Tunnelling spectroscopy of Andreev states in graphene
Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect. A normal conductor placed in good contact with a su...
Saved in:
| Published in: | Nature physics Vol. 13; no. 8; pp. 756 - 760 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
Nature Publishing Group UK
01.08.2017
Nature Publishing Group Nature Publishing Group (NPG) |
| Subjects: | |
| ISSN: | 1745-2473, 1745-2481 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect.
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties
1
,
2
. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states
3
,
4
,
5
,
6
,
7
,
8
. Spectroscopic studies of Andreev states have been performed in just a handful of systems
9
,
10
,
11
,
12
,
13
. The unique geometry, electronic structure and high mobility of graphene
14
,
15
make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials
16
,
17
,
18
. |
|---|---|
| AbstractList | Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect.
A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties
1
,
2
. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states
3
,
4
,
5
,
6
,
7
,
8
. Spectroscopic studies of Andreev states have been performed in just a handful of systems
9
,
10
,
11
,
12
,
13
. The unique geometry, electronic structure and high mobility of graphene
14
,
15
make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials
16
,
17
,
18
. A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron-hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor-graphene-superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent-phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials. A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states. Spectroscopic studies of Andreev states have been performed in just a handful of systems. The unique geometry, electronic structure and high mobility of graphene make it a novel platform for studying Andreev physics in two dimensions. In this paper, we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. Finally, this work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials. Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to establish a connection between Andreev physics at finite energy and the Josephson effect.A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties1,2. This proximity effect microscopically originates from the formation in the conductor of entangled electron–hole states, called Andreev states3,4,5,6,7,8. Spectroscopic studies of Andreev states have been performed in just a handful of systems9,10,11,12,13. The unique geometry, electronic structure and high mobility of graphene14,15 make it a novel platform for studying Andreev physics in two dimensions. Here we use a full van der Waals heterostructure to perform tunnelling spectroscopy measurements of the proximity effect in superconductor–graphene–superconductor junctions. The measured energy spectra, which depend on the phase difference between the superconductors, reveal the presence of a continuum of Andreev bound states. Moreover, our device heterostructure geometry and materials enable us to measure the Andreev spectrum as a function of the graphene Fermi energy, showing a transition between different mesoscopic regimes. Furthermore, by experimentally introducing a novel concept, the supercurrent spectral density, we determine the supercurrent–phase relation in a tunnelling experiment, thus establishing the connection between Andreev physics at finite energy and the Josephson effect. This work opens up new avenues for probing exotic topological phases of matter in hybrid superconducting Dirac materials16,17,18. |
| Author | Bretheau, Landry Wang, Joel I-Jan Watanabe, Kenji Pisoni, Riccardo Taniguchi, Takashi Jarillo-Herrero, Pablo |
| Author_xml | – sequence: 1 givenname: Landry surname: Bretheau fullname: Bretheau, Landry email: bretheau@mit.edu organization: Department of Physics, Massachusetts Institute of Technology – sequence: 2 givenname: Joel I-Jan surname: Wang fullname: Wang, Joel I-Jan email: joelwang@mit.edu organization: Department of Physics, Massachusetts Institute of Technology – sequence: 3 givenname: Riccardo surname: Pisoni fullname: Pisoni, Riccardo organization: Department of Physics, Massachusetts Institute of Technology – sequence: 4 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science – sequence: 5 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science – sequence: 6 givenname: Pablo surname: Jarillo-Herrero fullname: Jarillo-Herrero, Pablo email: pjarillo@mit.edu organization: Department of Physics, Massachusetts Institute of Technology |
| BackLink | https://www.osti.gov/servlets/purl/1473905$$D View this record in Osti.gov |
| BookMark | eNp90M1KAzEUBeAgCrbVhW8w6EphbG5mMkmWpfgHBTd1HdJMpp1SkzFJhb6Nz-KTGRkpouIqWXw3OfcM0aF11iB0BvgacMHHtlvtQgmAD9AAWElzUnI43N9ZcYyGIawxLkkFxQBV8621ZrNp7TILndHRu6Bdt8tck01s7Y15zUJU0YSste9vS6-6lbHmBB01ahPM6dc5Qk-3N_PpfT57vHuYTma5LimJOQemF7USomKECq2gMEoYxaCuia5BKGxSJqYph4VSpF5QVjWswoTVUABVxQid9--6EFsZdBuNXmmXIusoIa0jME3ookeddy9bE6Jcu623KZcsgPOKllDy_xQIQoELLHBS417pVETwppHpTxVbZ6NX7UYClp89y33PaeLyx0Tn22fld3_aq96GZOzS-G8ZfuEPVU6OmQ |
| CitedBy_id | crossref_primary_10_1126_sciadv_ads0342 crossref_primary_10_1088_1361_6633_aaafe1 crossref_primary_10_1063_5_0024124 crossref_primary_10_1038_s41467_023_42356_6 crossref_primary_10_1038_s41586_019_1148_9 crossref_primary_10_1063_5_0159952 crossref_primary_10_1103_PhysRevB_106_064508 crossref_primary_10_1088_2053_1583_acce4b crossref_primary_10_1103_PhysRevResearch_3_L032009 crossref_primary_10_1103_PhysRevResearch_1_033031 crossref_primary_10_1038_s41563_024_02079_5 crossref_primary_10_1103_PhysRevResearch_7_013189 crossref_primary_10_1038_nature26160 crossref_primary_10_1063_1_5118422 crossref_primary_10_1063_1_5021113 crossref_primary_10_1103_PhysRevB_106_214513 crossref_primary_10_1103_4mw4_4rfh crossref_primary_10_1016_j_jmmm_2023_170772 crossref_primary_10_1038_s41467_020_15322_9 crossref_primary_10_1038_s42005_022_01042_7 crossref_primary_10_1103_PhysRevResearch_6_L022053 crossref_primary_10_3762_bjnano_10_36 crossref_primary_10_1038_s41586_024_08494_7 crossref_primary_10_1038_s42005_019_0275_9 crossref_primary_10_1088_2515_7639_acd8f2 crossref_primary_10_1002_qute_202000082 crossref_primary_10_1002_adma_201803563 crossref_primary_10_1038_s43246_022_00242_6 crossref_primary_10_1016_j_cap_2019_01_012 crossref_primary_10_1126_science_aar4642 crossref_primary_10_1002_smll_202201248 crossref_primary_10_1103_PhysRevResearch_6_023256 crossref_primary_10_1038_s41467_018_06595_2 crossref_primary_10_1088_1361_648X_abff93 crossref_primary_10_1038_s41467_023_42357_5 crossref_primary_10_1103_PhysRevB_101_024516 crossref_primary_10_1103_PhysRevB_111_L180504 crossref_primary_10_1002_aelm_202000987 crossref_primary_10_1103_PhysRevResearch_5_033131 crossref_primary_10_1103_PhysRevApplied_20_054049 crossref_primary_10_1002_qute_202200080 crossref_primary_10_1038_s41565_018_0329_2 crossref_primary_10_1103_PhysRevResearch_4_023143 crossref_primary_10_1088_1402_4896_ad9c23 crossref_primary_10_1016_j_physleta_2018_12_038 crossref_primary_10_1016_j_physe_2023_115858 crossref_primary_10_1088_1402_4896_acceda crossref_primary_10_1002_adfm_202418456 crossref_primary_10_1103_PhysRevResearch_7_023173 crossref_primary_10_1103_PhysRevResearch_4_013198 crossref_primary_10_1063_1_5042327 crossref_primary_10_1038_s41563_023_01478_4 crossref_primary_10_1038_s41586_021_04364_8 crossref_primary_10_1103_PhysRevResearch_1_033004 crossref_primary_10_1002_smll_202308439 crossref_primary_10_3390_nano10051009 crossref_primary_10_3390_nano11112999 |
| Cites_doi | 10.1038/nphys1911 10.1021/nl802765x 10.1103/PhysRevLett.97.067007 10.1103/PhysRevB.46.12573 10.1038/nphys3583 10.1038/nphys1811 10.1103/RevModPhys.36.225 10.1103/PhysRevB.62.1319 10.1103/PhysRevB.77.184507 10.1103/RevModPhys.81.109 10.1103/PhysRevB.86.115412 10.1126/science.aad6203 10.1016/0031-9163(62)91369-0 10.1038/nphys3534 10.1038/16204 10.1103/PhysRevLett.81.1682 10.1038/nmat2968 10.1103/PhysRevB.58.5783 10.1103/PhysRevLett.89.207002 10.1021/nl504750f 10.1103/PhysRevLett.100.197002 10.1103/PhysRevLett.110.217005 10.1038/nphys781 10.1038/ncomms2340 10.1103/PhysRevB.44.470 10.1103/PhysRevB.93.045406 10.1038/nphys3592 10.1038/nature05555 10.1126/science.1244358 10.1103/PhysRevLett.66.3056 10.1038/nature12315 10.1006/spmi.1996.0116 10.1038/nnano.2015.156 10.1103/RevModPhys.83.407 10.1016/0038-1098(91)90201-6 |
| ContentType | Journal Article |
| Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group Aug 2017 |
| Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group Aug 2017 |
| CorporateAuthor | Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
| CorporateAuthor_xml | – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States) |
| DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U OIOZB OTOTI |
| DOI | 10.1038/nphys4110 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic OSTI.GOV - Hybrid OSTI.GOV |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1745-2481 |
| EndPage | 760 |
| ExternalDocumentID | 1473905 10_1038_nphys4110 |
| GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACSTC AFFHD AGSTI ATHPR CITATION PHGZM PQGLB 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI Q9U AADEA AADWK AAEEF AAEXX AAJMP AAPBV AAYJO AAZLF ABEEJ ABGIJ ABPTK ABVXF ACBMV ACBRV ACBYP ACIGE ACTTH ACVWB ADMDM ADQMX ADZGE AEDAW AEFTE AGEZK AGGBP AGHTU AHGBK AJDOV NYICJ OIOZB OTOTI |
| ID | FETCH-LOGICAL-c452t-817cbda9967259ca13ea9ea71dd2cd19a0e2477c581baa2db576f76027d1315a3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 95 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000406778100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1745-2473 |
| IngestDate | Thu May 18 22:36:41 EDT 2023 Sat Aug 23 13:59:06 EDT 2025 Sat Aug 23 13:05:11 EDT 2025 Sat Nov 29 08:03:36 EST 2025 Tue Nov 18 21:31:39 EST 2025 Fri Apr 11 01:29:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-817cbda9967259ca13ea9ea71dd2cd19a0e2477c581baa2db576f76027d1315a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 National Science Foundation (NSF) SC0001819; DMR-0819762; ECS-0335765; GBMF4541; TMS-094-1-A-001 USDOE Office of Science (SC), Basic Energy Sciences (BES) Taiwan Merit Scholarship Gordon and Betty Moore Foundation (United States) |
| ORCID | 0000-0003-3701-8119 0000000337018119 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/1473905 |
| PQID | 1925189090 |
| PQPubID | 27545 |
| PageCount | 5 |
| ParticipantIDs | osti_scitechconnect_1473905 proquest_journals_3188654148 proquest_journals_1925189090 crossref_citationtrail_10_1038_nphys4110 crossref_primary_10_1038_nphys4110 springer_journals_10_1038_nphys4110 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-01 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationTitle | Nature physics |
| PublicationTitleAbbrev | Nature Phys |
| PublicationYear | 2017 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Publishing Group (NPG) |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Publishing Group (NPG) |
| References | FK Wilhelm (BFnphys4110_CR35) 1998; 81 S Das Sarma (BFnphys4110_CR15) 2011; 83 Ç Girit (BFnphys4110_CR23) 2009; 9 A Lodder (BFnphys4110_CR31) 1998; 58 G Wendin (BFnphys4110_CR7) 1996; 20 NH Lindner (BFnphys4110_CR16) 2012; 2 DJ Clarke (BFnphys4110_CR17) 2013; 4 JJA Baselmans (BFnphys4110_CR36) 1999; 397 BD Josephson (BFnphys4110_CR1) 1962; 1 W Chang (BFnphys4110_CR11) 2013; 110 HB Heersche (BFnphys4110_CR21) 2007; 446 J Martin (BFnphys4110_CR32) 2008; 4 L Bretheau (BFnphys4110_CR12) 2013; 499 PF Bagwell (BFnphys4110_CR6) 1992; 46 M Ben Shalom (BFnphys4110_CR20) 2015; 12 H Le Sueur (BFnphys4110_CR9) 2008; 100 CWJ Beenakker (BFnphys4110_CR5) 1991; 66 DK Efetov (BFnphys4110_CR27) 2015; 12 J-D Pillet (BFnphys4110_CR10) 2010; 6 JJA Baselmans (BFnphys4110_CR37) 2002; 89 L Wang (BFnphys4110_CR38) 2013; 342 P San-Jose (BFnphys4110_CR18) 2015; 5 A Furusaki (BFnphys4110_CR4) 1991; 78 VE Calado (BFnphys4110_CR19) 2015; 10 F Amet (BFnphys4110_CR29) 2016; 352 L Bretheau (BFnphys4110_CR13) 2013; 3 P Samuelsson (BFnphys4110_CR8) 2000; 62 BJ van Wees (BFnphys4110_CR34) 1991; 44 PG De Gennes (BFnphys4110_CR2) 1964; 36 MT Allen (BFnphys4110_CR26) 2015; 12 JM Xue (BFnphys4110_CR33) 2011; 10 CWJ Beenakker (BFnphys4110_CR30) 2006; 97 IO Kulik (BFnphys4110_CR3) 1970; 30 X Du (BFnphys4110_CR22) 2008; 77 K Komatsu (BFnphys4110_CR25) 2012; 86 T Dirks (BFnphys4110_CR24) 2011; 7 FD Natterer (BFnphys4110_CR28) 2016; 93 JI Wang (BFnphys4110_CR39) 2015; 15 BFnphys4110_CR40 AH Castro Neto (BFnphys4110_CR14) 2009; 81 |
| References_xml | – volume: 7 start-page: 386 year: 2011 ident: BFnphys4110_CR24 publication-title: Nat. Phys. doi: 10.1038/nphys1911 – volume: 9 start-page: 198 year: 2009 ident: BFnphys4110_CR23 publication-title: Nano Lett. doi: 10.1021/nl802765x – volume: 97 start-page: 067007 year: 2006 ident: BFnphys4110_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.067007 – volume: 30 start-page: 944 year: 1970 ident: BFnphys4110_CR3 publication-title: Sov. Phys. JETP – volume: 46 start-page: 12573 year: 1992 ident: BFnphys4110_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.46.12573 – volume: 12 start-page: 328 year: 2015 ident: BFnphys4110_CR27 publication-title: Nat. Phys. doi: 10.1038/nphys3583 – volume: 6 start-page: 965 year: 2010 ident: BFnphys4110_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys1811 – volume: 2 start-page: 041002 year: 2012 ident: BFnphys4110_CR16 publication-title: Phys. Rev. X – volume: 36 start-page: 225 year: 1964 ident: BFnphys4110_CR2 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.36.225 – volume: 62 start-page: 1319 year: 2000 ident: BFnphys4110_CR8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.62.1319 – volume: 77 start-page: 184507 year: 2008 ident: BFnphys4110_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.184507 – volume: 81 start-page: 109 year: 2009 ident: BFnphys4110_CR14 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 5 start-page: 041042 year: 2015 ident: BFnphys4110_CR18 publication-title: Phys. Rev. X – volume: 86 start-page: 115412 year: 2012 ident: BFnphys4110_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.115412 – volume: 352 start-page: 966 year: 2016 ident: BFnphys4110_CR29 publication-title: Science doi: 10.1126/science.aad6203 – volume: 1 start-page: 251 year: 1962 ident: BFnphys4110_CR1 publication-title: Phys. Lett. doi: 10.1016/0031-9163(62)91369-0 – volume: 12 start-page: 128 year: 2015 ident: BFnphys4110_CR26 publication-title: Nat. Phys. doi: 10.1038/nphys3534 – volume: 397 start-page: 43 year: 1999 ident: BFnphys4110_CR36 publication-title: Nature doi: 10.1038/16204 – volume: 81 start-page: 1682 year: 1998 ident: BFnphys4110_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1682 – ident: BFnphys4110_CR40 – volume: 10 start-page: 282 year: 2011 ident: BFnphys4110_CR33 publication-title: Nat. Mater. doi: 10.1038/nmat2968 – volume: 58 start-page: 5783 year: 1998 ident: BFnphys4110_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.5783 – volume: 89 start-page: 207002 year: 2002 ident: BFnphys4110_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.207002 – volume: 15 start-page: 1898 year: 2015 ident: BFnphys4110_CR39 publication-title: Nano Lett. doi: 10.1021/nl504750f – volume: 100 start-page: 197002 year: 2008 ident: BFnphys4110_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.197002 – volume: 3 start-page: 041034 year: 2013 ident: BFnphys4110_CR13 publication-title: Phys. Rev. X – volume: 110 start-page: 217005 year: 2013 ident: BFnphys4110_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.217005 – volume: 4 start-page: 144 year: 2008 ident: BFnphys4110_CR32 publication-title: Nat. Phys. doi: 10.1038/nphys781 – volume: 4 start-page: 1348 year: 2013 ident: BFnphys4110_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms2340 – volume: 44 start-page: 470 year: 1991 ident: BFnphys4110_CR34 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.44.470 – volume: 93 start-page: 045406 year: 2016 ident: BFnphys4110_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.045406 – volume: 12 start-page: 318 year: 2015 ident: BFnphys4110_CR20 publication-title: Nat. Phys. doi: 10.1038/nphys3592 – volume: 446 start-page: 56 year: 2007 ident: BFnphys4110_CR21 publication-title: Nature doi: 10.1038/nature05555 – volume: 342 start-page: 614 year: 2013 ident: BFnphys4110_CR38 publication-title: Science doi: 10.1126/science.1244358 – volume: 66 start-page: 3056 year: 1991 ident: BFnphys4110_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.66.3056 – volume: 499 start-page: 312 year: 2013 ident: BFnphys4110_CR12 publication-title: Nature doi: 10.1038/nature12315 – volume: 20 start-page: 569 year: 1996 ident: BFnphys4110_CR7 publication-title: Superlattices Microstruct. doi: 10.1006/spmi.1996.0116 – volume: 10 start-page: 761 year: 2015 ident: BFnphys4110_CR19 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2015.156 – volume: 83 start-page: 407 year: 2011 ident: BFnphys4110_CR15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.407 – volume: 78 start-page: 299 year: 1991 ident: BFnphys4110_CR4 publication-title: Solid State Commun. doi: 10.1016/0038-1098(91)90201-6 |
| SSID | ssj0042613 |
| Score | 2.5966134 |
| Snippet | Van der Waals heterostructures provide a tunable platform for probing the Andreev bound states responsible for proximity-induced superconductivity, helping to... A normal conductor placed in good contact with a superconductor can inherit its remarkable electronic properties. This proximity effect microscopically... |
| SourceID | osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 756 |
| SubjectTerms | 639/766/119/1003 639/766/119/995 639/925/918/1052 639/925/927/1064 Atomic Carbon Classical and Continuum Physics Complex Systems Condensed Matter Physics Conductors Electronic properties electronic properties and devices electronic properties and materials Electronic structure Energy Energy measurement Energy spectra Fermi surfaces Graphene Heterostructures Josephson effect letter MATERIALS SCIENCE Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase shift Physics Proximity Proximity effect (electricity) Spectroscopic analysis Spectroscopy Spectrum analysis superconducting devices superconducting properties and materials Superconductivity Superconductor junctions Superconductors Theoretical Topology |
| Title | Tunnelling spectroscopy of Andreev states in graphene |
| URI | https://link.springer.com/article/10.1038/nphys4110 https://www.proquest.com/docview/1925189090 https://www.proquest.com/docview/3188654148 https://www.osti.gov/servlets/purl/1473905 |
| Volume | 13 |
| WOSCitedRecordID | wos000406778100013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: P5Z dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: PCBAR dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: BENPR dateStart: 20051001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1745-2481 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: M2P dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50U_DF3-LcHEV98KW4ps2SPInKhi-OIQrDl5ImKQjSznUb-N97yVqdMnzxuWkbLpfLfbm77wAuLPujkpblk0SpH3V51xciRZSSdrnWTHCTcNdsgg0GfDQSw_LCrSjTKiub6Ay1zpW9I79C3eOuZzW_Hr_7tmuUja6WLTTWoW5ZEuzGHNKXyhJbdBAuCiKpTyIWVsxCIb_K7MVBFNjC2aXzqJbjvvrha_4Kj7pTp7_z3_nuwnbpb3o3CwXZgzWT7cOmy_tUxQHQp5lLdMGfe67o0pJb5uMPL089l-to5p6rOSq818xz7NZoHA_hud97urv3y04Kvooomfo8YCrRErENQ7ijZBAaKYxkgdZE6UDIjkH5MEXRiZWS6ARRSMq6CFl1EAZUhkdQy_LMHIOnI6kIgrY0ITpKjU7SKFHotBlUScqZasBlJc9YlTTjttvFW-zC3SGPv0TfgLOvoeMFt8aqQU27KDE6BJbVVtn0HzVFxMJC0aENaFXSj8vNV8TotNKAi47orHz8vTINOK-Wd-nt3zM4-fsjTdgi9qh3SYEtqE0nM3MKG2o-fS0mbajf9gbDxzasP5Bh26nnJxW77Ro |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7BQtVeWvoS292C1Zd6idg4dmwfeqAUBAJWqNpK3IJjO9JKKNluFir-FL-RsTfhJdQbB85xrDjz8Df2zDcAXzz7o9Ge5ZOyImKpTCOlCoxSilRaK5R0uQzNJsRwKI-P1dECXLa1MD6tsvWJwVHbyvgz8g3UPRl6Vssmg3LfXfzD-Kz-sfcLhfmV0p3t0dZu1LQQiAzjdBbJWJjcagT1AnG-0XHitHJaxNZSY2OlB44yIQxH9KY1tTnC70KkGKvZOIm5TnDeb5O_ke9S5W9zm5Ydi7AkU8VZB5aOtn5u_m59v49HknkJJo9w4qTlMkrkRumPKljsS3Vv7YCdCi35Drq9dyEb9rmdV0_tD63AywZRk825CbyGBVe-gWchs9XUb4GPzkIqDy6WhLJST99ZTS5IVZCQzenOSaiqqsm4JIG_G93_O_jzKMt4D52yKt0qEMu0oRiWFjm1rHA2L1huEJY6NDouhenC91Z-mWmI1H0_j9MsXOgnMrsWdRc-XQ-dzNlDHhrU80qQIeTxvL3GJziZGcZkIlED3oV-K-2scS91hrCcx1IN1ODBxzea0IXPrTrdevv-F3z4_yTr8Hx3dHiQHewN93vwgnpgE1Ig-9CZTc_cR1g257NxPV1rzIHAyWOr3BXEuUjZ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7RBapeeBRQl0drQZG4RLtx4rV9QAhBV0Wg1R6ohLgExw8JCSVbsoD4a_w6xt4EKELcOPQcx3IyM57vs-cB8NNXf9TKV_mkqYvSnuhFUjpkKa4njOFS2FyEZhN8MBBnZ3I4BQ9NLowPq2z2xLBRm1L7M_IO6p4IPatFx9VhEcPD_t7ob-Q7SPmb1qadxkRFju39HdK3avfoEGW9TWn_1-nB76juMBDplNFxJGKuc6MQ83OkAVrFiVXSKh4bQ7WJpepamnKuGYI7pajJEZ073kMqZ-IkZirBeT_BNEeO6YnfkJ03XsAzk2SSjMkinCNpqhololP4Q4s09km7L3xhq0Sb_gfnvrqaDR6vP_8__6sFmKtxNtmfGMYiTNniK8yGeFddLQE7vQkBPvjhJCSb-qKe5eielI6EGE97S0KuVUUuCxKqeqNTWIY_H7LmFWgVZWG_ATGp0hTJqsupSZ01uUtzjWDVoikywXUbdhpZZrour-67fFxl4Zo_EdmT2Nuw-TR0NKkp8tagNa8QGQIhX81X-7AnPUamxhPZZW1YbySf1ZtOlSFYZ7GQXdl98_GzVrRhq1GtF2-_XsHq-5P8gM-oVNnJ0eB4Db5Qj3ZCXOQ6tMbXN3YDZvTt-LK6_h7sgsDFRyvXI1W4UII |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tunnelling+spectroscopy+of+Andreev+states+in%C2%A0graphene&rft.jtitle=Nature+physics&rft.au=Bretheau%2C+Landry&rft.au=Wang%2C+Joel+I-Jan&rft.au=Pisoni%2C+Riccardo&rft.au=Watanabe%2C+Kenji&rft.date=2017-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=8&rft.spage=756&rft.epage=760&rft_id=info:doi/10.1038%2Fnphys4110&rft.externalDocID=10_1038_nphys4110 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |