Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms

Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Artificial intelligence review Jg. 56; H. 1; S. 615 - 651
Hauptverfasser: Jiang, Jingang, Guo, Yafeng, Bi, Zhuming, Huang, Zhiyuan, Yu, Guang, Wang, Jinke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Dordrecht Springer Netherlands 01.01.2023
Springer
Springer Nature B.V
Schlagworte:
ISSN:0269-2821, 1573-7462
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it difficult to determine the prostate boundaries in ultrasound images. In this paper, we provide a systematic review of advances in the field of ultrasound prostate image segmentation. In particular, three categories of algorithms are reviewed and compared, including edge-based segmentation, region-based segmentation, and those based on specific theoretical models. To understand the state of the art of different segmentations of the prostate ultrasound images, we conduct a literature analysis and a series of comparisons between different algorithms. The features and limitations of each category of segmentation algorithms are further discussed. Finally, we identified promising research directions in advancing the segmentation algorithms for the processing of ultrasound prostate images.
AbstractList Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the detection and planning treatment of prostate cancer. However, both ultrasound imaging characteristics and the physiology of the prostate make it difficult to determine the prostate boundaries in ultrasound images. In this paper, we provide a systematic review of advances in the field of ultrasound prostate image segmentation. In particular, three categories of algorithms are reviewed and compared, including edge-based segmentation, region-based segmentation, and those based on specific theoretical models. To understand the state of the art of different segmentations of the prostate ultrasound images, we conduct a literature analysis and a series of comparisons between different algorithms. The features and limitations of each category of segmentation algorithms are further discussed. Finally, we identified promising research directions in advancing the segmentation algorithms for the processing of ultrasound prostate images.
Audience Academic
Author Jiang, Jingang
Bi, Zhuming
Yu, Guang
Wang, Jinke
Huang, Zhiyuan
Guo, Yafeng
Author_xml – sequence: 1
  givenname: Jingang
  orcidid: 0000-0003-0491-9236
  surname: Jiang
  fullname: Jiang, Jingang
  email: jiangjingang@hrbust.edu.cn
  organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 2
  givenname: Yafeng
  surname: Guo
  fullname: Guo, Yafeng
  organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
– sequence: 3
  givenname: Zhuming
  surname: Bi
  fullname: Bi, Zhuming
  organization: Department of Civil and Mechanical Engineering, Purdue University Fort Wayne
– sequence: 4
  givenname: Zhiyuan
  surname: Huang
  fullname: Huang, Zhiyuan
  organization: State Key Laboratory of Robotics and System, Harbin Institute of Technology
– sequence: 5
  givenname: Guang
  surname: Yu
  fullname: Yu, Guang
  organization: Department of Mechanical Engineering, Tsinghua University
– sequence: 6
  givenname: Jinke
  surname: Wang
  fullname: Wang, Jinke
  organization: Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology
BookMark eNp9kU1LHjEQx0Ox0EfbL9DTgue1k_d9vImoLQge2p5DzMsa2RdNsge_vbPdgq2I5JDMzP83YeZ_SA6meQqEfKVwQgH0t0JBKNYCYy0Fqvet-EB2VGreaswfkB0wtW9Zx-gncljKPQBIJviOLD9DP4ap2prmqZlj85DnglFolqFmW-Zl8k0abR_KaVPvQrMVUbgGNtfGomB9x6UuOTQ-5eDWZmUVlX-726Gfc6p3Y_lMPkY7lPDl731Efl9e_Dr_3l7fXP04P7tunZCstq6jDoSnOlrFnFU-atjfdnIvnadeeSm1EF4pYR2HSK3m3PNOcy95J2-Z4kfkeOuLUz0uoVRzPy95wi8N0wo04IbYi6q3QzBpijNO7sZUnDlb69BxuapO3lDh8WFMDu2ICfP_Ad0GOFxpySEal7ZNIJgGQ8Gs3pnNO4PemT_eGYEoe4U-ZDQhP70P8Q0qKJ76kF-GfYd6Bqamrcc
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125743
crossref_primary_10_1016_j_eswa_2025_126853
crossref_primary_10_1063_5_0245331
crossref_primary_10_1109_TMI_2024_3472672
crossref_primary_10_1016_j_patcog_2024_110776
crossref_primary_10_1038_s41598_025_08711_x
crossref_primary_10_1007_s10489_023_04676_4
crossref_primary_10_1016_j_bbe_2023_08_002
crossref_primary_10_1016_j_compmedimag_2024_102339
crossref_primary_10_3390_app14156550
crossref_primary_10_1088_1361_6560_acf5c5
Cites_doi 10.3322/caac.21654
10.1109/TMI.2005.862744
10.1109/TMI.2014.2371823
10.1109/IEMBS.2005.1616500
10.1109/DICTA.2012.6411706
10.1109/ICASID.2019.8925236
10.1117/12.912188
10.1007/s11548-015-1233-y
10.1006/jcat.1999.2746
10.1016/j.jocs.2017.04.016
10.1118/1.1286722
10.1109/CIC.2004.1442939
10.1109/TMI.2019.2930068
10.1016/j.media.2005.06.003
10.1002/mp.13577
10.1109/JBHI.2015.2477829
10.1109/HIS.2009.47
10.1007/11499145_127
10.1109/ICIP.2008.4712415
10.1007/11866763_3
10.1007/11867661_5
10.1109/IJCNN.2007.4370968
10.1109/TMI.2006.884630
10.3745/JIPS.2013.9.1.103
10.1016/j.media.2004.06.008
10.1109/ACCESS.2020.3006197
10.1109/TMI.2003.809057
10.1109/ACCESS.2020.3008868
10.1038/sj.pcan.4500326
10.1109/ICCCNT45670.2019.8944847
10.1016/j.cmpb.2019.105097
10.7863/jum.2003.22.6.605
10.1109/TMI.2004.824237
10.1007/BF02525522
10.1109/TBME.2009.2037491
10.1016/0161-7346(92)90005-G
10.4018/978-1-5225-2848-7.ch002
10.1016/0301-5629(94)90011-6
10.1109/ICASSP.2004.1326595
10.1109/TMI.2012.2209204
10.1002/mp.14895
10.1109/ACCESS.2018.2873696
10.1109/ICIP.2007.4379756
10.1109/IEMBS.2005.1617198
10.1109/AIM.2016.7576934
10.1067/mnc.2000.109970
10.1007/3-540-45787-9_49
10.1109/CCECE.2008.4564756
10.1016/j.media.2010.10.002
10.1109/ISBI45749.2020.9098338
10.1007/BFb0054760
10.1016/0021-9991(88)90002-2
10.1109/ISBI.2008.4540949
10.1109/IEMBS.2008.4649831
10.1117/12.2216396
10.1002/rcs.2190
10.1109/EMBC.2012.6346431
10.1016/j.compbiomed.2016.05.002
10.1118/1.4950721
10.1118/1.1388221
10.1109/ULTSYM.2018.8580157
10.1109/ICASSP.2005.1416379
10.1109/TMI.2020.2988198
10.1016/j.eswa.2021.115686
10.1007/BF00133570
10.1016/j.cmpb.2006.07.001
10.1109/TITB.2011.2163724
10.1016/j.cmpb.2012.04.006
10.1109/TBME.2010.2094195
10.1109/TUFFC.2010.1613
10.1109/ICInfA.2015.7279410
10.1109/TMI.2015.2502540
10.1109/TMI.2014.2300694
10.1109/JPROC.2003.817879
10.1016/S0031-3203(98)00177-0
10.1109/IWSSIP48289.2020.9145218
10.1109/TIP.2008.2002304
10.1016/j.ejmp.2018.12.03
10.1007/BF02518882
10.1016/j.compmedimag.2004.07.007
10.1117/12.2070559
10.1109/TMI.2015.2388699
10.1109/IEMBS.2007.4353617
10.1186/1475-925X-4-58
10.1109/ISBI.2008.4540938
10.1109/ULTSYM.2019.8925823
10.1109/WICT.2011.6141367
10.1109/TPAMI.2002.1017623
10.1007/BFb0013779
10.1109/ISPACS.2007.4445885
10.1109/ISBI.2002.1029332
10.1109/83.902291
10.1007/s11548-011-0616-y
10.1109/42.897813
10.1002/cncr.27911
10.1016/j.bspc.2013.07.002
10.1109/HiTech.2018.8566503
10.1109/TMI.2006.877092
10.1109/ICIP.2005.1530293
10.1109/TMI.2019.2913184
10.1117/12.877955
10.1109/JBHI.2019.2944643
10.1109/BioCAS.2014.6981659
10.1109/TBME.2018.2865428
10.1118/1.4709607
10.1109/ISCCSP.2008.4537183
10.1016/j.media.2013.04.001
10.1109/ISSPIT.2006.270795
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2022
COPYRIGHT 2023 Springer
The Author(s), under exclusive licence to Springer Nature B.V. 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022
– notice: COPYRIGHT 2023 Springer
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2022.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M1O
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PSYQQ
Q9U
DOI 10.1007/s10462-022-10179-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
ProQuest One Community College
Library & Information Science Collection
ProQuest Central
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Library Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
ProQuest One Psychology
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)


Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7462
EndPage 651
ExternalDocumentID A732308352
10_1007_s10462_022_10179_4
GrantInformation_xml – fundername: Natural Science Foundation of Heilongjiang Province
  grantid: LH2021E081
– fundername: Heilongjiang Postdoctoral Science Foundation Special Funded Project
  grantid: LBH-TZ1705
– fundername: Fundamental Research Foundation for Universities of Heilongjiang Province
  grantid: LGYC2018JQ016
– fundername: China Postdoctoral Science Foundation Special Funded Project
  grantid: 2018T110313
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23N
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6J9
6NX
77K
7WY
8AO
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C24
C6C
CAG
CCPQU
CNYFK
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M1O
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~A9
~EX
77I
AAFWJ
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFFHD
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PRQQA
7SC
7XB
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c452t-c81c04d17fa62ca6df709b8595cd1d6d55744d664ac30f1a733d3873d5385b263
IEDL.DBID 7WY
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000782332700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-2821
IngestDate Sat Nov 15 13:12:44 EST 2025
Sat Nov 29 14:12:06 EST 2025
Sat Nov 29 10:28:02 EST 2025
Sat Nov 29 02:43:26 EST 2025
Tue Nov 18 22:43:19 EST 2025
Fri Feb 21 02:46:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Image segmentation
Diagnosis of prostate cancer
Ultrasound images
Prostate cancer
Segmentation algorithms
Citespace
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-c81c04d17fa62ca6df709b8595cd1d6d55744d664ac30f1a733d3873d5385b263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0491-9236
PQID 2760705732
PQPubID 36790
PageCount 37
ParticipantIDs proquest_journals_2760705732
gale_infotracmisc_A732308352
gale_infotracacademiconefile_A732308352
crossref_citationtrail_10_1007_s10462_022_10179_4
crossref_primary_10_1007_s10462_022_10179_4
springer_journals_10_1007_s10462_022_10179_4
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Science and Engineering Journal
PublicationTitle The Artificial intelligence review
PublicationTitleAbbrev Artif Intell Rev
PublicationYear 2023
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Yu Y, Cheng J, Li J, Chen W, Chiu B (2014) Automatic prostate segmentation from transrectal ultrasound images. In: Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, October 22–24, 2014. pp 117–120. https://doi.org/10.1109/BioCAS.2014.6981659
Kachouie NN, Fieguth P (2007) A medical texture local binary pattern for TRUS prostate segmentation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 22–26, 2007, pp 5605–5608. https://doi.org/10.1109/IEMBS.2007.4353617
Wang Y, Dou H, Hu X, Zhu L, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. In: Proceedings of the IEEE Transactions on Medical Imaging 38 (12), pp 2768–2778. https://doi.org/10.1109/TMI.2019.2913184
WuPFLiuYGLiYZShiYTTRUS image segmentation with non-parametric kernel density estimation shape priorBiomed Signal Proces20138676477110.1016/j.bspc.2013.07.002
NouranianSRamezaniMSpadingerIMorrisJWSalcudeanESLearning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapyIEEE Trans Med Imaging201635392193110.1109/TMI.2015.2502540
SahbaFTizhooshHRSalamaMMA coarse-to-fine approach to prostate boundary segmentation in ultrasound imagesBiomed Eng Online200545811310.1186/1475-925X-4-58
SiegelRLMillerKDFuchsHEJemalACancer Statistics, 2021CA-A Cancer J Clin202170173310.3322/caac.21654
ZhuYWilliamsSZwiggelaarRComputer technology in detection and staging of prostate carcinoma: a review MedImage Anal200610217819910.1016/j.media.2005.06.003
JaouenVBertJMountrisKABoussionNVisvikisDProstate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfacesIEEE t Bio-Med Eng201966492093310.1109/TBME.2018.2865428
Zhang Y, Qian W, Sankar R (2005) Prostate boundary detection in transrectal ultrasound images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing, Philadelphia, PA, USA, March 23–23, 2005. pp 617–620. https://doi.org/10.1109/ICASSP.2005.1416379.
Huang XF, Chen M, Liu PZ (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: Proceedings of the IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, China, October 25–27, 2019, pp 183–187. https://doi.org/10.1109/ICASID.2019.8925236
ZhanYQShenDGDeformable segmentation of 3-D ultrasound prostate images using statistical texture matching methodIEEE Trans Med Imaging200625325627210.1109/TMI.2005.862744
NobleJABoukerrouiDUltrasound image segmentation: a surveyIEEE Trans Med Imaging2006258987101010.1109/TMI.2006.877092
Vafaie R, Alirezaie J, Babyn P (2012) Fully automated model-based prostate boundary segmentation using Markov random field in ultrasound images. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, December 3–5, 2012. pp 1–8. https://doi.org/10.1109/DICTA.2012.6411706
LadakHMMaoFWangYQDowneyDBSteinmanDAFensterAProstate boundary segmentation from 2D ultrasound imagesMed Phys20002781777178810.1118/1.1286722
Carriere J, Rossa C, Sloboda R, Usmani N, Tavakoli M (2016) Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, July 12–15, 2016, pp 1204–1209. https://doi.org/10.1109/AIM.2016.7576934
Hu N, Downey DB, Fenster A, Ladak HM (2002) Prostate surface segmentation from 3D ultrasound images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, July 7–10, 2002, pp 613–616. https://doi.org/10.1109/ISBI.2002.1029332
WaineMRossaCSlobodaRUsmaniNTavakoliM3D needle shape estimation in TRUS-guided prostate brachytherapy using 2D ultrasound imagesIEEE J Biomed Health20152061621163110.1109/JBHI.2015.2477829
LiXLiCFedorovAKapurTYangXSegmentation of prostate from ultrasound images using level sets on active band and intensity variation across edgesMed Phys20164363090310310.1118/1.4950721
GhoseSOliverAMitraJMartíRMeriaudeauFSupervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound imagesMed Image Anal201317658760010.1016/j.media.2013.04.001
HodgeACFensterADowneyDBLadakHMProstate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3DComput Methods Programs Biomed2006842–39911310.1016/j.cmpb.2006.07.001
Manavalan R, Thangavel K (2011) TRUS image segmentation using morphological operators and DBSCAN clustering. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, December 11–14, 2011, pp 898–903. https://doi.org/10.1109/WICT.2011.6141367
Wildeboer RR, Mannaerts CK, Sloun RJG, Wijkstra H, Mischi M (2019) Machine learning for multiparametric ultrasound classification of prostate cancer using B-mode, Shear-wave elastography, and contrast-enhanced ultrasound radiomics. In: Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, Scotland, October6–9, 2019. pp 1902–1905. https://doi.org/10.1109/ULTSYM.2019.8925823
Zaim A (2008b) FSM: A new finite sphere method for modeling 3D geometry of the prostate. In: Proceedings of the 2008b 15th IEEE International Conference on Image Processing, San Diego, CA, USA, October 12–15, 2008b, pp 2956–2959. https://doi.org/10.1109/ICIP.2008.4712415
YanPXuSTurkbeyBKrueckerJDiscrete deformable model guided by partial active shape model for TRUS image segmentationIEEE Trans Biomed Eng20105751158116610.1109/TBME.2009.2037491
Georgieva V, Mihaylova A, Petrov P (2018) Prostate segmentation in ultrasound images using hybrid method. In: Proceedings of the International Conference on High Technology for Sustainable Development, Sofia, Bulgaria, June 11–14, 2018, pp 1–4. https://doi.org/10.1109/HiTech.2018.8566503
Saroul L, Bernard O, Vray D, Friboulet D (2008) Prostate segmentation in echographic images: a variational approach using deformable super-ellipse and rayleigh distribution. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Villeurbanne, France, May 14–17, 2008, pp 129–132. https://doi.org/10.1109/ISBI.2008.4540949
SinghRPGuptaSAcharyaURSegmentation of prostate contours for automated diagnosis using ultrasound images: A surveyJ Comput Sci-Neth20172122323110.1016/j.jocs.2017.04.016
GongLPathakSDHaynorDRChoPSKimYParametric shape modeling using deformable superellipses for prostate segmentationIEEE Trans Med Imaging200423334034910.1109/TMI.2004.824237
KaurAChauhanAPSAggarwalAKAn automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional networkExpert Syst Appl20211863010.1016/j.eswa.2021.115686
SartiACorsiCMazziniELambertiCMaximum likelihood segmentation of ultrasound images with Rayleigh distributionIEEE Trans Ultrason Ferr200552694796010.1109/CIC.2004.1442939
YanPXuSTurkbeyBKrueckerJAdaptively learning local shape statistics for prostate segmentation in ultrasoundIEEE Trans Biomed Eng201158363364110.1109/TBME.2010.2094195
BridalSLCorreasJ-MSaiedALaugierPMilestones on the road to higher resolution, quantitative, and functional ultrasonic imagingProc IEEE200391101543156110.1109/JPROC.2003.817879
SahbaFTizhooshHRSalamaMMAApplication of reinforcement learning for segmentation of transrectal ultrasound imagesBMC Med Imaging200888110
Houshmand K, Tizhoosh HR (2008) Increasing segmentation accuracy in ultrasound imaging using filtering and snakes. In: Proceedings of the Conference on Electrical & Computer Engineering. Niagara Falls, ON, Canada, May 4–7, 2008. pp 1333–1336. https://doi.org/10.1109/CCECE.2008.4564756
BetrouniNVermandelMPasquierDMaoucheSRousseauJSegmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filterComput Med Imaging Graph2005291435110.1016/j.compmedimag.2004.07.007
HuynenALGiesenRJBRosetteJJMCHAarninkRGDebruyneFMJWijkstraHAnalysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert systemUltrasound Med Biol199420111010.1016/0301-5629(94)90011-6
MICCAI (2009) 2009 Prostate segmentation challenge MICCAI. http://wiki.namic.org/Wiki/index.php (accessed 1 Apr 11)
El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically-inspired spiking neural network. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, November 28-December 1, 2007, pp 308–311. https://doi.org/10.1109/ISPACS.2007.4445885
Ghose S, Mitra J, Oliver A, Marti R, Mériaudeau F (2012a) Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: Proceedings of the 2012a Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, August 28 - September 1, 2012a, pp 2335–2338. https://doi.org/10.1109/EMBC.2012.6346431
Abolmaesumi R, Sirouspour MR (2004) Segmentation of prostate contours from ultrasound images. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004. pp 517–520. https://doi.org/10.1109/ICASSP.2004.1326595
LeiYWangTHRoperJJaniABPatelSACurranWJPatelPLiuTYangXFMale Pelvic multi-organ segmentation on transrectal ultrasound using Anchor free mask CNNMed Phys202110.1002/mp.14895
TutarIBPathakSDGongLChoPSWallnerKKimYSemiautomatic 3-D prostate segmentation from trus images using spherical harmonicsIEEE t Med Imaging200625121645165410.1109/TMI.2006.884630
Ding M, Galloway RL, Gyacskov I, Yuan X, Drangova M, Fenster A (2004) Slice-based prostate segmentation in 3D US images based on continuity constraint. In
X Li (10179_CR50) 2019; 57
M Kass (10179_CR38) 1988; 1
10179_CR30
10179_CR34
Y Zhu (10179_CR113) 2006; 10
H Akbari (10179_CR2) 2012; 39
10179_CR35
AC Hodge (10179_CR31) 2006; 84
F Sahba (10179_CR73) 2008; 8
SS Mahdavi (10179_CR55) 2012; 31
10179_CR28
D Karimi (10179_CR36) 2020; 24
Y Shao (10179_CR79) 2020; 39
YQ Zhan (10179_CR111) 2006; 25
N Betrouni (10179_CR6) 2005; 29
D Karimi (10179_CR37) 2020; 39
CK Kwoh (10179_CR42) 1998; 36
SD Pathak (10179_CR66) 2000; 19
S Nouranian (10179_CR63) 2016; 35
IB Tutar (10179_CR86) 2006; 25
10179_CR44
C Knoll (10179_CR41) 1999; 32
H Bi (10179_CR7) 2019; 184
10179_CR47
RL Siegel (10179_CR81) 2021; 70
10179_CR102
10179_CR101
10179_CR108
10179_CR107
10179_CR105
10179_CR56
10179_CR53
10179_CR59
10179_CR57
WR Wang (10179_CR89) 2021; 17
TF Cootes (10179_CR13) 1993; 12
10179_CR58
WJ Morris (10179_CR60) 2013; 119
CM Li (10179_CR48) 2008; 17
RS Xu (10179_CR97) 2010; 57
A Zaim (10179_CR106) 2005
AL Huynen (10179_CR29) 1994; 20
S Ghose (10179_CR23) 2013; 17
HM Ladak (10179_CR43) 2000; 27
P Wu (10179_CR94) 2015; 34
T Ojala (10179_CR64) 2002; 24
D Angelova (10179_CR3) 2011; 22
F Shao (10179_CR78) 2003; 22
RP Singh (10179_CR83) 2017; 21
M Yu (10179_CR104) 2017; 31
L Gong (10179_CR25) 2004; 23
Y Wang (10179_CR90) 2003; 30
JS Prater (10179_CR68) 1992; 14
Y Lei (10179_CR46) 2021
S Ghose (10179_CR21) 2011; 7962
Y Jing (10179_CR32) 2004; 8
10179_CR70
10179_CR74
10179_CR72
Y Yu (10179_CR103) 2016; 74
W Qiu (10179_CR69) 2014; 33
10179_CR77
10179_CR76
S Nouranian (10179_CR62) 2015; 34
X Li (10179_CR51) 2018; 6
SK Prabhakar (10179_CR67) 2020; 8
M Waine (10179_CR88) 2015; 20
P Yan (10179_CR99) 2011; 58
L Duran-Lopez (10179_CR16) 2020; 8
10179_CR112
10179_CR84
10179_CR85
10179_CR82
SL Bridal (10179_CR8) 2003; 91
A Wong (10179_CR93) 2011; 15
10179_CR87
TF Chan (10179_CR10) 2001; 10
A Kaur (10179_CR39) 2021; 186
10179_CR9
X Yang (10179_CR100) 2012
Y Lei (10179_CR45) 2019; 46
10179_CR5
O Zettinig (10179_CR110) 2015; 10
10179_CR1
10179_CR109
X Li (10179_CR49) 2016; 43
SS Mahdavi (10179_CR54) 2011; 15
10179_CR91
10179_CR92
S Ghose (10179_CR22) 2012; 7
10179_CR11
P Yan (10179_CR98) 2010; 57
10179_CR15
10179_CR14
F Sahba (10179_CR71) 2005; 4
DG Shen (10179_CR80) 2003; 22
RY Wu (10179_CR96) 2000; 19
SG Kim (10179_CR40) 2013; 9
A Sarti (10179_CR75) 2005; 52
V Jaouen (10179_CR33) 2019; 66
A Ghanei (10179_CR19) 2001; 28
JA Noble (10179_CR61) 2006; 25
YJ Liu (10179_CR52) 1997; 35
S Ghose (10179_CR24) 2012; 108
K Arora (10179_CR4) 2018
10179_CR20
10179_CR26
10179_CR27
10179_CR17
PF Wu (10179_CR95) 2013; 8
10179_CR18
TF Cootes (10179_CR12) 1998; 23
S Osher (10179_CR65) 1988; 79
References_xml – reference: SartiACorsiCMazziniELambertiCMaximum likelihood segmentation of ultrasound images with Rayleigh distributionIEEE Trans Ultrason Ferr200552694796010.1109/CIC.2004.1442939
– reference: ZhuYWilliamsSZwiggelaarRComputer technology in detection and staging of prostate carcinoma: a review MedImage Anal200610217819910.1016/j.media.2005.06.003
– reference: ZhanYQShenDGDeformable segmentation of 3-D ultrasound prostate images using statistical texture matching methodIEEE Trans Med Imaging200625325627210.1109/TMI.2005.862744
– reference: GhoseSOliverAMartíRLladóXFreixenetJMitraJVilanovaJCComet-BatlleJMeriaudeauFStatistical shape and texture model of quadrature phase information for prostate segmentationInt J CARS20127435510.1007/s11548-011-0616-y
– reference: Sabourin GR, Albu AB, Laurendeau D, Beaulieu L (2008) Automatic contour retrieval in annotated TRUS prostate images. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Paris, France, May 14–17, 2008. pp 85–88. https://doi.org/10.1109/ISBI.2008.4540938
– reference: Shao F, Ling KV, Ng WS (2002). 3D prostate surface detection from ultrasound images based on level set method. In: Proceedings of the Medical Image Computing & Computer-assisted Intervention-Miccai, International Conference, Tokyo, Japan, 2002, pp 389-396
– reference: AroraKAggarwalAKAnwarMIApproaches for image database retrieval based on color, texture, and shape featuresHandbook of research on advanced concepts in real-time image and video processing2018HersheyIGI Global285010.4018/978-1-5225-2848-7.ch002
– reference: BridalSLCorreasJ-MSaiedALaugierPMilestones on the road to higher resolution, quantitative, and functional ultrasonic imagingProc IEEE200391101543156110.1109/JPROC.2003.817879
– reference: Layek K, Basak B, Samanta S, Maity SP, Barui A (2019) Segmentation of prostate sonoelastography images using quantitative elasticity measures. In: Proceedings of the 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kanpur, India, July 6–8, 2019, pp 1–6. https://doi.org/10.1109/ICCCNT45670.2019.8944847
– reference: WaineMRossaCSlobodaRUsmaniNTavakoliM3D needle shape estimation in TRUS-guided prostate brachytherapy using 2D ultrasound imagesIEEE J Biomed Health20152061621163110.1109/JBHI.2015.2477829
– reference: PrabhakarSKLeeSWTransformation based tri-level feature selection approach using wavelets and swarm computing for prostate cancer classificationIEEE Access2020812746212747610.1109/ACCESS.2020.3006197
– reference: SahbaFTizhooshHRSalamaMMA coarse-to-fine approach to prostate boundary segmentation in ultrasound imagesBiomed Eng Online200545811310.1186/1475-925X-4-58
– reference: El-dahshan E, Redi A, Hassanien AE, Xiao K (2007) Accurate detection of prostate boundary in ultrasound images using biologically-inspired spiking neural network. In: Proceedings of the 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen, China, November 28-December 1, 2007, pp 308–311. https://doi.org/10.1109/ISPACS.2007.4445885
– reference: ZettinigOShahAHennerspergerCEiberMNavabNMultimodal image-guided prostate fusion biopsy based on automatic deformable registrationInt J CARS201510121997200710.1007/s11548-015-1233-y
– reference: AkbariHFeiB3D ultrasound image segmentation using wavelet support vector machinesMed Phys20123962972298410.1118/1.4709607
– reference: MahdaviSSMoradiMMorrisWJGoldenbergSLSalcudeanSEFusion of ultrasound B-mode and vibro-elastography images for automatic 3-D segmentation of the prostateIEEE Trans Med Imaging201231112073208210.1109/TMI.2012.2209204
– reference: PathakSDHaynorDRKimYEdge-guided boundary delineation in prostate ultrasound imagesIEEE Trans Med Imaging200019121211121910.1109/42.897813
– reference: Silva GLFD, Franca JVF, Diniz PS, Silva AC, Cavalcanti EAA (2020) Automatic prostate segmentation on 3D MRI scans using convolutional neural networks with residual connections and superpixels. In: Proceedings of the International Conference on Systems, Signals and Image Processing, Niteroi, Brazil, July 1–7, 2020, pp 51–56. https://doi.org/10.1109/IWSSIP48289.2020.9145218
– reference: Cosío FA, Acostab HG, Conde E (2015) Improved edge detection for object segmentation in ultrasound images using Active Shape Models. In: Proceedings of the 10th International Symposium on Medical Information Processing and Analysis. Cartagena de Indias, Colombia, January 28, 2015. Proc. SPIE, 9287, pp 9287141–6. https://doi.org/10.1117/12.2070559
– reference: WangYCardinalHNDowneyDBFensterASemiautomatic three-dimensional segmentation of the prostate using two-dimensional ultrasound imagesMed Phys200330588789710.1006/jcat.1999.2746
– reference: HuynenALGiesenRJBRosetteJJMCHAarninkRGDebruyneFMJWijkstraHAnalysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert systemUltrasound Med Biol199420111010.1016/0301-5629(94)90011-6
– reference: KarimiDNirGFazliLBlackPCGoldenbergLSalcudeanSEDeep learning-based gleason grading of prostate cancer from histopathology images—role of multiscale decision aggregation and data augmentationIEEE J Biomed Health20202451413142610.1109/JBHI.2019.2944643
– reference: SinghRPGuptaSAcharyaURSegmentation of prostate contours for automated diagnosis using ultrasound images: A surveyJ Comput Sci-Neth20172122323110.1016/j.jocs.2017.04.016
– reference: AngelovaDMihaylovaLContour segmentation in 2D ultrasound medical images with particle filteringMach Vision Appl201122551561
– reference: WuPFLiuYGLiYZShiYTTRUS image segmentation with non-parametric kernel density estimation shape priorBiomed Signal Proces20138676477110.1016/j.bspc.2013.07.002
– reference: CootesTFHillATaylorCJHaslamJThe use of active shape models for locating structures in medical imagesImage Vis Comput199312635536510.1007/BFb0013779
– reference: Vafaie R, Alirezaie J, Babyn P (2012) Fully automated model-based prostate boundary segmentation using Markov random field in ultrasound images. In: Proceedings of the 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA), Fremantle, WA, December 3–5, 2012. pp 1–8. https://doi.org/10.1109/DICTA.2012.6411706
– reference: TutarIBPathakSDGongLChoPSWallnerKKimYSemiautomatic 3-D prostate segmentation from trus images using spherical harmonicsIEEE t Med Imaging200625121645165410.1109/TMI.2006.884630
– reference: Ghose S, Mitra J, Oliver A, Marti R, Mériaudeau F (2012a) Spectral clustering of shape and probability prior models for automatic prostate segmentation. In: Proceedings of the 2012a Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, August 28 - September 1, 2012a, pp 2335–2338. https://doi.org/10.1109/EMBC.2012.6346431
– reference: HodgeACFensterADowneyDBLadakHMProstate boundary segmentation from ultrasound images using 2D active shape models: optimisation and extension to 3DComput Methods Programs Biomed2006842–39911310.1016/j.cmpb.2006.07.001
– reference: Li B, Patil AV, Hossack JA, Acton ST (2007) 3D segmentation of the prostate via poisson inverse gradient initialization. In: Proceedings of the IEEE International Conference on Image Processing. San Antonio, TX, USA, September 16–October 19, 2007, pp 25–28. https://doi.org/10.1109/ICIP.2007.4379756
– reference: Sahba F, Tizhoosh HR, Salama MMA (2005b) Segmentation of prostate boundaries using regional contrast enhancement. In: Proceedings of the IEEE International Conference on Image Processing 2005b, Genova, Italy, September 14–14, 2005b. pp 1266–1269. https://doi.org/10.1109/ICIP.2005.1530293
– reference: Zaim A, Yi T, Keck R (2007) Feature-based classification of prostate ultrasound images using Multiwavelet and Kernel Support Vector Machines. In: Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando, FL, USA, August 12–17, 2007, pp 278–281. https://doi.org/10.1109/IJCNN.2007.4370968
– reference: Grand challenge (2012) Prostate MR image segmentation Oct. Available: http://promise12.grand-challenge.org/
– reference: Kachouie NN, Fieguth P (2007) A medical texture local binary pattern for TRUS prostate segmentation. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, August 22–26, 2007, pp 5605–5608. https://doi.org/10.1109/IEMBS.2007.4353617
– reference: ZaimAAutomatic segmentation of the prostate from ultrasound data using feature-based self organizing mapImage Anal200510.1007/11499145_127
– reference: Mahdavi S, Salcudean SE (2008) 3D prostate segmentation based on ellipsoid fitting, image tapering and warping. In: Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, August 20–25, 2008, pp 2988–2991. https://doi.org/10.1109/IEMBS.2008.4649831
– reference: MorrisWJKeyesMSpadingerIKwanWLiuMMckenzieMPaiHPicklesTTyldesleySPopulation-based 10-year oncologic outcomes after low-dose-rate brachytherapy for low-risk and intermediate-risk prostate cancerCancer201311981537154610.1002/cncr.27911
– reference: NouranianSMahdaviSSSpadingerIMorrisWJSalcudeanSEAbolmaesumiPA multi-atlas-based segmentation framework for prostate brachytherapyIEEE Trans Med Imaging201534495096110.1109/TMI.2014.2371823
– reference: GongLPathakSDHaynorDRChoPSKimYParametric shape modeling using deformable superellipses for prostate segmentationIEEE Trans Med Imaging200423334034910.1109/TMI.2004.824237
– reference: BetrouniNVermandelMPasquierDMaoucheSRousseauJSegmentation of abdominal ultrasound images of the prostate using a priori information and an adapted noise filterComput Med Imaging Graph2005291435110.1016/j.compmedimag.2004.07.007
– reference: YanPXuSTurkbeyBKrueckerJDiscrete deformable model guided by partial active shape model for TRUS image segmentationIEEE Trans Biomed Eng20105751158116610.1109/TBME.2009.2037491
– reference: QiuWYuanJUkwattaESunYRajchlMFensterAProstate segmentation: an Efficient convex optimization approach with axial symmetry using 3-D TRUS and MR imagesIEEE Trans Med Imaging201433494796010.1109/TMI.2014.2300694
– reference: MahdaviSSChngNSpadingerIMorrisWJSalcudeanSESemi-automatic segmentation for prostate interventionsBrachytherapy201115222623710.1016/j.media.2010.10.002
– reference: CootesTFEdwardsGJTaylorCJActive appearance modelsIEEE Trans Pattern Anal Mach Intell199823668168510.1007/BFb0054760
– reference: Duran-LopezLDominguez-MoralesJPConde-MartinAFVicente-DiazSLinares-BarrancoAPROMETEO: A CNN-based computer-aided diagnosis system for WSI prostate cancer detectionIEEE Access2020812861312862810.1109/ACCESS.2020.3008868
– reference: Kachouie NN, Fieguth P, Rahnamayan S (2006) An elliptical level set method for automatic TRUS prostate image segmentation. In: Proceedings of the 2006 IEEE International Symposium on Signal Processing and Information Technology, Vancouver, BC, Canada, August 27–30, 2006, pp 191–196. https://doi.org/10.1109/ISSPIT.2006.270795
– reference: Abolmaesumi R, Sirouspour MR (2004) Segmentation of prostate contours from ultrasound images. In: Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, Canada, May 17–21, 2004. pp 517–520. https://doi.org/10.1109/ICASSP.2004.1326595
– reference: ChanTFVeseLAActive contours without edgesIEEE Trans Image Process200110226627710.1109/83.9022911039.68779
– reference: JingYDuncanJS3D image segmentation of deformable objects with joint shape-intensity prior models using level setsMed Image Anal20048328529410.1016/j.media.2004.06.008
– reference: BiHJiangYBTangHYangGYShuHZDillensegerJLFast and accurate segmentation method of active shape model with rayleigh mixture model clustering for prostate ultrasound imagesComput Meth Prog Bio201918410509710509710.1016/j.cmpb.2019.105097
– reference: WongAScharcanskiJFisher-Tippett region-merging approach to transrectal ultrasound prostate lesion segmentationIEEE Trans Inf Technol Biomed201115690090710.1109/TITB.2011.2163724
– reference: LiXLiHA visual analysis of research on information security risk by using CiteSpaceIEEE Access20186632436325710.1109/ACCESS.2018.2873696
– reference: LeiYWangTHRoperJJaniABPatelSACurranWJPatelPLiuTYangXFMale Pelvic multi-organ segmentation on transrectal ultrasound using Anchor free mask CNNMed Phys202110.1002/mp.14895
– reference: GhoseSOliverAMartíRLladóXVilanovaJCFreixenetJMitraJSidibéDMeriaudeauFA survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography imagesComput Meth Prog Bio2012108126228710.1016/j.cmpb.2012.04.006
– reference: LiXLiCFedorovAKapurTYangXSegmentation of prostate from ultrasound images using level sets on active band and intensity variation across edgesMed Phys20164363090310310.1118/1.4950721
– reference: Chang C, Wu Y, Tsai Y (2009) Integrating the validation incremental neural network and radial-basis function neural network for segmenting prostate in ultrasound images. In: Proceedings of the 2009 Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, August 12–14, 2009, pp 198–203. https://doi.org/10.1109/HIS.2009.47
– reference: Badiei S, Salcudean SE, Varah J, Morris WJ (2006) Prostate segmentation in 2D ultrasound images using image warping and ellipse fitting. In: Proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, October 2006, pp 17–24. https://doi.org/10.1007/11866763_3
– reference: YuYChenYChiuBFully automatic prostate segmentation from transrectal ultrasound images based on radial bas-relief initialization and slice-based propagationComput Biol Med2016741749010.1016/j.compbiomed.2016.05.002
– reference: YangXFeiB3D prostate segmentation of ultrasound images combining longitudinal medical imagingProc SPIE Int Soc Opt Eng201210.1117/12.912188
– reference: OjalaTPietikainenMMaenpaaTMultiresolution gray-scale and rotation invariant texture classification with local binary patternsIEEE Trans Pattern Anal200224797198710.1109/TPAMI.2002.10176230977.68853
– reference: YuMDongYHuYAnalysis of research hotspots and trend of CiteSpace-based blended learningChina Med Educ Technol2017316644650
– reference: Ding M, Galloway RL, Gyacskov I, Yuan X, Drangova M, Fenster A (2004) Slice-based prostate segmentation in 3D US images based on continuity constraint. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2004. pp 662–665. https://doi.org/10.1109/IEMBS.2005.1616500
– reference: KaurAChauhanAPSAggarwalAKAn automated slice sorting technique for multi-slice computed tomography liver cancer images using convolutional networkExpert Syst Appl20211863010.1016/j.eswa.2021.115686
– reference: Yang X, Rossi PJ, Jani AB, Hui M Tian L (2016) 3d transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework. In: Proceedings of the Proceedings of Spie the International Society for Optical Engineering, Proc. SPIE 9784, pp 97842F1–7. https://doi.org/10.1117/12.2216396
– reference: Carriere J, Rossa C, Sloboda R, Usmani N, Tavakoli M (2016) Real-time needle shape prediction in soft-tissue based on image segmentation and particle filtering. In: Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Canada, July 12–15, 2016, pp 1204–1209. https://doi.org/10.1109/AIM.2016.7576934
– reference: LiXLiCMLiuHRYangXPA modifified level set algorithm based on point distance shape constraint for lesion and organ segmentationPhys Med20195712313610.1016/j.ejmp.2018.12.03
– reference: Zaim A (2008a) An edge-based approach for segmentation of prostate ultrasonic images using phase symmetry. In: Proceedings of the 2008a 3rd International Symposium on Communications, Control and Signal Processing, St, Julians, March 12–14, 2008a. pp 10–13. https://doi.org/10.1109/ISCCSP.2008.4537183
– reference: GhaneiASoltanian-ZadehHRatkewiczAYinFFA three-dimensional deformable model for segmentation of human prostate from ultrasound imagesMed Phys200128102147215310.1118/1.1388221
– reference: KwohCKTeoMYNgWSTanSNJonesLMOutlining the prostate boundary using the harmonics methodMed Biol Eng Comput199836676877110.1007/BF02518882
– reference: XuRSInformation tracking approach to segmentation of ultrasound imagery of the prostateIEEE Trans Ultrason Ferr20105781748176110.1109/TUFFC.2010.1613
– reference: Sedelaar, J. P. M., Rosette, J. J. M. C. H., Beerlage, H. P., Wijkstra, H., Debruyne, F. M. J., Aarnink, R. G., 1999. Transrectal ultrasound imaging of the prostate: review and perspectives of recent developments. Prostate Cancer P. D. 2 (5/6), 241–252. doi:https://doi.org/10.1038/sj.pcan.4500326.
– reference: Zhang Y, Qian W, Sankar R (2005) Prostate boundary detection in transrectal ultrasound images. In: Proceedings of the IEEE International Conference on Acoustics, Speech, & Signal Processing, Philadelphia, PA, USA, March 23–23, 2005. pp 617–620. https://doi.org/10.1109/ICASSP.2005.1416379.
– reference: WangWRPanBYanJWFuYLLiuYJMRI and TRUS prostate image segmentation based on improved level set for robotic prostate biopsy navigationInt J Med Robot Comput Assist Surg202117111410.1002/rcs.2190
– reference: Song J, Shi Y (2015) Rough location of the prostate TRUS images. In: Proceedings of the 2015 IEEE International Conference on Information and Automation, Lijiang, China, August 8–10, 2015, pp 881–885. https://doi.org/10.1109/ICInfA.2015.7279410
– reference: Huang XF, Chen M, Liu PZ (2019) Recognition of transrectal ultrasound prostate image based on HOG-LBP. In: Proceedings of the IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification, Xiamen, China, October 25–27, 2019, pp 183–187. https://doi.org/10.1109/ICASID.2019.8925236
– reference: GhoseSOliverAMartiRLladoXMeriaudeauFProstate segmentation with local binary patterns guided active appearance modelsProc SPIE20117962414014410.1117/12.877955
– reference: ShaoFLingKVNgWSWuRYProstate boundary detection from ultrasonographic imagesJ Ultras Med200322660562310.7863/jum.2003.22.6.605
– reference: LiuYJNgWSTeoMYLimHCComputerised prostate boundary estimation of ultrasound images using radial bas-relief methodMed Biol Eng Comput199735544545410.1007/BF02525522
– reference: NobleJABoukerrouiDUltrasound image segmentation: a surveyIEEE Trans Med Imaging2006258987101010.1109/TMI.2006.877092
– reference: Mohamed SS, Youssef AM, El-Saadany EF, Salama MMA (2006) Prostate tissue characterization using TRUS image spectral features. In: Proceedings of the International Conference Image Analysis & Recognition, Berlin, Heidelberg, 2006, pp 589–601. https://doi.org/10.1007/11867661_5
– reference: Georgieva V, Mihaylova A, Petrov P (2018) Prostate segmentation in ultrasound images using hybrid method. In: Proceedings of the International Conference on High Technology for Sustainable Development, Sofia, Bulgaria, June 11–14, 2018, pp 1–4. https://doi.org/10.1109/HiTech.2018.8566503
– reference: LadakHMMaoFWangYQDowneyDBSteinmanDAFensterAProstate boundary segmentation from 2D ultrasound imagesMed Phys20002781777178810.1118/1.1286722
– reference: Medina R, Bravo A, Windyga P, Toro J, Yan P, Onik G (2005) A 2-D active appearance model for prostate segmentation in ultrasound images. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, January 17–18, 2005, pp 3363–3366. https://doi.org/10.1109/IEMBS.2005.1617198
– reference: Saroul L, Bernard O, Vray D, Friboulet D (2008) Prostate segmentation in echographic images: a variational approach using deformable super-ellipse and rayleigh distribution. In: Proceedings of the 2008 5th IEEE International Symposium on Biomedical Imaging: from Nano to Macro, Villeurbanne, France, May 14–17, 2008, pp 129–132. https://doi.org/10.1109/ISBI.2008.4540949
– reference: LeiYTianSBHeXXWangTHWangBPatelPJaniABMaoHCurranWJLiuTYangXFUltrasound prostate segmentation based on multidirectional deeply supervised V-NetMed Phys20194673194320610.1002/mp.13577
– reference: KassMWitkinATerzopoulosDSnakes: active contour modelsInt J Comput Vis19881432133110.1007/BF001335700646.68105
– reference: WuPLiuYLiYLiuBRobust Prostate Segmentation Using Intrinsic Properties of TRUS ImagesIEEE Trans Med Imaging20153461321133510.1109/TMI.2015.2388699
– reference: Hu N, Downey DB, Fenster A, Ladak HM (2002) Prostate surface segmentation from 3D ultrasound images. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, Washington, DC, USA, July 7–10, 2002, pp 613–616. https://doi.org/10.1109/ISBI.2002.1029332
– reference: KimSGSeoYGA TRUS prostate segmentation using Gabor texture features and snake-like contourJ Inf Process Syst20139119319810.3745/JIPS.2013.9.1.103
– reference: SahbaFTizhooshHRSalamaMMAApplication of reinforcement learning for segmentation of transrectal ultrasound imagesBMC Med Imaging200888110
– reference: ShaoYWangJWodlingerBSalcudeanSEImproving prostate cancer (PCa) classification performance by using three-player minimax game to reduce data source heterogeneityIEEE Trans Med Imaging2020391011110.1109/TMI.2020.2988198
– reference: KarimiDSalcudeanSEReducing the Hausdorff distance in medical image segmentation with convolutional neural networksIEEE Trans Med Imaging202039249951310.1109/TMI.2019.2930068
– reference: JaouenVBertJMountrisKABoussionNVisvikisDProstate volume segmentation in TRUS using hybrid edge-bhattacharyya active surfacesIEEE t Bio-Med Eng201966492093310.1109/TBME.2018.2865428
– reference: Sloun RJG, Wildeboer RR, Postema AW, Mannaerts CK, Gayer M, Wijkstra H, Mischi M (2018) Zonal Segmentation in Transrectal Ultrasound Images of the Prostate Through Deep Learning. In: Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, October 22–25, 2018, pp 1–4. https://doi.org/10.1109/ULTSYM.2018.8580157
– reference: OsherSSethianJAFronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulationsJ Comput Phys1988791124996586010.1016/0021-9991(88)90002-20659.65132
– reference: Yu X, Lou B, Shi B, Winkel D, Szolar D (2020) False positive reduction using multiscale contextual features for prostate cancer detection in multi-parametric MRI scans. In: Proceedings of the IEEE 17th International Symposium on Biomedical Imaging, Iowa City, USA, April 3–7, 2020, pp 1355–1359. https://doi.org/10.1109/ISBI45749.2020.9098338
– reference: KnollCAlcanizMGrauVMonserratCJuanMCOutlining of the prostate using snakes with shape restrictions based on the wavelet transform (Doctoral Thesis: Dissertation)Pattern Recogn1999321767178110.1016/S0031-3203(98)00177-0
– reference: Zaim A (2008b) FSM: A new finite sphere method for modeling 3D geometry of the prostate. In: Proceedings of the 2008b 15th IEEE International Conference on Image Processing, San Diego, CA, USA, October 12–15, 2008b, pp 2956–2959. https://doi.org/10.1109/ICIP.2008.4712415
– reference: PraterJSRichardWDSegmenting ultrasound images of the prostate using neural networksUltrason Imaging199214215918510.1016/0161-7346(92)90005-G
– reference: Wang Y, Dou H, Hu X, Zhu L, Zhu L, Yang X, Xu M, Qin J, Heng PA, Wang T (2019) Deep attentive features for prostate segmentation in 3D transrectal ultrasound. In: Proceedings of the IEEE Transactions on Medical Imaging 38 (12), pp 2768–2778. https://doi.org/10.1109/TMI.2019.2913184
– reference: YanPXuSTurkbeyBKrueckerJAdaptively learning local shape statistics for prostate segmentation in ultrasoundIEEE Trans Biomed Eng201158363364110.1109/TBME.2010.2094195
– reference: MICCAI (2009) 2009 Prostate segmentation challenge MICCAI. http://wiki.namic.org/Wiki/index.php (accessed 1 Apr 11)
– reference: WuRYLingKVNgWSAutomatic prostate boundary recognition in sonographic images using feature model and genetic algorithmJ Am Inst Ultrasound Med2000191177178210.1067/mnc.2000.109970
– reference: Manavalan R, Thangavel K (2011) TRUS image segmentation using morphological operators and DBSCAN clustering. In: Proceedings of the 2011 World Congress on Information and Communication Technologies, Mumbai, India, December 11–14, 2011, pp 898–903. https://doi.org/10.1109/WICT.2011.6141367
– reference: GhoseSOliverAMitraJMartíRMeriaudeauFSupervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound imagesMed Image Anal201317658760010.1016/j.media.2013.04.001
– reference: ShenDGZhanYQDavatzikosCSegmentation of prostate boundaries from ultrasound images using statistical shape modelIEEE Trans Med Imaging200322453955110.1109/TMI.2003.809057
– reference: LiCMKaoCYGoreJCDingZHMinimization of region-scalable fitting energy for image segmentationIEEE Trans Image Process2008171019401949251727710.1109/TIP.2008.20023041371.94225
– reference: SiegelRLMillerKDFuchsHEJemalACancer Statistics, 2021CA-A Cancer J Clin202170173310.3322/caac.21654
– reference: NouranianSRamezaniMSpadingerIMorrisJWSalcudeanESLearning-based multi-label segmentation of transrectal ultrasound images for prostate brachytherapyIEEE Trans Med Imaging201635392193110.1109/TMI.2015.2502540
– reference: Wildeboer RR, Mannaerts CK, Sloun RJG, Wijkstra H, Mischi M (2019) Machine learning for multiparametric ultrasound classification of prostate cancer using B-mode, Shear-wave elastography, and contrast-enhanced ultrasound radiomics. In: Proceedings of the IEEE International Ultrasonics Symposium, Glasgow, Scotland, October6–9, 2019. pp 1902–1905. https://doi.org/10.1109/ULTSYM.2019.8925823
– reference: Houshmand K, Tizhoosh HR (2008) Increasing segmentation accuracy in ultrasound imaging using filtering and snakes. In: Proceedings of the Conference on Electrical & Computer Engineering. Niagara Falls, ON, Canada, May 4–7, 2008. pp 1333–1336. https://doi.org/10.1109/CCECE.2008.4564756
– reference: Yu Y, Cheng J, Li J, Chen W, Chiu B (2014) Automatic prostate segmentation from transrectal ultrasound images. In: Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, October 22–24, 2014. pp 117–120. https://doi.org/10.1109/BioCAS.2014.6981659
– volume: 70
  start-page: 7
  issue: 1
  year: 2021
  ident: 10179_CR81
  publication-title: CA-A Cancer J Clin
  doi: 10.3322/caac.21654
– volume: 25
  start-page: 256
  issue: 3
  year: 2006
  ident: 10179_CR111
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.862744
– volume: 34
  start-page: 950
  issue: 4
  year: 2015
  ident: 10179_CR62
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2371823
– ident: 10179_CR15
  doi: 10.1109/IEMBS.2005.1616500
– ident: 10179_CR87
  doi: 10.1109/DICTA.2012.6411706
– ident: 10179_CR30
  doi: 10.1109/ICASID.2019.8925236
– year: 2012
  ident: 10179_CR100
  publication-title: Proc SPIE Int Soc Opt Eng
  doi: 10.1117/12.912188
– volume: 10
  start-page: 1997
  issue: 12
  year: 2015
  ident: 10179_CR110
  publication-title: Int J CARS
  doi: 10.1007/s11548-015-1233-y
– volume: 30
  start-page: 887
  issue: 5
  year: 2003
  ident: 10179_CR90
  publication-title: Med Phys
  doi: 10.1006/jcat.1999.2746
– volume: 21
  start-page: 223
  year: 2017
  ident: 10179_CR83
  publication-title: J Comput Sci-Neth
  doi: 10.1016/j.jocs.2017.04.016
– volume: 27
  start-page: 1777
  issue: 8
  year: 2000
  ident: 10179_CR43
  publication-title: Med Phys
  doi: 10.1118/1.1286722
– volume: 52
  start-page: 947
  issue: 6
  year: 2005
  ident: 10179_CR75
  publication-title: IEEE Trans Ultrason Ferr
  doi: 10.1109/CIC.2004.1442939
– volume: 39
  start-page: 499
  issue: 2
  year: 2020
  ident: 10179_CR37
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2930068
– volume: 10
  start-page: 178
  issue: 2
  year: 2006
  ident: 10179_CR113
  publication-title: Image Anal
  doi: 10.1016/j.media.2005.06.003
– volume: 46
  start-page: 3194
  issue: 7
  year: 2019
  ident: 10179_CR45
  publication-title: Med Phys
  doi: 10.1002/mp.13577
– volume: 20
  start-page: 1621
  issue: 6
  year: 2015
  ident: 10179_CR88
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2015.2477829
– ident: 10179_CR11
  doi: 10.1109/HIS.2009.47
– year: 2005
  ident: 10179_CR106
  publication-title: Image Anal
  doi: 10.1007/11499145_127
– ident: 10179_CR108
  doi: 10.1109/ICIP.2008.4712415
– ident: 10179_CR5
  doi: 10.1007/11866763_3
– ident: 10179_CR59
  doi: 10.1007/11867661_5
– ident: 10179_CR109
  doi: 10.1109/IJCNN.2007.4370968
– volume: 25
  start-page: 1645
  issue: 12
  year: 2006
  ident: 10179_CR86
  publication-title: IEEE t Med Imaging
  doi: 10.1109/TMI.2006.884630
– volume: 9
  start-page: 193
  issue: 1
  year: 2013
  ident: 10179_CR40
  publication-title: J Inf Process Syst
  doi: 10.3745/JIPS.2013.9.1.103
– volume: 8
  start-page: 285
  issue: 3
  year: 2004
  ident: 10179_CR32
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.06.008
– volume: 8
  start-page: 1
  issue: 8
  year: 2008
  ident: 10179_CR73
  publication-title: BMC Med Imaging
– volume: 8
  start-page: 127462
  year: 2020
  ident: 10179_CR67
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006197
– volume: 22
  start-page: 539
  issue: 4
  year: 2003
  ident: 10179_CR80
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2003.809057
– volume: 8
  start-page: 128613
  year: 2020
  ident: 10179_CR16
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008868
– ident: 10179_CR76
  doi: 10.1038/sj.pcan.4500326
– ident: 10179_CR44
  doi: 10.1109/ICCCNT45670.2019.8944847
– volume: 184
  start-page: 105097
  year: 2019
  ident: 10179_CR7
  publication-title: Comput Meth Prog Bio
  doi: 10.1016/j.cmpb.2019.105097
– volume: 22
  start-page: 605
  issue: 6
  year: 2003
  ident: 10179_CR78
  publication-title: J Ultras Med
  doi: 10.7863/jum.2003.22.6.605
– volume: 23
  start-page: 340
  issue: 3
  year: 2004
  ident: 10179_CR25
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.824237
– volume: 35
  start-page: 445
  issue: 5
  year: 1997
  ident: 10179_CR52
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02525522
– volume: 57
  start-page: 1158
  issue: 5
  year: 2010
  ident: 10179_CR98
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2037491
– volume: 14
  start-page: 159
  issue: 2
  year: 1992
  ident: 10179_CR68
  publication-title: Ultrason Imaging
  doi: 10.1016/0161-7346(92)90005-G
– start-page: 28
  volume-title: Handbook of research on advanced concepts in real-time image and video processing
  year: 2018
  ident: 10179_CR4
  doi: 10.4018/978-1-5225-2848-7.ch002
– volume: 20
  start-page: 1
  issue: 1
  year: 1994
  ident: 10179_CR29
  publication-title: Ultrasound Med Biol
  doi: 10.1016/0301-5629(94)90011-6
– ident: 10179_CR1
  doi: 10.1109/ICASSP.2004.1326595
– volume: 31
  start-page: 2073
  issue: 11
  year: 2012
  ident: 10179_CR55
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2012.2209204
– year: 2021
  ident: 10179_CR46
  publication-title: Med Phys
  doi: 10.1002/mp.14895
– volume: 6
  start-page: 63243
  year: 2018
  ident: 10179_CR51
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873696
– ident: 10179_CR47
  doi: 10.1109/ICIP.2007.4379756
– ident: 10179_CR57
  doi: 10.1109/IEMBS.2005.1617198
– ident: 10179_CR9
  doi: 10.1109/AIM.2016.7576934
– volume: 19
  start-page: 771
  issue: 11
  year: 2000
  ident: 10179_CR96
  publication-title: J Am Inst Ultrasound Med
  doi: 10.1067/mnc.2000.109970
– ident: 10179_CR77
  doi: 10.1007/3-540-45787-9_49
– ident: 10179_CR27
  doi: 10.1109/CCECE.2008.4564756
– volume: 15
  start-page: 226
  issue: 2
  year: 2011
  ident: 10179_CR54
  publication-title: Brachytherapy
  doi: 10.1016/j.media.2010.10.002
– ident: 10179_CR105
  doi: 10.1109/ISBI45749.2020.9098338
– volume: 23
  start-page: 681
  issue: 6
  year: 1998
  ident: 10179_CR12
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1007/BFb0054760
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10179_CR65
  publication-title: J Comput Phys
  doi: 10.1016/0021-9991(88)90002-2
– ident: 10179_CR74
  doi: 10.1109/ISBI.2008.4540949
– ident: 10179_CR53
  doi: 10.1109/IEMBS.2008.4649831
– ident: 10179_CR101
  doi: 10.1117/12.2216396
– volume: 17
  start-page: 1
  issue: 1
  year: 2021
  ident: 10179_CR89
  publication-title: Int J Med Robot Comput Assist Surg
  doi: 10.1002/rcs.2190
– ident: 10179_CR20
  doi: 10.1109/EMBC.2012.6346431
– ident: 10179_CR26
– volume: 74
  start-page: 74
  issue: 1
  year: 2016
  ident: 10179_CR103
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.05.002
– volume: 43
  start-page: 3090
  issue: 6
  year: 2016
  ident: 10179_CR49
  publication-title: Med Phys
  doi: 10.1118/1.4950721
– volume: 28
  start-page: 2147
  issue: 10
  year: 2001
  ident: 10179_CR19
  publication-title: Med Phys
  doi: 10.1118/1.1388221
– ident: 10179_CR84
  doi: 10.1109/ULTSYM.2018.8580157
– ident: 10179_CR112
  doi: 10.1109/ICASSP.2005.1416379
– volume: 39
  start-page: 1
  issue: 10
  year: 2020
  ident: 10179_CR79
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2020.2988198
– volume: 186
  issue: 30
  year: 2021
  ident: 10179_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115686
– volume: 1
  start-page: 321
  issue: 4
  year: 1988
  ident: 10179_CR38
  publication-title: Int J Comput Vis
  doi: 10.1007/BF00133570
– volume: 84
  start-page: 99
  issue: 2–3
  year: 2006
  ident: 10179_CR31
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2006.07.001
– volume: 15
  start-page: 900
  issue: 6
  year: 2011
  ident: 10179_CR93
  publication-title: IEEE Trans Inf Technol Biomed
  doi: 10.1109/TITB.2011.2163724
– volume: 108
  start-page: 262
  issue: 1
  year: 2012
  ident: 10179_CR24
  publication-title: Comput Meth Prog Bio
  doi: 10.1016/j.cmpb.2012.04.006
– volume: 58
  start-page: 633
  issue: 3
  year: 2011
  ident: 10179_CR99
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2094195
– volume: 57
  start-page: 1748
  issue: 8
  year: 2010
  ident: 10179_CR97
  publication-title: IEEE Trans Ultrason Ferr
  doi: 10.1109/TUFFC.2010.1613
– ident: 10179_CR85
  doi: 10.1109/ICInfA.2015.7279410
– volume: 35
  start-page: 921
  issue: 3
  year: 2016
  ident: 10179_CR63
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2502540
– volume: 33
  start-page: 947
  issue: 4
  year: 2014
  ident: 10179_CR69
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2014.2300694
– volume: 91
  start-page: 1543
  issue: 10
  year: 2003
  ident: 10179_CR8
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2003.817879
– volume: 32
  start-page: 1767
  year: 1999
  ident: 10179_CR41
  publication-title: Pattern Recogn
  doi: 10.1016/S0031-3203(98)00177-0
– ident: 10179_CR82
  doi: 10.1109/IWSSIP48289.2020.9145218
– volume: 17
  start-page: 1940
  issue: 10
  year: 2008
  ident: 10179_CR48
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2008.2002304
– volume: 57
  start-page: 123
  year: 2019
  ident: 10179_CR50
  publication-title: Phys Med
  doi: 10.1016/j.ejmp.2018.12.03
– volume: 36
  start-page: 768
  issue: 6
  year: 1998
  ident: 10179_CR42
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02518882
– volume: 29
  start-page: 43
  issue: 1
  year: 2005
  ident: 10179_CR6
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2004.07.007
– ident: 10179_CR14
  doi: 10.1117/12.2070559
– volume: 34
  start-page: 1321
  issue: 6
  year: 2015
  ident: 10179_CR94
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2015.2388699
– ident: 10179_CR58
– ident: 10179_CR34
  doi: 10.1109/IEMBS.2007.4353617
– volume: 4
  start-page: 1
  issue: 58
  year: 2005
  ident: 10179_CR71
  publication-title: Biomed Eng Online
  doi: 10.1186/1475-925X-4-58
– ident: 10179_CR70
  doi: 10.1109/ISBI.2008.4540938
– ident: 10179_CR92
  doi: 10.1109/ULTSYM.2019.8925823
– ident: 10179_CR56
  doi: 10.1109/WICT.2011.6141367
– volume: 24
  start-page: 971
  issue: 7
  year: 2002
  ident: 10179_CR64
  publication-title: IEEE Trans Pattern Anal
  doi: 10.1109/TPAMI.2002.1017623
– volume: 12
  start-page: 355
  issue: 6
  year: 1993
  ident: 10179_CR13
  publication-title: Image Vis Comput
  doi: 10.1007/BFb0013779
– ident: 10179_CR17
  doi: 10.1109/ISPACS.2007.4445885
– ident: 10179_CR28
  doi: 10.1109/ISBI.2002.1029332
– volume: 10
  start-page: 266
  issue: 2
  year: 2001
  ident: 10179_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.902291
– volume: 31
  start-page: 644
  issue: 6
  year: 2017
  ident: 10179_CR104
  publication-title: China Med Educ Technol
– volume: 7
  start-page: 43
  year: 2012
  ident: 10179_CR22
  publication-title: Int J CARS
  doi: 10.1007/s11548-011-0616-y
– volume: 19
  start-page: 1211
  issue: 12
  year: 2000
  ident: 10179_CR66
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.897813
– volume: 22
  start-page: 551
  year: 2011
  ident: 10179_CR3
  publication-title: Mach Vision Appl
– volume: 119
  start-page: 1537
  issue: 8
  year: 2013
  ident: 10179_CR60
  publication-title: Cancer
  doi: 10.1002/cncr.27911
– volume: 8
  start-page: 764
  issue: 6
  year: 2013
  ident: 10179_CR95
  publication-title: Biomed Signal Proces
  doi: 10.1016/j.bspc.2013.07.002
– ident: 10179_CR18
  doi: 10.1109/HiTech.2018.8566503
– volume: 25
  start-page: 987
  issue: 8
  year: 2006
  ident: 10179_CR61
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2006.877092
– ident: 10179_CR72
  doi: 10.1109/ICIP.2005.1530293
– ident: 10179_CR91
  doi: 10.1109/TMI.2019.2913184
– volume: 7962
  start-page: 140
  issue: 4
  year: 2011
  ident: 10179_CR21
  publication-title: Proc SPIE
  doi: 10.1117/12.877955
– volume: 24
  start-page: 1413
  issue: 5
  year: 2020
  ident: 10179_CR36
  publication-title: IEEE J Biomed Health
  doi: 10.1109/JBHI.2019.2944643
– ident: 10179_CR102
  doi: 10.1109/BioCAS.2014.6981659
– volume: 66
  start-page: 920
  issue: 4
  year: 2019
  ident: 10179_CR33
  publication-title: IEEE t Bio-Med Eng
  doi: 10.1109/TBME.2018.2865428
– volume: 39
  start-page: 2972
  issue: 6
  year: 2012
  ident: 10179_CR2
  publication-title: Med Phys
  doi: 10.1118/1.4709607
– ident: 10179_CR107
  doi: 10.1109/ISCCSP.2008.4537183
– volume: 17
  start-page: 587
  issue: 6
  year: 2013
  ident: 10179_CR23
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2013.04.001
– ident: 10179_CR35
  doi: 10.1109/ISSPIT.2006.270795
SSID ssj0005243
Score 2.4147294
Snippet Nowadays, prostate cancer has surpassed lung cancer as the most common type of cancer, segmentation of prostate ultrasound images is a critical step in the...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 615
SubjectTerms Algorithms
Artificial Intelligence
Cancer
Care and treatment
Classification
Computer Science
Image processing
Image segmentation
Imagery
Lung cancer
Medical treatment
Physiology
Prostate
Prostate cancer
Segmentation
Systematic review
Ultrasonic imaging
Ultrasound imaging
SummonAdditionalLinks – databaseName: SpringerLINK Contemporary 1997-Present
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7x6IFLKY-qSynyAakHsJTEjp1wQwjUA0JIUMTNcuwEVtoH2mT7-zuTOGUX2kpwS-TJyLLn5XjmG4BDdNq6sInlGF0ILn0e8Tz1OS8iVWhVCu9aLL27S311ld3f59ehKKzus937K8nWUi8Uu0mVcMo-b8WIy1VYTwlths7oN3cLiR1drlyico4HijiUyvydx5I7emmUX92Otk7nYvN90_0EH0OQyU47qdiClXKyDZt9AwcW9HkH5jflwzgUH03YtGJPVAOC0Sebj5qZranlEhuO0eTUJwwjRdYNIiG9oNAxiwT03EGTsM5BkiQTUb3I3Y4eprNh8ziud-Hnxfnt2Q8e-jBwJ9Ok4S6LXSR9rCurEmeVr3SUFwSM5nzslU9TLaVXSlonoiq2WggvMi08GtO0SJT4DGuT6aT8AkwVrlJl5NIi81LYDDkrl5V56fDYZa0fQNxvh3EBpJx6ZYzMM7wyravBdTXtuho5gKM_3zx1EB3_pf5Ou2xIf5Gzs6EMAedHSFjmVAs8lVFcOoD9JUrUO7c83MuJCXpfm0QrtKEpEg3guJeL5-F_T2vvbeRfYYP63nf_gvZhrZnNy2_wwf1qhvXsoNWH32U_A74
  priority: 102
  providerName: Springer Nature
Title Segmentation of prostate ultrasound images: the state of the art and the future directions of segmentation algorithms
URI https://link.springer.com/article/10.1007/s10462-022-10179-4
https://www.proquest.com/docview/2760705732
Volume 56
WOSCitedRecordID wos000782332700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer
  customDbUrl:
  eissn: 1573-7462
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005243
  issn: 0269-2821
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LbtQwcAQtBy4tT7GlrXxA4gAWiZ8JF9RWrZCAZdVCKVwsx05KpX2xyfL9jBOH7YLohYsVyxNrpHnangfAMzTaurDMUvQuOBU-T2gufU6LRBValdy7tpbe-Xs9HGYXF_koXrjVMayy14mtovYzF-7IXzGtkDul5uzN_AcNXaPC62psoXEbNtFQy9DBQH_5ei3Eo4uaYyqneLRIY9JMTJ0TitEQy94yJRVrhulP9fzXO2lrfk62_xfxe7AVHU9y0HHKfbhVTh_Adt_UgUQZfwjLs_JyEhOSpmRWkXnIC0GPlCzHzcLWoQ0TuZqgGqpfE_QeSbeIgGGCjEgsAoTvrlwJ6Yxm4O4AVF_f3Y4vEdPm-6R-BJ9Pjj8dvaWxNwN1QrKGuix1ifCprqxizipf6SQvQrE051OvvJRaCK-UsI4nVWo1555nmntUsLJgij-GjelsWj4BogpXqTJxssi84DbDnZXLyrx0eBSz1g8g7QljXCxcHvpnjM2q5HIgpkFimpaYRgzgxe9_5l3Zjhuhnwd6myDTuLOzMTUB8QvVscwBEo-3vuoAdtcgURbd-nLPAybqgtqsGGAAL3suWi3_G62dm3d7CncZelzdfdAubDSLZbkHd9zP5qpe7LeSsA-bh8fD0SnO3mmK44fkKIzpRxxH8huOp2fnvwCwUxRG
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXlqfYUsAHEAewSGzHTpAQqoCqVbcLEgX1Zhw7KZX2xWYXxJ_iNzKTB9sF0VsP3BJ5Mkqcbx625wHwCI22yZ1wHL0LyVXIIp4lIeN5pHOjCxl8XUvvU98MBunxcfZ-DX52uTAUVtnpxFpRh4mnPfLnwmhEZ2KkeDX9yqlrFJ2udi00GlgcFD--45Ktern_Bv_vYyF23x693uNtVwHuVSLm3Kexj1SITem08E6H0kRZTmW-fIiDDklilApaK-dlVMbOSBlkamRA1ZDkQkvkewkuU109kqjD-N2ZkJImSk_ojONSJm6TdNpUPaUFp9j5Wgi4WjGEf5qDv85la3O3u_m_TdR12Ggda7bTSMINWCvGN2Gza1rBWh12CxYfipNRm3A1ZpOSTSnvBT1uthjOZ66iNlPsdIRqtnrB0DtmzSAS0g0KGnNIQNdNORbWOAUkvURUneXuhic4M_Mvo-o2fLyQj78D6-PJuLgLTOe-1EXkkzwNSroUOWufFlnhcanpXOhB3AHB-rYwO_UHGdplSWkCj0Xw2Bo8VvXg6e9npk1ZknOpnxC-LOks5Oxdm3qB70fVv-wOgkXWvngPtlcoUdf41eEOc7bVdZVdAq4HzzrULof__Vpb53N7CFf3jg77tr8_OLgH1wR6l83e1zasz2eL4j5c8d_mp9XsQS2FDD5fNJp_ASSsaUU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcKE-xUMAHEAewmtiOnSAhVGhXVK1WK17qzTh2Uirti00WxF_j1zFOHLYLorceuCXyZJQ434xn7HkAPMZFW-WGGYrWBafCZRHNEpfRPJK5kgV3tqml9-lIDYfp8XE22oCfXS6MD6vsdGKjqN3M-j3yHaYkojNRnO2UISxitDd4Nf9KfQcpf9LatdNoIXJY_PiO7lv18mAP__UTxgb7H968paHDALUiYTW1aWwj4WJVGsmska5UUZb7kl_WxU66JFFCOCmFsTwqY6M4dzxV3KGaSHImOfK9BJuKo9PTg83X-8PRuzMBJm3MHpMZRccmDik7IXFPSEZ9JH0jElSsLYt_Lg5_ndI2i99g63-etutwLZjcZLeVkRuwUUxvwlbXzoIE7XYLlu-Lk0lIxZqSWUnmPiMGbXGyHNcLU_kGVOR0ggq4ekHQbibtIBL6GxRBYpDAX7eFWkhrLni59kTVWe5mfIIzU3-ZVLfh44V8_B3oTWfT4i4QmdtSFpFN8tQJblLkLG1aZIVFJ9QY14e4A4W2oWS77xwy1qti0x5IGoGkGyBp0Ydnv5-ZtwVLzqV-6rGmvTZDztaEpAx8P18XTO8icHhjpfdhe40StZBdH-7wp4MWrPQKfH143iF4Nfzv17p3PrdHcAVBrI8Ohof34SpDs7PdFNuGXr1YFg_gsv1Wn1aLh0EkCXy-aDj_AjDMc2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+prostate+ultrasound+images%3A+the+state+of+the+art+and+the+future+directions+of+segmentation+algorithms&rft.jtitle=The+Artificial+intelligence+review&rft.au=Jiang%2C+Jingang&rft.au=Guo%2C+Yafeng&rft.au=Bi%2C+Zhuming&rft.au=Huang%2C+Zhiyuan&rft.date=2023-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0269-2821&rft.eissn=1573-7462&rft.volume=56&rft.issue=1&rft.spage=615&rft.epage=651&rft_id=info:doi/10.1007%2Fs10462-022-10179-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-2821&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-2821&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-2821&client=summon