Revisiting Approximate Dynamic Programming and its Convergence

Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic dynamics and continuous state and action spaces is investigated. The learning iterations are decomposed into an outer loop and an inner loop...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 44; číslo 12; s. 2733 - 2743
Hlavní autor: Heydari, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.12.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic dynamics and continuous state and action spaces is investigated. The learning iterations are decomposed into an outer loop and an inner loop. A relatively simple proof for the convergence of the outer-loop iterations to the optimal solution is provided using a novel idea with some new features. It presents an analogy between the value function during the iterations and the value function of a fixed-final-time optimal control problem. The inner loop is utilized to avoid the need for solving a set of nonlinear equations or a nonlinear optimization problem numerically, at each iteration of ADP for the policy update. Sufficient conditions for the uniqueness of the solution to the policy update equation and for the convergence of the inner-loop iterations to the solution are obtained. Afterwards, the results are formed as a learning algorithm for training a neurocontroller or creating a look-up table to be used for optimal control of nonlinear systems with different initial conditions. Finally, some of the features of the investigated method are numerically analyzed.
AbstractList Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic dynamics and continuous state and action spaces is investigated. The learning iterations are decomposed into an outer loop and an inner loop. A relatively simple proof for the convergence of the outer-loop iterations to the optimal solution is provided using a novel idea with some new features. It presents an analogy between the value function during the iterations and the value function of a fixed-final-time optimal control problem. The inner loop is utilized to avoid the need for solving a set of nonlinear equations or a nonlinear optimization problem numerically, at each iteration of ADP for the policy update. Sufficient conditions for the uniqueness of the solution to the policy update equation and for the convergence of the inner-loop iterations to the solution are obtained. Afterwards, the results are formed as a learning algorithm for training a neurocontroller or creating a look-up table to be used for optimal control of nonlinear systems with different initial conditions. Finally, some of the features of the investigated method are numerically analyzed.
Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic dynamics and continuous state and action spaces is investigated. The learning iterations are decomposed into an outer loop and an inner loop. A relatively simple proof for the convergence of the outer-loop iterations to the optimal solution is provided using a novel idea with some new features. It presents an analogy between the value function during the iterations and the value function of a fixed-final-time optimal control problem. The inner loop is utilized to avoid the need for solving a set of nonlinear equations or a nonlinear optimization problem numerically, at each iteration of ADP for the policy update. Sufficient conditions for the uniqueness of the solution to the policy update equation and for the convergence of the inner-loop iterations to the solution are obtained. Afterwards, the results are formed as a learning algorithm for training a neurocontroller or creating a look-up table to be used for optimal control of nonlinear systems with different initial conditions. Finally, some of the features of the investigated method are numerically analyzed.Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic dynamics and continuous state and action spaces is investigated. The learning iterations are decomposed into an outer loop and an inner loop. A relatively simple proof for the convergence of the outer-loop iterations to the optimal solution is provided using a novel idea with some new features. It presents an analogy between the value function during the iterations and the value function of a fixed-final-time optimal control problem. The inner loop is utilized to avoid the need for solving a set of nonlinear equations or a nonlinear optimization problem numerically, at each iteration of ADP for the policy update. Sufficient conditions for the uniqueness of the solution to the policy update equation and for the convergence of the inner-loop iterations to the solution are obtained. Afterwards, the results are formed as a learning algorithm for training a neurocontroller or creating a look-up table to be used for optimal control of nonlinear systems with different initial conditions. Finally, some of the features of the investigated method are numerically analyzed.
Author Heydari, Ali
Author_xml – sequence: 1
  givenname: Ali
  surname: Heydari
  fullname: Heydari, Ali
  email: ali.heydari@sdsmt.edu
  organization: Dept. of Mech. Eng., South Dakota Sch. of Mines & Technol., Rapid City, SD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24846687$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtLJDEUhYMovsYfIIIUuHHTPblJVZLaCNq-BhqUwVnMKsTkVhPpSrVJtei_nxTd7cLFGAi5JN-53JxzQLZDF5CQY6BjAFr_fJr8vRozCuWYcSgFsC2yz0CoEWOy2v6shdwjRym90LxUvqrVLtljpSqFUHKfXPzGN59878OsuFwsYvfuW9Njcf0RTOtt8Ri7WTRtO7yb4Arfp2LShTeMMwwWf5CdxswTHq3PQ_Ln9uZpcj-aPtz9mlxOR7asWD8yjTCOQ9NYxaThTlKJeYDGgTJOqmcqqKSGl1jXjFqnWGldBVUtLXO1AssPyfmqb57wdYmp161PFudzE7BbJg2ighL4sL9HmRS1rJjM6NkX9KVbxpA_MlBCSq5AZep0TS2fW3R6EbNF8UNvTMyAXAE2dilFbLT1vel9F_po_FwD1UNiekhMD4npdWJZCV-Um-b_05ysNB4RP3mhBrs4_wcPaZ5H
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2016_2586082
crossref_primary_10_1007_s11071_022_07592_3
crossref_primary_10_1016_j_jfranklin_2017_04_015
crossref_primary_10_1109_TNNLS_2018_2820019
crossref_primary_10_1061_JAEEEZ_ASENG_5097
crossref_primary_10_1016_j_jfranklin_2014_11_008
crossref_primary_10_1109_TIE_2017_2708002
crossref_primary_10_1109_TNNLS_2023_3264151
crossref_primary_10_1007_s10462_023_10497_1
crossref_primary_10_1049_iet_rpg_2019_0794
crossref_primary_10_1049_iet_pel_2019_1339
crossref_primary_10_1109_TCYB_2018_2859801
crossref_primary_10_1109_ACCESS_2023_3306070
crossref_primary_10_1109_TNNLS_2015_2388672
crossref_primary_10_3390_app9091807
crossref_primary_10_1016_j_automatica_2023_111261
crossref_primary_10_1109_TCYB_2022_3233593
crossref_primary_10_1016_j_automatica_2017_06_015
crossref_primary_10_1109_TIV_2023_3336964
crossref_primary_10_1080_00207179_2019_1648874
crossref_primary_10_1109_TIE_2023_3292873
crossref_primary_10_1016_j_jfranklin_2023_12_003
crossref_primary_10_1109_TNNLS_2017_2755501
crossref_primary_10_1007_s40313_025_01175_4
crossref_primary_10_1016_j_ifacol_2019_12_036
crossref_primary_10_1109_TCYB_2024_3472020
crossref_primary_10_1016_j_automatica_2017_03_022
crossref_primary_10_1016_j_sigpro_2024_109547
crossref_primary_10_1109_TCYB_2015_2478857
crossref_primary_10_1109_TIA_2019_2891213
crossref_primary_10_1109_TCYB_2020_3029825
crossref_primary_10_1109_TIE_2018_2823699
crossref_primary_10_1109_TSMC_2024_3428482
crossref_primary_10_1007_s10444_024_10128_5
crossref_primary_10_1016_j_automatica_2025_112168
crossref_primary_10_1016_j_ifacol_2020_12_2237
crossref_primary_10_1007_s40815_023_01670_3
crossref_primary_10_1109_TCYB_2016_2542923
crossref_primary_10_1109_TCYB_2017_2712188
crossref_primary_10_1093_imamci_dny018
crossref_primary_10_1007_s10696_025_09608_7
crossref_primary_10_1016_j_engappai_2023_106068
crossref_primary_10_1016_j_ifacol_2017_08_048
crossref_primary_10_1016_j_neucom_2023_126616
crossref_primary_10_1109_TCYB_2017_2660533
crossref_primary_10_1109_TCYB_2018_2857400
crossref_primary_10_1016_j_neunet_2018_02_007
crossref_primary_10_1109_TNNLS_2016_2638863
crossref_primary_10_1016_j_ifacol_2023_10_1320
crossref_primary_10_1016_j_ifacol_2017_08_803
crossref_primary_10_1109_TCCN_2023_3327578
crossref_primary_10_1109_LCSYS_2019_2919439
crossref_primary_10_1109_TAC_2022_3181752
crossref_primary_10_1109_TCYB_2015_2417170
crossref_primary_10_1109_TAC_2018_2790260
crossref_primary_10_3390_a12060121
crossref_primary_10_1109_ACCESS_2025_3567496
crossref_primary_10_1016_j_isatra_2018_01_014
crossref_primary_10_1109_TNNLS_2016_2593743
crossref_primary_10_2514_1_G001154
crossref_primary_10_1109_TCYB_2018_2823199
crossref_primary_10_1002_cta_3370
crossref_primary_10_1007_s12559_015_9350_z
crossref_primary_10_1016_j_ins_2016_07_051
crossref_primary_10_1049_iet_cta_2017_0154
crossref_primary_10_1109_TNNLS_2015_2503980
crossref_primary_10_1016_j_fss_2023_108735
crossref_primary_10_1109_TCYB_2015_2492242
crossref_primary_10_1109_TNNLS_2021_3123444
crossref_primary_10_1049_iet_pel_2019_0159
crossref_primary_10_1016_j_automatica_2016_05_003
crossref_primary_10_1109_TCYB_2015_2453123
crossref_primary_10_1109_TNNLS_2017_2749641
crossref_primary_10_1109_JSYST_2023_3268710
crossref_primary_10_1007_s11071_024_09840_0
crossref_primary_10_1109_LRA_2025_3577875
crossref_primary_10_1002_rnc_4342
crossref_primary_10_1016_j_jfranklin_2022_12_013
crossref_primary_10_1007_s10462_021_10118_9
crossref_primary_10_1109_TAC_2024_3389552
crossref_primary_10_1155_2019_8649781
Cites_doi 10.1109/TNN.2009.2027233
10.2514/1.16790
10.1016/j.jfranklin.2013.12.008
10.1109/TNN.2010.2076370
10.1080/00207721.2012.748945
10.1109/72.623201
10.2514/3.21715
10.1016/j.neunet.2006.08.010
10.1109/TNNLS.2012.2227339
10.1109/TNN.2002.1000146
10.1016/j.automatica.2008.08.017
10.2514/1.12597
10.1002/acs.2473
10.1109/TSMCB.2008.926614
10.1002/9781118029176
10.1016/j.automatica.2010.02.018
10.1007/978-1-4471-4757-2
10.1109/TSMCB.2008.920269
10.1109/TNN.2003.813839
10.1016/j.neunet.2013.07.002
10.1109/TNNLS.2013.2281663
10.1002/9781118453988.ch1
10.1109/TSMCB.2012.2216523
10.1109/TNN.2011.2147797
10.1017/CBO9780511627040
10.1016/j.automatica.2012.05.049
10.1016/j.neunet.2009.06.014
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2014.2314612
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
Aerospace Database
MEDLINE - Academic
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 2743
ExternalDocumentID 3503475481
24846687
10_1109_TCYB_2014_2314612
6815973
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c452t-af6ad31ffc827a3d707e466fd18ad78b06070a34e9920cd824cd51597c2d981c3
IEDL.DBID RIE
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000345629000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 08:29:19 EDT 2025
Sun Sep 28 09:24:55 EDT 2025
Sun Nov 30 05:19:59 EST 2025
Thu Jan 02 22:15:40 EST 2025
Tue Nov 18 21:38:29 EST 2025
Sat Nov 29 06:48:28 EST 2025
Tue Aug 26 16:49:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Approximate dynamic programming
optimal control
nonlinear control systems
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-af6ad31ffc827a3d707e466fd18ad78b06070a34e9920cd824cd51597c2d981c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 24846687
PQID 1626773818
PQPubID 85422
PageCount 11
ParticipantIDs proquest_miscellaneous_1627697527
proquest_journals_1626773818
crossref_primary_10_1109_TCYB_2014_2314612
crossref_citationtrail_10_1109_TCYB_2014_2314612
proquest_miscellaneous_1651413141
pubmed_primary_24846687
ieee_primary_6815973
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
khalil (ref33) 2002
ref36
ref30
ref10
(ref37) 0
rudin (ref35) 1976
ref17
ref38
werbos (ref1) 1992
sastry (ref32) 1999
ref19
liu (ref16) 2013; 43
marsden (ref34) 2001
sutton (ref18) 1998
fu (ref11) 2011; 22
ref24
ref23
watkins (ref2) 1989
ref25
ref20
ref22
ref21
bertsekas (ref3) 1996
zhang (ref13) 2013
ref28
liu (ref31) 2014; 25
ref27
ref8
ref7
kirk (ref14) 2004
ref9
ref4
liu (ref26) 2000
ref6
ref5
wang (ref29) 2012; 48
powell (ref12) 2011
References_xml – ident: ref28
  doi: 10.1109/TNN.2009.2027233
– ident: ref38
  doi: 10.2514/1.16790
– ident: ref25
  doi: 10.1016/j.jfranklin.2013.12.008
– ident: ref21
  doi: 10.1109/TNN.2010.2076370
– start-page: 511
  year: 1999
  ident: ref32
  publication-title: Nonlinear Systems Analysis Stability and Control
– ident: ref24
  doi: 10.1080/00207721.2012.748945
– ident: ref5
  doi: 10.1109/72.623201
– start-page: 53
  year: 2004
  ident: ref14
  publication-title: Optimal Control Theory An Introduction
– ident: ref4
  doi: 10.2514/3.21715
– ident: ref17
  doi: 10.1016/j.neunet.2006.08.010
– ident: ref30
  doi: 10.1109/TNNLS.2012.2227339
– ident: ref10
  doi: 10.1109/TNN.2002.1000146
– ident: ref19
  doi: 10.1016/j.automatica.2008.08.017
– ident: ref8
  doi: 10.2514/1.12597
– ident: ref23
  doi: 10.1002/acs.2473
– year: 1998
  ident: ref18
  publication-title: Reinforcement Learning
– start-page: 493
  year: 1992
  ident: ref1
  article-title: Approximate dynamic programming for real-time control and neural modeling
  publication-title: Handbook of Intelligent Control
– ident: ref6
  doi: 10.1109/TSMCB.2008.926614
– year: 1989
  ident: ref2
  article-title: Learning from delayed rewards
– start-page: 74
  year: 2001
  ident: ref34
  publication-title: Manifolds Tensor Analysis and Applications
– start-page: 653
  year: 2002
  ident: ref33
  publication-title: Nonlinear Systems
– year: 2011
  ident: ref12
  publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality
  doi: 10.1002/9781118029176
– start-page: 1929
  year: 2000
  ident: ref26
  article-title: Convergence analysis of adaptive critic based optimal control
  publication-title: Proc American Control Conf
– start-page: 55
  year: 1976
  ident: ref35
  publication-title: Principles of Mathematical Analysis
– year: 1996
  ident: ref3
  publication-title: Neuro-Dynamic Programming
– ident: ref20
  doi: 10.1016/j.automatica.2010.02.018
– year: 2013
  ident: ref13
  publication-title: Adaptive Dynamic Programming for Control Algorithms and Stability
  doi: 10.1007/978-1-4471-4757-2
– ident: ref27
  doi: 10.1109/TSMCB.2008.920269
– ident: ref9
  doi: 10.1109/TNN.2003.813839
– ident: ref22
  doi: 10.1016/j.neunet.2013.07.002
– year: 0
  ident: ref37
– volume: 25
  start-page: 621
  year: 2014
  ident: ref31
  article-title: Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref15
  doi: 10.1002/9781118453988.ch1
– volume: 43
  start-page: 779
  year: 2013
  ident: ref16
  article-title: Finite-approximation-error-based optimal control approach for discrete-time nonlinear systems
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2216523
– volume: 22
  start-page: 1133
  year: 2011
  ident: ref11
  article-title: Adaptive learning and control for MIMO system based on adaptive dynamic programming
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2147797
– ident: ref36
  doi: 10.1017/CBO9780511627040
– volume: 48
  start-page: 1825
  year: 2012
  ident: ref29
  article-title: Optimal control of unknown nonaffine nonlinear discrete-time systems based on adaptive dynamic programming
  publication-title: Automatica
  doi: 10.1016/j.automatica.2012.05.049
– ident: ref7
  doi: 10.1016/j.neunet.2009.06.014
SSID ssj0000816898
Score 2.4210973
Snippet Value iteration-based approximate/adaptive dynamic programming (ADP) as an approximate solution to infinite-horizon optimal control problems with deterministic...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2733
SubjectTerms Approximate dynamic programming
Approximation
Approximation methods
Convergence
Dynamic programming
Equations
Iterative methods
Learning
Mathematical analysis
Mathematical model
Mathematical models
nonlinear control systems
Optimal control
Optimization
Policies
Vectors
Title Revisiting Approximate Dynamic Programming and its Convergence
URI https://ieeexplore.ieee.org/document/6815973
https://www.ncbi.nlm.nih.gov/pubmed/24846687
https://www.proquest.com/docview/1626773818
https://www.proquest.com/docview/1627697527
https://www.proquest.com/docview/1651413141
Volume 44
WOSCitedRecordID wos000345629000040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB9U-tCXqrXWtSor9KEtribZXGbzIuip9KGIFAvXpyWbZOHA7hXvrvTPbyabW_pghb4FMkuymRnmN8l8ALz3jRUNeSfKM1NIGRyUxjFXMGWQ-5F0rI0l87_g7W01mei7NTgZcmG89zH4zJ_SML7lu5ld0lXZmaqC8cVyHdYRVZ-rNdynxAYSsfWtCIMioApMj5ic6bP78fdLiuOSpwHPyGDVqQiwDLZXUSzdXxYptlj5N9qMVudm8__2uwWvErrML3px2IY1372G7aS_8_xDKjL9cQfOv8a0cgp6zi-orvjvacCuPr_qO9Tnd33c1g-aN53Lp4t5PqYI9Zis6d_At5vr-_HnIvVSKKwciUVhWmVcydvWVgJN6ZChD3_fOl4Zh1XDVNB9U0qvtWDWVUJaR1AHrXC64rbchY1u1vk9yE0AYRwbJXRryd0xtuTBJdeNbb11rciArc6ztqnQOPW7eKijw8F0TdyoiRt14kYGn4ZPfvZVNp4j3qGjHgjTKWdwsGJanfRwXvPgryESKsngeJgOGkTPIqbzs2WkQaVxJPA5mgAseVifZ_C2F4hh_ZUc7T-9r3fwknbfh8AcwMbicekP4YX9tZjOH4-CKE-qoyjKfwB78-v-
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB_UFuqLrVp1W1tX8EGLq0k2t9m8CPaqKF4PkSvo05JNsnCge-LdiX9-M9nc4oMKvgWS3XzMDPObZD4AdmypWYnWSWaJSjh3BkppiElIpgS1HW5I5VPm90S_n19fy8s52G9jYay13vnMHmDTv-WbkZ7iVdlhljvlK9J5-NDBvzbRWu2Nii8h4YvfMtdIHK4Q4RmTEnk46N78Rk8ufuAQDXd6HdMAc6d9M_Sme6aTfJGV1_Gm1zunn9-34i-wFPBlfNwwxDLM2XoFloMEj-PdkGZ6bxWOrnxgObo9x8eYWfxp6NCrjf80Nerjy8Zz6w77VW3i4WQcd9FH3Ydr2q_w7_Rk0D1LQjWFRPMOmySqypRJaVXpnAmVGkGEdbuvDM2VEXlJMif9KuVWSka0yRnXBsGO0MzInOp0DRbqUW03IFYOhlFRZkxWGg0epVPqjHJZ6spqU7EIyOw8Cx1SjWPFi9vCmxxEFkiNAqlRBGpE8Kv95L7Js_HW4FU86nZgOOUINmdEK4IkjgvqLDYhEJdEsN12OxnChxFV29HUjxGZFB0m3hrjoCV189MI1huGaOef8dG3l9e1BZ_OBn97Re-8f_EdFnEnjUPMJixMHqb2B3zUj5Ph-OGnZ-j_WV7uXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Revisiting+Approximate+Dynamic+Programming+and+its+Convergence&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Heydari%2C+Ali&rft.date=2014-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=44&rft.issue=12&rft.spage=2733&rft_id=info:doi/10.1109%2FTCYB.2014.2314612&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3503475481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon