSP.2004.1326595 – volume: 31 start-page: 2073 issue: 11 year: 2012 ident: 10179_CR55 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2012.2209204 – year: 2021 ident: 10179_CR46 publication-title: Med Phys doi: 10.1002/mp.14895 – volume: 6 start-page: 63243 year: 2018 ident: 10179_CR51 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873696 – ident: 10179_CR47 doi: 10.1109/ICIP.2007.4379756 – ident: 10179_CR57 doi: 10.1109/IEMBS.2005.1617198 – ident: 10179_CR9 doi: 10.1109/AIM.2016.7576934 – volume: 19 start-page: 771 issue: 11 year: 2000 ident: 10179_CR96 publication-title: J Am Inst Ultrasound Med doi: 10.1067/mnc.2000.109970 – ident: 10179_CR77 doi: 10.1007/3-540-45787-9_49 – ident: 10179_CR27 doi: 10.1109/CCECE.2008.4564756 – volume: 15 start-page: 226 issue: 2 year: 2011 ident: 10179_CR54 publication-title: Brachytherapy doi: 10.1016/j.media.2010.10.002 – ident: 10179_CR105 doi: 10.1109/ISBI45749.2020.9098338 – volume: 23 start-page: 681 issue: 6 year: 1998 ident: 10179_CR12 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1007/BFb0054760 – volume: 79 start-page: 12 issue: 1 year: 1988 ident: 10179_CR65 publication-title: J Comput Phys doi: 10.1016/0021-9991(88)90002-2 – ident: 10179_CR74 doi: 10.1109/ISBI.2008.4540949 – ident: 10179_CR53 doi: 10.1109/IEMBS.2008.4649831 – ident: 10179_CR101 doi: 10.1117/12.2216396 – volume: 17 start-page: 1 issue: 1 year: 2021 ident: 10179_CR89 publication-title: Int J Med Robot Comput Assist Surg doi: 10.1002/rcs.2190 – ident: 10179_CR20 doi: 10.1109/EMBC.2012.6346431 – ident: 10179_CR26 – volume: 74 start-page: 74 issue: 1 year: 2016 ident: 10179_CR103 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.05.002 – volume: 43 start-page: 3090 issue: 6 year: 2016 ident: 10179_CR49 publication-title: Med Phys doi: 10.1118/1.4950721 – volume: 28 start-page: 2147 issue: 10 year: 2001 ident: 10179_CR19 publication-title: Med Phys doi: 10.1118/1.1388221 – ident: 10179_CR84 doi: 10.1109/ULTSYM.2018.8580157 – ident: 10179_CR112 doi: 10.1109/ICASSP.2005.1416379 – volume: 39 start-page: 1 issue: 10 year: 2020 ident: 10179_CR79 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2020.2988198 – volume: 186 issue: 30 year: 2021 ident: 10179_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115686 – volume: 1 start-page: 321 issue: 4 year: 1988 ident: 10179_CR38 publication-title: Int J Comput Vis doi: 10.1007/BF00133570 – volume: 84 start-page: 99 issue: 2–3 year: 2006 ident: 10179_CR31 publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2006.07.001 – volume: 15 start-page: 900 issue: 6 year: 2011 ident: 10179_CR93 publication-title: IEEE Trans Inf Technol Biomed doi: 10.1109/TITB.2011.2163724 – volume: 108 start-page: 262 issue: 1 year: 2012 ident: 10179_CR24 publication-title: Comput Meth Prog Bio doi: 10.1016/j.cmpb.2012.04.006 – volume: 58 start-page: 633 issue: 3 year: 2011 ident: 10179_CR99 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2094195 – volume: 57 start-page: 1748 issue: 8 year: 2010 ident: 10179_CR97 publication-title: IEEE Trans Ultrason Ferr doi: 10.1109/TUFFC.2010.1613 – ident: 10179_CR85 doi: 10.1109/ICInfA.2015.7279410 – volume: 35 start-page: 921 issue: 3 year: 2016 ident: 10179_CR63 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2502540 – volume: 33 start-page: 947 issue: 4 year: 2014 ident: 10179_CR69 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2014.2300694 – volume: 91 start-page: 1543 issue: 10 year: 2003 ident: 10179_CR8 publication-title: Proc IEEE doi: 10.1109/JPROC.2003.817879 – volume: 32 start-page: 1767 year: 1999 ident: 10179_CR41 publication-title: Pattern Recogn doi: 10.1016/S0031-3203(98)00177-0 – ident: 10179_CR82 doi: 10.1109/IWSSIP48289.2020.9145218 – volume: 17 start-page: 1940 issue: 10 year: 2008 ident: 10179_CR48 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2008.2002304 – volume: 57 start-page: 123 year: 2019 ident: 10179_CR50 publication-title: Phys Med doi: 10.1016/j.ejmp.2018.12.03 – volume: 36 start-page: 768 issue: 6 year: 1998 ident: 10179_CR42 publication-title: Med Biol Eng Comput doi: 10.1007/BF02518882 – volume: 29 start-page: 43 issue: 1 year: 2005 ident: 10179_CR6 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2004.07.007 – ident: 10179_CR14 doi: 10.1117/12.2070559 – volume: 34 start-page: 1321 issue: 6 year: 2015 ident: 10179_CR94 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2388699 – ident: 10179_CR58 – ident: 10179_CR34 doi: 10.1109/IEMBS.2007.4353617 – volume: 4 start-page: 1 issue: 58 year: 2005 ident: 10179_CR71 publication-title: Biomed Eng Online doi: 10.1186/1475-925X-4-58 – ident: 10179_CR70 doi: 10.1109/ISBI.2008.4540938 – ident: 10179_CR92 doi: 10.1109/ULTSYM.2019.8925823 – ident: 10179_CR56 doi: 10.1109/WICT.2011.6141367 – volume: 24 start-page: 971 issue: 7 year: 2002 ident: 10179_CR64 publication-title: IEEE Trans Pattern Anal doi: 10.1109/TPAMI.2002.1017623 – volume: 12 start-page: 355 issue: 6 year: 1993 ident: 10179_CR13 publication-title: Image Vis Comput doi: 10.1007/BFb0013779 – ident: 10179_CR17 doi: 10.1109/ISPACS.2007.4445885 – ident: 10179_CR28 doi: 10.1109/ISBI.2002.1029332 – volume: 10 start-page: 266 issue: 2 year: 2001 ident: 10179_CR10 publication-title: IEEE Trans Image Process doi: 10.1109/83.902291 – volume: 31 start-page: 644 issue: 6 year: 2017 ident: 10179_CR104 publication-title: China Med Educ Technol – volume: 7 start-page: 43 year: 2012 ident: 10179_CR22 publication-title: Int J CARS doi: 10.1007/s11548-011-0616-y – volume: 19 start-page: 1211 issue: 12 year: 2000 ident: 10179_CR66 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.897813 – volume: 22 start-page: 551 year: 2011 ident: 10179_CR3 publication-title: Mach Vision Appl – volume: 119 start-page: 1537 issue: 8 year: 2013 ident: 10179_CR60 publication-title: Cancer doi: 10.1002/cncr.27911 – volume: 8 start-page: 764 issue: 6 year: 2013 ident: 10179_CR95 publication-title: Biomed Signal Proces doi: 10.1016/j.bspc.2013.07.002 – ident: 10179_CR18 doi: 10.1109/HiTech.2018.8566503 – volume: 25 start-page: 987 issue: 8 year: 2006 ident: 10179_CR61 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2006.877092 – ident: 10179_CR72 doi: 10.1109/ICIP.2005.1530293 – ident: 10179_CR91 doi: 10.1109/TMI.2019.2913184 – volume: 7962 start-page: 140 issue: 4 year: 2011 ident: 10179_CR21 publication-title: Proc SPIE doi: 10.1117/12.877955 – volume: 24 start-page: 1413 issue: 5 year: 2020 ident: 10179_CR36 publication-title: IEEE J Biomed Health doi: 10.1109/JBHI.2019.2944643 – ident: 10179_CR102 doi: 10.1109/BioCAS.2014.6981659 – volume: 66 start-page: 920 issue: 4 year: 2019 ident: 10179_CR33 publication-title: IEEE t Bio-Med Eng doi: 10.1109/TBME.2018.2865428 – volume: 39 start-page: 2972 issue: 6 year: 2012 ident: 10179_CR2 publication-title: Med Phys doi: 10.1118/1.4709607 – ident: 10179_CR107 doi: 10.1109/ISCCSP.2008.4537183 – volume: 17 start-page: 587 issue: 6 year: 2013 ident: 10179_CR23 publication-title: Med Image Anal doi: 10.1016/j.media.2013.04.001 – ident: 10179_CR35 doi: 10.1109/ISSPIT.2006.270795 |
| SSID | ssj0005243 |
| Score | 2.4147294 |
| Snippet | Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the... |
| SourceID | proquest gale crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 615 |
| SubjectTerms | Algorithms Artificial Intelligence Cancer Care and treatment Classification Computer Science Image processing Image segmentation Imagery Lung cancer Medical treatment Physiology Prostate Prostate cancer Segmentation Systematic review Ultrasonic imaging Ultrasound imaging |
| SummonAdditionalLinks | – databaseName: SpringerLINK Contemporary 1997-Present dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6IFLKY-qSynyAakHsJTEjp1wQwjUA0JIUMTNcuwEVtoH2mT7-zuTOGUX2kpwS-TJyLLn5XjmG4BDdNq6sInlGF0ILn0e8Tz1OS8iVWhVCu9aLL27S311ld3f59ehKKzus937K8nWUi8Uu0mVcMo-b8WIy1VYTwlths7oN3cLiR1drlyico4HijiUyvydx5I7emmUX92Otk7nYvN90_0EH0OQyU47qdiClXKyDZt9AwcW9HkH5jflwzgUH03YtGJPVAOC0Sebj5qZranlEhuO0eTUJwwjRdYNIiG9oNAxiwT03EGTsM5BkiQTUb3I3Y4eprNh8ziud-Hnxfnt2Q8e-jBwJ9Ok4S6LXSR9rCurEmeVr3SUFwSM5nzslU9TLaVXSlonoiq2WggvMi08GtO0SJT4DGuT6aT8AkwVrlJl5NIi81LYDDkrl5V56fDYZa0fQNxvh3EBpJx6ZYzMM7wyravBdTXtuho5gKM_3zx1EB3_pf5Ou2xIf5Gzs6EMAedHSFjmVAs8lVFcOoD9JUrUO7c83MuJCXpfm0QrtKEpEg3guJeL5-F_T2vvbeRfYYP63nf_gvZhrZnNy2_wwf1qhvXsoNWH32U_A74 priority: 102 providerName: Springer Nature |
| Title | Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms |
| URI | https://link.springer.com/article/10.1007/s10462-022-10179-4 https://www.proquest.com/docview/2760705732 |
| Volume | 56 |
| WOSCitedRecordID | wos000782332700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer customDbUrl: eissn: 1573-7462 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005243 issn: 0269-2821 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcAQtBy4tT7GlrXxA4gAWiZ8JF9RWrZCAZdVCKVwsx05KpX2xyfL9jBOH7YLohYsVyxNrpHnangfAMzTaurDMUvQuOBU-T2gufU6LRBValdy7tpbe-Xs9HGYXF_koXrjVMayy14mtovYzF-7IXzGtkDul5uzN_AcNXaPC62psoXEbNtFQy9DBQH_5ei3Eo4uaYyqneLRIY9JMTJ0TitEQy94yJRVrhulP9fzXO2lrfk62_xfxe7AVHU9y0HHKfbhVTh_Adt_UgUQZfwjLs_JyEhOSpmRWkXnIC0GPlCzHzcLWoQ0TuZqgGqpfE_QeSbeIgGGCjEgsAoTvrlwJ6Yxm4O4AVF_f3Y4vEdPm-6R-BJ9Pjj8dvaWxNwN1QrKGuix1ifCprqxizipf6SQvQrE051OvvJRaCK-UsI4nVWo1555nmntUsLJgij-GjelsWj4BogpXqTJxssi84DbDnZXLyrx0eBSz1g8g7QljXCxcHvpnjM2q5HIgpkFimpaYRgzgxe9_5l3Zjhuhnwd6myDTuLOzMTUB8QvVscwBEo-3vuoAdtcgURbd-nLPAybqgtqsGGAAL3suWi3_G62dm3d7CncZelzdfdAubDSLZbkHd9zP5qpe7LeSsA-bh8fD0SnO3mmK44fkKIzpRxxH8huOp2fnvwCwUxRG |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXlqfYUsAHEAewSGzHTpAQqoCqVbcLEgX1Zhw7KZX2xWYXxJ_iNzKTB9sF0VsP3BJ5Mkqcbx625wHwCI22yZ1wHL0LyVXIIp4lIeN5pHOjCxl8XUvvU98MBunxcfZ-DX52uTAUVtnpxFpRh4mnPfLnwmhEZ2KkeDX9yqlrFJ2udi00GlgcFD--45Ktern_Bv_vYyF23x693uNtVwHuVSLm3Kexj1SITem08E6H0kRZTmW-fIiDDklilApaK-dlVMbOSBlkamRA1ZDkQkvkewkuU109kqjD-N2ZkJImSk_ojONSJm6TdNpUPaUFp9j5Wgi4WjGEf5qDv85la3O3u_m_TdR12Ggda7bTSMINWCvGN2Gza1rBWh12CxYfipNRm3A1ZpOSTSnvBT1uthjOZ66iNlPsdIRqtnrB0DtmzSAS0g0KGnNIQNdNORbWOAUkvURUneXuhic4M_Mvo-o2fLyQj78D6-PJuLgLTOe-1EXkkzwNSroUOWufFlnhcanpXOhB3AHB-rYwO_UHGdplSWkCj0Xw2Bo8VvXg6e9npk1ZknOpnxC-LOks5Oxdm3qB70fVv-wOgkXWvngPtlcoUdf41eEOc7bVdZVdAq4HzzrULof__Vpb53N7CFf3jg77tr8_OLgH1wR6l83e1zasz2eL4j5c8d_mp9XsQS2FDD5fNJp_ASSsaUU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcKE-xUMAHEAewmtiOnSAhVGhXVK1WK17qzTh2Uirti00WxF_j1zFOHLYLorceuCXyZJQ434xn7HkAPMZFW-WGGYrWBafCZRHNEpfRPJK5kgV3tqml9-lIDYfp8XE22oCfXS6MD6vsdGKjqN3M-j3yHaYkojNRnO2UISxitDd4Nf9KfQcpf9LatdNoIXJY_PiO7lv18mAP__UTxgb7H968paHDALUiYTW1aWwj4WJVGsmska5UUZb7kl_WxU66JFFCOCmFsTwqY6M4dzxV3KGaSHImOfK9BJuKo9PTg83X-8PRuzMBJm3MHpMZRccmDik7IXFPSEZ9JH0jElSsLYt_Lg5_ndI2i99g63-etutwLZjcZLeVkRuwUUxvwlbXzoIE7XYLlu-Lk0lIxZqSWUnmPiMGbXGyHNcLU_kGVOR0ggq4ekHQbibtIBL6GxRBYpDAX7eFWkhrLni59kTVWe5mfIIzU3-ZVLfh44V8_B3oTWfT4i4QmdtSFpFN8tQJblLkLG1aZIVFJ9QY14e4A4W2oWS77xwy1qti0x5IGoGkGyBp0Ydnv5-ZtwVLzqV-6rGmvTZDztaEpAx8P18XTO8icHhjpfdhe40StZBdH-7wp4MWrPQKfH143iF4Nfzv17p3PrdHcAVBrI8Ohof34SpDs7PdFNuGXr1YFg_gsv1Wn1aLh0EkCXy-aDj_AjDMc2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+prostate+ultrasound+images%3A+the+state+of+the+art+and+the+future+directions+of+segmentation+algorithms&rft.jtitle=The+Artificial+intelligence+review&rft.au=Jiang%2C+Jingang&rft.au=Guo%2C+Yafeng&rft.au=Bi%2C+Zhuming&rft.au=Huang%2C+Zhiyuan&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=1&rft.spage=615&rft.epage=651&rft_id=info:doi/10.1007%2Fs10462-022-10179-4&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon |