Balanced Functional Module Detection in genomic data

Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variab...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics Advances Ročník 1; číslo 1; s. vbab018
Hlavní autoři: Tritchler, David, Towle-Miller, Lorin M, Miecznikowski, Jeffrey C
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Oxford University Press 2021
Témata:
ISSN:1367-4803, 2635-0041, 2635-0041
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks. Results In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property. Supplementary information Supplementary data are available at Bioinformatics Advances online.
AbstractList Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks. Results In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks. Results In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property. Supplementary information Supplementary data are available at Bioinformatics Advances online.
High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks. In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property. Supplementary data are available at online.
High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks.MotivationHigh-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the underlying biological mechanism affecting the target, it is important to discover the complete set of relevant variables. Thus variable selection is a primary goal, which differs from a prediction criterion. Of special interest are functional modules, cooperating sets of variables affecting the target which can be characterized by a graph. In applications such as social networks, the concept of balance in undirected signed graphs characterizes the consistency of associations within the network. This property requires that the module variables have a joint effect on the target outcome with no internal conflict, an efficiency that may be applied to biological networks.In this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property.ResultsIn this paper, we model genomic variables in signed undirected graphs for applications where the set of predictor variables influences an outcome. Consequences of the balance property are exploited to implement a new module discovery algorithm, balanced Functional Module Detection (bFMD), which selects a subset of variables from high-dimensional data that compose a balanced functional module. Our bFMD algorithm performed favorably in simulations as compared to other module detection methods. Additionally, bFMD detected interpretable results in an application using RNA-seq data obtained from subjects with Uterine Corpus Endometrial Carcinoma using the percentage of tumor invasion as the outcome of interest. The variables selected by bFMD have improved interpretability due to the logical consistency afforded by the balance property.Supplementary data are available at Bioinformatics Advances online.Supplementary informationSupplementary data are available at Bioinformatics Advances online.
Author Miecznikowski, Jeffrey C
Tritchler, David
Towle-Miller, Lorin M
Author_xml – sequence: 1
  givenname: David
  surname: Tritchler
  fullname: Tritchler, David
– sequence: 2
  givenname: Lorin M
  orcidid: 0000-0002-6578-5748
  surname: Towle-Miller
  fullname: Towle-Miller, Lorin M
  email: lorinmil@buffalo.edu
– sequence: 3
  givenname: Jeffrey C
  surname: Miecznikowski
  fullname: Miecznikowski, Jeffrey C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36700111$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1LAzEUDKJorV49yoIXPWzN126ai6D1ExQveg7Z5LVGtknd7Bb896a2FRVECATemxnmzeyiTR88IHRA8IBgyU4rF7Sdn84rXWEy3EA9WrIix5iTTdQjrBQ5H2K2g_ZjfMUYUyFKwtk22kkrjAkhPcQvdK29AZtdd960LnhdZw_BdjVkl9DC5yhzPpuAD1NnMqtbvYe2xrqOsL_6--j5-uppdJvfP97cjc7vc8ML2uaFwLSQJRiAsWQVjDUpRMk1NZYwbXWZhgIkKWy6ZmhwZcEYA4xyRis55KyPzpa6s66agjXg20bXata4qW7eVdBO_dx496ImYa6kILgkNAkcrwSa8NZBbNXURQN1OhlCFxUVpZRSpJegR7-gr6FrUhpRMSJTmIx9Ch5-d_RlZR1oAvAlwDQhxgbGyrhWL0JMBl2tCFaL6tSyOrWqLtEGv2hr5T8JJ0tC6Gb_YT8AGt2r6Q
CitedBy_id crossref_primary_10_1186_s12864_025_11769_6
Cites_doi 10.1186/1471-2105-9-559
10.1093/oso/9780198753919.001.0001
10.1073/pnas.0914005107
10.1371/journal.pone.0255579
10.1080/01621459.1980.10477580
10.1007/978-3-642-35494-6_20
10.1186/1471-2105-11-18
10.1038/nature12113
10.1038/s41388-021-01655-2
10.1307/mmj/1028989917
10.1186/s13637-016-0052-y
10.2202/1544-6115.1128
10.1198/016214505000000628
10.1515/sagmb-2015-0026
10.1007/s10852-005-9022-1
10.1007/978-1-4419-8819-5
10.1126/science.1075090
10.1126/science.298.5594.824
10.1093/nar/gkn923
10.2202/1544-6115.1261
10.1371/journal.pcbi.1002975
10.1038/ng.2764
10.1038/nprot.2008.211
10.1016/j.jbankfin.2015.08.034
10.1111/j.2517-6161.1996.tb02080.x
10.1371/journal.pbio.0020108
10.1214/aoms/1177732676
10.1007/978-1-4612-0493-0
10.1016/S1470-2045(10)70265-5
10.1137/1.9780898719512
10.1111/j.1751-5823.2012.00195.x
10.1002/ijc.30906
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. 2021
The Author(s) 2021. Published by Oxford University Press.
The Author(s) 2021. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. 2021
– notice: The Author(s) 2021. Published by Oxford University Press.
– notice: The Author(s) 2021. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1093/bioadv/vbab018
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2635-0041
ExternalDocumentID PMC9710612
36700111
10_1093_bioadv_vbab018
10.1093/bioadv/vbab018
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID ---
-E4
-~X
.-4
.2P
.DC
.GJ
.I3
0R~
1TH
23N
2WC
4.4
48X
53G
5GY
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
ABEFU
ABEJV
ABEUO
ABIXL
ABNGD
ABNKS
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACMRT
ACPRK
ACUFI
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
AQDSO
ARIXL
ASPBG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZVOD
BAWUL
BAYMD
BCRHZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IOX
J21
JXSIZ
KAQDR
KOP
KQ8
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
RNI
RNS
ROL
ROX
RPM
RUSNO
RW1
RXO
RZF
RZO
SV3
TEORI
TJP
TLC
TOX
TR2
VH1
W8F
WOQ
X7H
XJT
YAYTL
YKOAZ
YXANX
ZGI
ZKX
~91
~KM
AAYXX
ABDBF
ABGNP
BBNVY
CITATION
HCIFZ
M~E
ZCN
NPM
7X8
5PM
ID FETCH-LOGICAL-c452t-5702596eceef93befa15764a2cd13ada693b7e915d1098c0bdeccce32432b9843
IEDL.DBID TOX
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001142351000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
2635-0041
IngestDate Thu Aug 21 18:38:09 EDT 2025
Fri Sep 05 13:12:49 EDT 2025
Fri Sep 19 20:56:55 EDT 2025
Wed Feb 19 02:25:48 EST 2025
Sat Nov 29 03:11:03 EST 2025
Tue Nov 18 21:52:33 EST 2025
Wed Jan 22 08:16:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-5702596eceef93befa15764a2cd13ada693b7e915d1098c0bdeccce32432b9843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6578-5748
OpenAccessLink https://dx.doi.org/10.1093/bioadv/vbab018
PMID 36700111
PQID 3191363312
PQPubID 7215308
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710612
proquest_miscellaneous_2769997997
proquest_journals_3191363312
pubmed_primary_36700111
crossref_citationtrail_10_1093_bioadv_vbab018
crossref_primary_10_1093_bioadv_vbab018
oup_primary_10_1093_bioadv_vbab018
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Bioinformatics Advances
PublicationTitleAlternate Bioinform Adv
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Huang (2022111617195338400_vbab018-B14) 2009; 37
Schweizer (2022111617195338400_vbab018-B25) 2001; 61
Wermuth (2022111617195338400_vbab018-B33) 2012; 80
Harary (2022111617195338400_vbab018-B12) 1953; 2
Wermuth (2022111617195338400_vbab018-B34) 2013
Wermuth (2022111617195338400_vbab018-B32) 1980; 75
Milo (2022111617195338400_vbab018-B22) 2002; 298
Miecznikowski (2022111617195338400_vbab018-B21) 2016; 15
Meyer (2022111617195338400_vbab018-B20) 2000
Mackey (2022111617195338400_vbab018-B19) 2009
Sigg (2022111617195338400_vbab018-B27) 2008
Langfelder (2022111617195338400_vbab018-B16) 2008; 9
Bair (2022111617195338400_vbab018-B3) 2006; 101
Kempers (2022111617195338400_vbab018-B15) 2011; 12
Bianconi (2022111617195338400_vbab018-B4) 2018
Lee (2022111617195338400_vbab018-B17) 2002; 298
Levine (2022111617195338400_vbab018-B18) 2013; 497
Wright (2022111617195338400_vbab018-B36) 1934; 5
Tibshirani (2022111617195338400_vbab018-B29) 1996; 58
Anufriev (2022111617195338400_vbab018-B1) 2015; 61
Zhang (2022111617195338400_vbab018-B38) 2013; 9
Ge (2022111617195338400_vbab018-B11) 2021; 40
Whittaker (2022111617195338400_vbab018-B35) 2009
Bourgon (2022111617195338400_vbab018-B6) 2010; 107
Edwards (2022111617195338400_vbab018-B9) 2010; 11
Reynolds (2022111617195338400_vbab018-B24) 2006; 5
Towle-Miller (2022111617195338400_vbab018-B30) 2021
Sulaimanov (2022111617195338400_vbab018-B28) 2016; 2016
Bair (2022111617195338400_vbab018-B2) 2004; 2
Boronow (2022111617195338400_vbab018-B5) 1984; 63
Chartrand (2022111617195338400_vbab018-B7) 1977
Moravcikova (2022111617195338400_vbab018-B23) 2017; 141
Zhang (2022111617195338400_vbab018-B37) 2005; 4
Fallah (2022111617195338400_vbab018-B10) 2008; 7
Edwards (2022111617195338400_vbab018-B8) 2000
Sherman (2022111617195338400_vbab018-B26) 2009; 4
Horvath (2022111617195338400_vbab018-B13) 2011
Weinstein (2022111617195338400_vbab018-B31) 2013; 45
References_xml – volume: 9
  start-page: 559
  year: 2008
  ident: 2022111617195338400_vbab018-B16
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume-title: Multilayer Networks: Structure and Function
  year: 2018
  ident: 2022111617195338400_vbab018-B4
  doi: 10.1093/oso/9780198753919.001.0001
– volume: 107
  start-page: 9546
  year: 2010
  ident: 2022111617195338400_vbab018-B6
  article-title: Independent filtering increases detection power for high-throughput experiments
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0914005107
– volume: 61
  start-page: 2813
  year: 2001
  ident: 2022111617195338400_vbab018-B25
  article-title: Lack of MSH2 and MSH6 characterizes endometrial but not colon carcinomas in hereditary nonpolyposis colorectal cancer
  publication-title: Cancer Res
– year: 2021
  ident: 2022111617195338400_vbab018-B30
  article-title: SuMO-Fil: Supervised multi-omic fildasdfering prior to performing network analysis
  publication-title: Plos One
  doi: 10.1371/journal.pone.0255579
– volume: 75
  start-page: 963
  year: 1980
  ident: 2022111617195338400_vbab018-B32
  article-title: Linear recursive equations, covariance selection, and path analysis
  publication-title: J. Am. Stat. Assoc
  doi: 10.1080/01621459.1980.10477580
– start-page: 331
  volume-title: Robustness and Complex Data Structures
  year: 2013
  ident: 2022111617195338400_vbab018-B34
  doi: 10.1007/978-3-642-35494-6_20
– volume: 11
  start-page: 18
  year: 2010
  ident: 2022111617195338400_vbab018-B9
  article-title: Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-18
– volume: 497
  start-page: 67
  year: 2013
  ident: 2022111617195338400_vbab018-B18
  article-title: Integrated genomic characterization of endometrial carcinoma
  publication-title: Nature
  doi: 10.1038/nature12113
– volume: 40
  start-page: 2323
  year: 2021
  ident: 2022111617195338400_vbab018-B11
  article-title: Tektin4 loss promotes triple-negative breast cancer metastasis through HDAC6-mediated tubulin deacetylation and increases sensitivity to HDAC6 inhibitor
  publication-title: Oncogene
  doi: 10.1038/s41388-021-01655-2
– volume: 2
  start-page: 143
  year: 1953
  ident: 2022111617195338400_vbab018-B12
  article-title: On the notion of balance of a signed graph
  publication-title: Michigan Math. J
  doi: 10.1307/mmj/1028989917
– volume: 2016
  start-page: 19
  year: 2016
  ident: 2022111617195338400_vbab018-B28
  article-title: Graph reconstruction using covariance-based methods
  publication-title: EURASIP J. Bioinformatics Syst. Biol
  doi: 10.1186/s13637-016-0052-y
– volume: 4
  start-page: Article17
  year: 2005
  ident: 2022111617195338400_vbab018-B37
  article-title: A general framework for weighted gene co-expression network analysis
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.2202/1544-6115.1128
– volume: 63
  start-page: 825
  year: 1984
  ident: 2022111617195338400_vbab018-B5
  article-title: Surgical staging in endometrial cancer: clinical-pathologic findings of a prospective study
  publication-title: Obstet. Gynecol
– volume: 101
  start-page: 119
  year: 2006
  ident: 2022111617195338400_vbab018-B3
  article-title: Prediction by supervised principal components
  publication-title: J. Am. Stat. Assoc
  doi: 10.1198/016214505000000628
– volume: 15
  start-page: 1
  year: 2016
  ident: 2022111617195338400_vbab018-B21
  article-title: Identification of consistent functional genetic modules
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.1515/sagmb-2015-0026
– volume: 5
  start-page: 475
  year: 2006
  ident: 2022111617195338400_vbab018-B24
  article-title: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms
  publication-title: J. Math. Modell. Algorithms
  doi: 10.1007/s10852-005-9022-1
– start-page: 1017
  volume-title: Advances in Neural Information Processing Systems 21
  year: 2009
  ident: 2022111617195338400_vbab018-B19
– volume-title: Weighted Network Analysis
  year: 2011
  ident: 2022111617195338400_vbab018-B13
  doi: 10.1007/978-1-4419-8819-5
– volume: 298
  start-page: 799
  year: 2002
  ident: 2022111617195338400_vbab018-B17
  article-title: Transcriptional regulatory networks in Saccharomyces Cerevisiae
  publication-title: Science
  doi: 10.1126/science.1075090
– volume: 298
  start-page: 824
  year: 2002
  ident: 2022111617195338400_vbab018-B22
  article-title: Network motifs: simple building blocks of complex networks
  publication-title: Science
  doi: 10.1126/science.298.5594.824
– volume: 37
  start-page: 1
  year: 2009
  ident: 2022111617195338400_vbab018-B14
  article-title: Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
– volume-title: Graphical Models in Applied Multivariate Statistics
  year: 2009
  ident: 2022111617195338400_vbab018-B35
– volume: 7
  start-page: Article24
  year: 2008
  ident: 2022111617195338400_vbab018-B10
  article-title: Estimating number of clusters based on a general similarity matrix with application to microarray data
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.2202/1544-6115.1261
– volume-title: Introductory Graph Theory
  year: 1977
  ident: 2022111617195338400_vbab018-B7
– volume: 9
  start-page: e1002975
  year: 2013
  ident: 2022111617195338400_vbab018-B38
  article-title: Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment
  publication-title: PLoS Comput. Biol
  doi: 10.1371/journal.pcbi.1002975
– volume: 45
  start-page: 1113
  year: 2013
  ident: 2022111617195338400_vbab018-B31
  article-title: The Cancer Genome Atlas Pan-cancer Analysis Project
  publication-title: Nature Genetics
  doi: 10.1038/ng.2764
– volume: 4
  start-page: 44
  year: 2009
  ident: 2022111617195338400_vbab018-B26
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nat. Protoc
  doi: 10.1038/nprot.2008.211
– volume: 61
  start-page: S251
  year: 2015
  ident: 2022111617195338400_vbab018-B1
  article-title: Connecting the dots: econometric methods for uncovering networks with an application to the Australian Financial Institutions
  publication-title: J. Banking Finance
  doi: 10.1016/j.jbankfin.2015.08.034
– start-page: 960
  year: 2008
  ident: 2022111617195338400_vbab018-B27
  article-title: Expectation-maximization for sparse and non-negative PCA
– volume: 58
  start-page: 267
  year: 1996
  ident: 2022111617195338400_vbab018-B29
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 2
  start-page: e108
  year: 2004
  ident: 2022111617195338400_vbab018-B2
  article-title: Semi-supervised methods to predict patient survival from gene expression data
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.0020108
– volume: 5
  start-page: 61
  year: 1934
  ident: 2022111617195338400_vbab018-B36
  article-title: The method of path coefficients
  publication-title: Ann. Math. Stat
  doi: 10.1214/aoms/1177732676
– volume-title: Introduction to Graphical Modeling
  year: 2000
  ident: 2022111617195338400_vbab018-B8
  doi: 10.1007/978-1-4612-0493-0
– volume: 12
  start-page: 49
  year: 2011
  ident: 2022111617195338400_vbab018-B15
  article-title: Risk of colorectal and endometrial cancers in EPCAM deletion-positive lynch syndrome: a cohort study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(10)70265-5
– volume-title: Matrix Analysis and Applied Linear Algebra
  year: 2000
  ident: 2022111617195338400_vbab018-B20
  doi: 10.1137/1.9780898719512
– volume: 80
  start-page: 415
  year: 2012
  ident: 2022111617195338400_vbab018-B33
  article-title: Traceable regressions
  publication-title: Int. Stat. Rev
  doi: 10.1111/j.1751-5823.2012.00195.x
– volume: 141
  start-page: 2050
  year: 2017
  ident: 2022111617195338400_vbab018-B23
  article-title: Bok displays cell death-independent tumor suppressor activity in non-small-cell lung carcinoma
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30906
SSID ssj0002776143
ssj0005056
Score 2.3601599
Snippet Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For...
High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For understanding the...
Motivation High-dimensional genomic data can be analyzed to understand the effects of variables on a target variable such as a clinical outcome. For...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage vbab018
SubjectTerms Algorithms
Bioinformatics
Genomics
Original
Social organization
Uterine cancer
Variables
Title Balanced Functional Module Detection in genomic data
URI https://www.ncbi.nlm.nih.gov/pubmed/36700111
https://www.proquest.com/docview/3191363312
https://www.proquest.com/docview/2769997997
https://pubmed.ncbi.nlm.nih.gov/PMC9710612
Volume 1
WOSCitedRecordID wos001142351000025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2635-0041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002776143
  issn: 1367-4803
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2635-0041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002776143
  issn: 1367-4803
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2635-0041
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2635-0041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002776143
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2635-0041
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61CKReaCmFpqWrFCFxiojtJLaPfbDiAu0BpL1Fjj0WkSBbsQ-JS397x0lIWQRqkaIc4lEy8jjz8vgbgAONQjPteZKKTCaZy5H0IPrEM58KLJxi1rTNJuTZmZpM9M8eLHr2yBa-FkdVPTVuebSsTJWycKyX5Sr0Kjj_MRmyKVxSOJ791cHBrncnrogBlYoBrvHh61bM0coRt3ue5sOCyXsWaPz6Gby_gc3ezYy_dOtiC15g8xY2usaTt9uQfQ0VjRZdPCa71qUD49OpW1xh_B3nbXlWE9dNHCBcr2sbh0LSd3AxPj7_dpL0_RMSm-V8nuSSHBpdINlBr0WF3jCKLjLDrWPCOFPQQ4ma5Y54VTatHMnTIrlYgldaZWIH1pppg-8hLhiziojRUvzhKSgxHpnTTqEPmHAiguRuGkvbg4uHHhdXZbfJLcpuJsp-JiI4HOh_dbAaT1Luk1T-SbR3J7Sy_wdnJSkXkr8QjEfweRimvydsiZgGp4tZyWVBHrKkK4LdTsbDpwK0HWk_FoFckf5AEJC5V0ea-rJF6NYyRNr8w__w_hFe8VAn06Z19mBtfrPAT7Bul_N6djOCl3KiRm2mgO6nv49H7cL_A2Hv_yA
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balanced+Functional+Module+Detection+in+genomic+data&rft.jtitle=Bioinformatics+advances&rft.au=Tritchler%2C+David&rft.au=Towle-Miller%2C+Lorin+M&rft.au=Miecznikowski%2C+Jeffrey+C&rft.date=2021&rft.issn=2635-0041&rft.eissn=2635-0041&rft.volume=1&rft.issue=1&rft.spage=vbab018&rft_id=info:doi/10.1093%2Fbioadv%2Fvbab018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon