Tunnelling spectroscopy of Andreev states in graphene

Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect. A normal conductor placed in good contact with a su...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics Vol. 13; no. 8; pp. 756 - 760
Main Authors: Bretheau, Landry, Wang, Joel I-Jan, Pisoni, Riccardo, Watanabe, Kenji, Taniguchi, Takashi, Jarillo-Herrero, Pablo
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01.08.2017
Nature Publishing Group
Nature Publishing Group (NPG)
Subjects:
ISSN:1745-2473, 1745-2481
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect. A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties 1 , 2 . This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states 3 , 4 , 5 , 6 , 7 , 8 . Spectroscopic studies of Andreev states have been performed in just a handful of systems 9 , 10 , 11 , 12 , 13 . The unique geometry, electronic structure and high mobility of graphene 14 , 15 make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials 16 , 17 , 18 .
AbstractList Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect. A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties 1 , 2 . This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states 3 , 4 , 5 , 6 , 7 , 8 . Spectroscopic studies of Andreev states have been performed in just a handful of systems 9 , 10 , 11 , 12 , 13 . The unique geometry, electronic structure and high mobility of graphene 14 , 15 make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials 16 , 17 , 18 .
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. In this paper, we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. Finally, this work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials.
Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect.A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties1,2. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states3,4,5,6,7,8. Spectroscopic studies of Andreev states have been performed in just a handful of systems9,10,11,12,13. The unique geometry, electronic structure and high mobility of graphene14,15 make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials16,17,18.
Author Bretheau, Landry
Wang, Joel I-Jan
Watanabe, Kenji
Pisoni, Riccardo
Taniguchi, Takashi
Jarillo-Herrero, Pablo
Author_xml – sequence: 1
  givenname: Landry
  surname: Bretheau
  fullname: Bretheau, Landry
  email: bretheau@mit.edu
  organization: Department of Physics, Massachusetts Institute of Technology
– sequence: 2
  givenname: Joel I-Jan
  surname: Wang
  fullname: Wang, Joel I-Jan
  email: joelwang@mit.edu
  organization: Department of Physics, Massachusetts Institute of Technology
– sequence: 3
  givenname: Riccardo
  surname: Pisoni
  fullname: Pisoni, Riccardo
  organization: Department of Physics, Massachusetts Institute of Technology
– sequence: 4
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 5
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 6
  givenname: Pablo
  surname: Jarillo-Herrero
  fullname: Jarillo-Herrero, Pablo
  email: pjarillo@mit.edu
  organization: Department of Physics, Massachusetts Institute of Technology
BackLink https://www.osti.gov/servlets/purl/1473905$$D View this record in Osti.gov
BookMark eNp90M1KAzEUBeAgCrbVhW8w6EphbG5mMkmWpfgHBTd1HdJMpp1SkzFJhb6Nz-KTGRkpouIqWXw3OfcM0aF11iB0BvgacMHHtlvtQgmAD9AAWElzUnI43N9ZcYyGIawxLkkFxQBV8621ZrNp7TILndHRu6Bdt8tck01s7Y15zUJU0YSste9vS6-6lbHmBB01ahPM6dc5Qk-3N_PpfT57vHuYTma5LimJOQemF7USomKECq2gMEoYxaCuia5BKGxSJqYph4VSpF5QVjWswoTVUABVxQid9--6EFsZdBuNXmmXIusoIa0jME3ookeddy9bE6Jcu623KZcsgPOKllDy_xQIQoELLHBS417pVETwppHpTxVbZ6NX7UYClp89y33PaeLyx0Tn22fld3_aq96GZOzS-G8ZfuEPVU6OmQ
CitedBy_id crossref_primary_10_1126_sciadv_ads0342
crossref_primary_10_1088_1361_6633_aaafe1
crossref_primary_10_1063_5_0024124
crossref_primary_10_1038_s41467_023_42356_6
crossref_primary_10_1038_s41586_019_1148_9
crossref_primary_10_1063_5_0159952
crossref_primary_10_1103_PhysRevB_106_064508
crossref_primary_10_1088_2053_1583_acce4b
crossref_primary_10_1103_PhysRevResearch_3_L032009
crossref_primary_10_1103_PhysRevResearch_1_033031
crossref_primary_10_1038_s41563_024_02079_5
crossref_primary_10_1103_PhysRevResearch_7_013189
crossref_primary_10_1038_nature26160
crossref_primary_10_1063_1_5118422
crossref_primary_10_1063_1_5021113
crossref_primary_10_1103_PhysRevB_106_214513
crossref_primary_10_1103_4mw4_4rfh
crossref_primary_10_1016_j_jmmm_2023_170772
crossref_primary_10_1038_s41467_020_15322_9
crossref_primary_10_1038_s42005_022_01042_7
crossref_primary_10_1103_PhysRevResearch_6_L022053
crossref_primary_10_3762_bjnano_10_36
crossref_primary_10_1038_s41586_024_08494_7
crossref_primary_10_1038_s42005_019_0275_9
crossref_primary_10_1088_2515_7639_acd8f2
crossref_primary_10_1002_qute_202000082
crossref_primary_10_1002_adma_201803563
crossref_primary_10_1038_s43246_022_00242_6
crossref_primary_10_1016_j_cap_2019_01_012
crossref_primary_10_1126_science_aar4642
crossref_primary_10_1002_smll_202201248
crossref_primary_10_1103_PhysRevResearch_6_023256
crossref_primary_10_1038_s41467_018_06595_2
crossref_primary_10_1088_1361_648X_abff93
crossref_primary_10_1038_s41467_023_42357_5
crossref_primary_10_1103_PhysRevB_101_024516
crossref_primary_10_1103_PhysRevB_111_L180504
crossref_primary_10_1002_aelm_202000987
crossref_primary_10_1103_PhysRevResearch_5_033131
crossref_primary_10_1103_PhysRevApplied_20_054049
crossref_primary_10_1002_qute_202200080
crossref_primary_10_1038_s41565_018_0329_2
crossref_primary_10_1103_PhysRevResearch_4_023143
crossref_primary_10_1088_1402_4896_ad9c23
crossref_primary_10_1016_j_physleta_2018_12_038
crossref_primary_10_1016_j_physe_2023_115858
crossref_primary_10_1088_1402_4896_acceda
crossref_primary_10_1002_adfm_202418456
crossref_primary_10_1103_PhysRevResearch_7_023173
crossref_primary_10_1103_PhysRevResearch_4_013198
crossref_primary_10_1063_1_5042327
crossref_primary_10_1038_s41563_023_01478_4
crossref_primary_10_1038_s41586_021_04364_8
crossref_primary_10_1103_PhysRevResearch_1_033004
crossref_primary_10_1002_smll_202308439
crossref_primary_10_3390_nano10051009
crossref_primary_10_3390_nano11112999
Cites_doi 10.1038/nphys1911
10.1021/nl802765x
10.1103/PhysRevLett.97.067007
10.1103/PhysRevB.46.12573
10.1038/nphys3583
10.1038/nphys1811
10.1103/RevModPhys.36.225
10.1103/PhysRevB.62.1319
10.1103/PhysRevB.77.184507
10.1103/RevModPhys.81.109
10.1103/PhysRevB.86.115412
10.1126/science.aad6203
10.1016/0031-9163(62)91369-0
10.1038/nphys3534
10.1038/16204
10.1103/PhysRevLett.81.1682
10.1038/nmat2968
10.1103/PhysRevB.58.5783
10.1103/PhysRevLett.89.207002
10.1021/nl504750f
10.1103/PhysRevLett.100.197002
10.1103/PhysRevLett.110.217005
10.1038/nphys781
10.1038/ncomms2340
10.1103/PhysRevB.44.470
10.1103/PhysRevB.93.045406
10.1038/nphys3592
10.1038/nature05555
10.1126/science.1244358
10.1103/PhysRevLett.66.3056
10.1038/nature12315
10.1006/spmi.1996.0116
10.1038/nnano.2015.156
10.1103/RevModPhys.83.407
10.1016/0038-1098(91)90201-6
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group Aug 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group Aug 2017
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
OIOZB
OTOTI
DOI 10.1038/nphys4110
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student

ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 760
ExternalDocumentID 1473905
10_1038_nphys4110
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACSTC
AFFHD
AGSTI
ATHPR
CITATION
PHGZM
PQGLB
3V.
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
AADEA
AADWK
AAEEF
AAEXX
AAJMP
AAPBV
AAYJO
AAZLF
ABEEJ
ABGIJ
ABPTK
ABVXF
ACBMV
ACBRV
ACBYP
ACIGE
ACTTH
ACVWB
ADMDM
ADQMX
ADZGE
AEDAW
AEFTE
AGEZK
AGGBP
AGHTU
AHGBK
AJDOV
NYICJ
OIOZB
OTOTI
ID FETCH-LOGICAL-c452t-817cbda9967259ca13ea9ea71dd2cd19a0e2477c581baa2db576f76027d1315a3
IEDL.DBID P5Z
ISICitedReferencesCount 95
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406778100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1745-2473
IngestDate Thu May 18 22:36:41 EDT 2023
Sat Aug 23 13:59:06 EDT 2025
Sat Aug 23 13:05:11 EDT 2025
Sat Nov 29 08:03:36 EST 2025
Tue Nov 18 21:31:39 EST 2025
Fri Apr 11 01:29:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-817cbda9967259ca13ea9ea71dd2cd19a0e2477c581baa2db576f76027d1315a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Science Foundation (NSF)
SC0001819; DMR-0819762; ECS-0335765; GBMF4541; TMS-094-1-A-001
USDOE Office of Science (SC), Basic Energy Sciences (BES)
Taiwan Merit Scholarship
Gordon and Betty Moore Foundation (United States)
ORCID 0000-0003-3701-8119
0000000337018119
OpenAccessLink https://www.osti.gov/servlets/purl/1473905
PQID 1925189090
PQPubID 27545
PageCount 5
ParticipantIDs osti_scitechconnect_1473905
proquest_journals_3188654148
proquest_journals_1925189090
crossref_citationtrail_10_1038_nphys4110
crossref_primary_10_1038_nphys4110
springer_journals_10_1038_nphys4110
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Publishing Group (NPG)
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Publishing Group (NPG)
References FK Wilhelm (BFnphys4110_CR35) 1998; 81
S Das Sarma (BFnphys4110_CR15) 2011; 83
Ç Girit (BFnphys4110_CR23) 2009; 9
A Lodder (BFnphys4110_CR31) 1998; 58
G Wendin (BFnphys4110_CR7) 1996; 20
NH Lindner (BFnphys4110_CR16) 2012; 2
DJ Clarke (BFnphys4110_CR17) 2013; 4
JJA Baselmans (BFnphys4110_CR36) 1999; 397
BD Josephson (BFnphys4110_CR1) 1962; 1
W Chang (BFnphys4110_CR11) 2013; 110
HB Heersche (BFnphys4110_CR21) 2007; 446
J Martin (BFnphys4110_CR32) 2008; 4
L Bretheau (BFnphys4110_CR12) 2013; 499
PF Bagwell (BFnphys4110_CR6) 1992; 46
M Ben Shalom (BFnphys4110_CR20) 2015; 12
H Le Sueur (BFnphys4110_CR9) 2008; 100
CWJ Beenakker (BFnphys4110_CR5) 1991; 66
DK Efetov (BFnphys4110_CR27) 2015; 12
J-D Pillet (BFnphys4110_CR10) 2010; 6
JJA Baselmans (BFnphys4110_CR37) 2002; 89
L Wang (BFnphys4110_CR38) 2013; 342
P San-Jose (BFnphys4110_CR18) 2015; 5
A Furusaki (BFnphys4110_CR4) 1991; 78
VE Calado (BFnphys4110_CR19) 2015; 10
F Amet (BFnphys4110_CR29) 2016; 352
L Bretheau (BFnphys4110_CR13) 2013; 3
P Samuelsson (BFnphys4110_CR8) 2000; 62
BJ van Wees (BFnphys4110_CR34) 1991; 44
PG De Gennes (BFnphys4110_CR2) 1964; 36
MT Allen (BFnphys4110_CR26) 2015; 12
JM Xue (BFnphys4110_CR33) 2011; 10
CWJ Beenakker (BFnphys4110_CR30) 2006; 97
IO Kulik (BFnphys4110_CR3) 1970; 30
X Du (BFnphys4110_CR22) 2008; 77
K Komatsu (BFnphys4110_CR25) 2012; 86
T Dirks (BFnphys4110_CR24) 2011; 7
FD Natterer (BFnphys4110_CR28) 2016; 93
JI Wang (BFnphys4110_CR39) 2015; 15
BFnphys4110_CR40
AH Castro Neto (BFnphys4110_CR14) 2009; 81
References_xml – volume: 7
  start-page: 386
  year: 2011
  ident: BFnphys4110_CR24
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1911
– volume: 9
  start-page: 198
  year: 2009
  ident: BFnphys4110_CR23
  publication-title: Nano Lett.
  doi: 10.1021/nl802765x
– volume: 97
  start-page: 067007
  year: 2006
  ident: BFnphys4110_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.97.067007
– volume: 30
  start-page: 944
  year: 1970
  ident: BFnphys4110_CR3
  publication-title: Sov. Phys. JETP
– volume: 46
  start-page: 12573
  year: 1992
  ident: BFnphys4110_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.46.12573
– volume: 12
  start-page: 328
  year: 2015
  ident: BFnphys4110_CR27
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3583
– volume: 6
  start-page: 965
  year: 2010
  ident: BFnphys4110_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1811
– volume: 2
  start-page: 041002
  year: 2012
  ident: BFnphys4110_CR16
  publication-title: Phys. Rev. X
– volume: 36
  start-page: 225
  year: 1964
  ident: BFnphys4110_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.36.225
– volume: 62
  start-page: 1319
  year: 2000
  ident: BFnphys4110_CR8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.1319
– volume: 77
  start-page: 184507
  year: 2008
  ident: BFnphys4110_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.184507
– volume: 81
  start-page: 109
  year: 2009
  ident: BFnphys4110_CR14
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– volume: 5
  start-page: 041042
  year: 2015
  ident: BFnphys4110_CR18
  publication-title: Phys. Rev. X
– volume: 86
  start-page: 115412
  year: 2012
  ident: BFnphys4110_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.115412
– volume: 352
  start-page: 966
  year: 2016
  ident: BFnphys4110_CR29
  publication-title: Science
  doi: 10.1126/science.aad6203
– volume: 1
  start-page: 251
  year: 1962
  ident: BFnphys4110_CR1
  publication-title: Phys. Lett.
  doi: 10.1016/0031-9163(62)91369-0
– volume: 12
  start-page: 128
  year: 2015
  ident: BFnphys4110_CR26
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3534
– volume: 397
  start-page: 43
  year: 1999
  ident: BFnphys4110_CR36
  publication-title: Nature
  doi: 10.1038/16204
– volume: 81
  start-page: 1682
  year: 1998
  ident: BFnphys4110_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1682
– ident: BFnphys4110_CR40
– volume: 10
  start-page: 282
  year: 2011
  ident: BFnphys4110_CR33
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2968
– volume: 58
  start-page: 5783
  year: 1998
  ident: BFnphys4110_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.5783
– volume: 89
  start-page: 207002
  year: 2002
  ident: BFnphys4110_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.207002
– volume: 15
  start-page: 1898
  year: 2015
  ident: BFnphys4110_CR39
  publication-title: Nano Lett.
  doi: 10.1021/nl504750f
– volume: 100
  start-page: 197002
  year: 2008
  ident: BFnphys4110_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.197002
– volume: 3
  start-page: 041034
  year: 2013
  ident: BFnphys4110_CR13
  publication-title: Phys. Rev. X
– volume: 110
  start-page: 217005
  year: 2013
  ident: BFnphys4110_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.217005
– volume: 4
  start-page: 144
  year: 2008
  ident: BFnphys4110_CR32
  publication-title: Nat. Phys.
  doi: 10.1038/nphys781
– volume: 4
  start-page: 1348
  year: 2013
  ident: BFnphys4110_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2340
– volume: 44
  start-page: 470
  year: 1991
  ident: BFnphys4110_CR34
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.44.470
– volume: 93
  start-page: 045406
  year: 2016
  ident: BFnphys4110_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.045406
– volume: 12
  start-page: 318
  year: 2015
  ident: BFnphys4110_CR20
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3592
– volume: 446
  start-page: 56
  year: 2007
  ident: BFnphys4110_CR21
  publication-title: Nature
  doi: 10.1038/nature05555
– volume: 342
  start-page: 614
  year: 2013
  ident: BFnphys4110_CR38
  publication-title: Science
  doi: 10.1126/science.1244358
– volume: 66
  start-page: 3056
  year: 1991
  ident: BFnphys4110_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.66.3056
– volume: 499
  start-page: 312
  year: 2013
  ident: BFnphys4110_CR12
  publication-title: Nature
  doi: 10.1038/nature12315
– volume: 20
  start-page: 569
  year: 1996
  ident: BFnphys4110_CR7
  publication-title: Superlattices Microstruct.
  doi: 10.1006/spmi.1996.0116
– volume: 10
  start-page: 761
  year: 2015
  ident: BFnphys4110_CR19
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2015.156
– volume: 83
  start-page: 407
  year: 2011
  ident: BFnphys4110_CR15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.83.407
– volume: 78
  start-page: 299
  year: 1991
  ident: BFnphys4110_CR4
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(91)90201-6
SSID ssj0042613
Score 2.5966134
Snippet Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to...
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically...
SourceID osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 756
SubjectTerms 639/766/119/1003
639/766/119/995
639/925/918/1052
639/925/927/1064
Atomic
Carbon
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Conductors
Electronic properties
electronic properties and devices
electronic properties and materials
Electronic structure
Energy
Energy measurement
Energy spectra
Fermi surfaces
Graphene
Heterostructures
Josephson effect
letter
MATERIALS SCIENCE
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Phase shift
Physics
Proximity
Proximity effect (electricity)
Spectroscopic analysis
Spectroscopy
Spectrum analysis
superconducting devices
superconducting properties and materials
Superconductivity
Superconductor junctions
Superconductors
Theoretical
Topology
Title Tunnelling spectroscopy of Andreev states in graphene
URI https://link.springer.com/article/10.1038/nphys4110
https://www.proquest.com/docview/1925189090
https://www.proquest.com/docview/3188654148
https://www.osti.gov/servlets/purl/1473905
Volume 13
WOSCitedRecordID wos000406778100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: P5Z
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: PCBAR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: M2P
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50U_DF3-LcHEV98KW4ps2SPInKhi-OIQrDl5ImKQjSznUb-N97yVqdMnzxuWkbLpfLfbm77wAuLPujkpblk0SpH3V51xciRZSSdrnWTHCTcNdsgg0GfDQSw_LCrSjTKiub6Ay1zpW9I79C3eOuZzW_Hr_7tmuUja6WLTTWoW5ZEuzGHNKXyhJbdBAuCiKpTyIWVsxCIb_K7MVBFNjC2aXzqJbjvvrha_4Kj7pTp7_z3_nuwnbpb3o3CwXZgzWT7cOmy_tUxQHQp5lLdMGfe67o0pJb5uMPL089l-to5p6rOSq818xz7NZoHA_hud97urv3y04Kvooomfo8YCrRErENQ7ijZBAaKYxkgdZE6UDIjkH5MEXRiZWS6ARRSMq6CFl1EAZUhkdQy_LMHIOnI6kIgrY0ITpKjU7SKFHotBlUScqZasBlJc9YlTTjttvFW-zC3SGPv0TfgLOvoeMFt8aqQU27KDE6BJbVVtn0HzVFxMJC0aENaFXSj8vNV8TotNKAi47orHz8vTINOK-Wd-nt3zM4-fsjTdgi9qh3SYEtqE0nM3MKG2o-fS0mbajf9gbDxzasP5Bh26nnJxW77Ro
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BQtVeWvoS292C1Zd6idg4dmwfeqAUBAJWqNpK3IJjO9JKKNluFir-FL-RsTfhJdQbB85xrDjz8Df2zDcAXzz7o9Ge5ZOyImKpTCOlCoxSilRaK5R0uQzNJsRwKI-P1dECXLa1MD6tsvWJwVHbyvgz8g3UPRl6Vssmg3LfXfzD-Kz-sfcLhfmV0p3t0dZu1LQQiAzjdBbJWJjcagT1AnG-0XHitHJaxNZSY2OlB44yIQxH9KY1tTnC70KkGKvZOIm5TnDeb5O_ke9S5W9zm5Ydi7AkU8VZB5aOtn5u_m59v49HknkJJo9w4qTlMkrkRumPKljsS3Vv7YCdCi35Drq9dyEb9rmdV0_tD63AywZRk825CbyGBVe-gWchs9XUb4GPzkIqDy6WhLJST99ZTS5IVZCQzenOSaiqqsm4JIG_G93_O_jzKMt4D52yKt0qEMu0oRiWFjm1rHA2L1huEJY6NDouhenC91Z-mWmI1H0_j9MsXOgnMrsWdRc-XQ-dzNlDHhrU80qQIeTxvL3GJziZGcZkIlED3oV-K-2scS91hrCcx1IN1ODBxzea0IXPrTrdevv-F3z4_yTr8Hx3dHiQHewN93vwgnpgE1Ig-9CZTc_cR1g257NxPV1rzIHAyWOr3BXEuUjZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RBapeeBRQl0drQZG4RLtx4rV9QAhBV0Wg1R6ohLgExw8JCSVbsoD4a_w6xt4EKELcOPQcx3IyM57vs-cB8NNXf9TKV_mkqYvSnuhFUjpkKa4njOFS2FyEZhN8MBBnZ3I4BQ9NLowPq2z2xLBRm1L7M_IO6p4IPatFx9VhEcPD_t7ob-Q7SPmb1qadxkRFju39HdK3avfoEGW9TWn_1-nB76juMBDplNFxJGKuc6MQ83OkAVrFiVXSKh4bQ7WJpepamnKuGYI7pajJEZ073kMqZ-IkZirBeT_BNEeO6YnfkJ03XsAzk2SSjMkinCNpqhololP4Q4s09km7L3xhq0Sb_gfnvrqaDR6vP_8__6sFmKtxNtmfGMYiTNniK8yGeFddLQE7vQkBPvjhJCSb-qKe5eielI6EGE97S0KuVUUuCxKqeqNTWIY_H7LmFWgVZWG_ATGp0hTJqsupSZ01uUtzjWDVoikywXUbdhpZZrour-67fFxl4Zo_EdmT2Nuw-TR0NKkp8tagNa8QGQIhX81X-7AnPUamxhPZZW1YbySf1ZtOlSFYZ7GQXdl98_GzVrRhq1GtF2-_XsHq-5P8gM-oVNnJ0eB4Db5Qj3ZCXOQ6tMbXN3YDZvTt-LK6_h7sgsDFRyvXI1W4UII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunnelling+spectroscopy+of+Andreev+states+in%C2%A0graphene&rft.jtitle=Nature+physics&rft.au=Bretheau%2C+Landry&rft.au=Wang%2C+Joel+I-Jan&rft.au=Pisoni%2C+Riccardo&rft.au=Watanabe%2C+Kenji&rft.date=2017-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=8&rft.spage=756&rft.epage=760&rft_id=info:doi/10.1038%2Fnphys4110&rft.externalDocID=10_1038_nphys4110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon