Learning from small medical data—robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder
Abstract Motivation Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from usin...
Saved in:
| Published in: | Bioinformatics advances Vol. 3; no. 1; p. vbac100 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Oxford University Press
2023
|
| Subjects: | |
| ISSN: | 2635-0041, 2635-0041 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Motivation
Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction.
Results
We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening.
Availability and implementation
The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/.
Supplementary information
Supplementary data are available at Bioinformatics Advances online. |
|---|---|
| AbstractList | Cancer is one of the world's leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction.
We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (
) as a structured machine-learning framework for cancer prognosis prediction.
incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively.
achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that
still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC).
is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening.
The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/.
Supplementary data are available at
online. Cancer is one of the world's leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction.MotivationCancer is one of the world's leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction.We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening.ResultsWe propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening.The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/.Availability and implementationThe source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/.Supplementary data are available at Bioinformatics Advances online.Supplementary informationSupplementary data are available at Bioinformatics Advances online. Abstract Motivation Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction. Results We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening. Availability and implementation The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/. Supplementary information Supplementary data are available at Bioinformatics Advances online. Motivation Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data types. Numerous challenges, such as censorship, high dimensionality and small sample size, prevent researchers from using deep learning models for precise prediction. Results We propose a robust Semi-supervised Cancer prognosis classifier with bAyesian variational autoeNcoder (SCAN) as a structured machine-learning framework for cancer prognosis prediction. SCAN incorporates semi-supervised learning for predicting 5-year disease-specific survival and overall survival in breast and non-small cell lung cancer (NSCLC) patients, respectively. SCAN achieved significantly better AUROC scores than all existing benchmarks (81.73% for breast cancer; 80.46% for NSCLC), including our previously proposed bimodal neural network classifiers (77.71% for breast cancer; 78.67% for NSCLC). Independent validation results showed that SCAN still achieved better AUROC scores (74.74% for breast; 72.80% for NSCLC) than the bimodal neural network classifiers (64.13% for breast; 67.07% for NSCLC). SCAN is general and can potentially be trained on more patient data. This paves the foundation for personalized medicine for early cancer risk screening. Availability and implementation The source codes reproducing the main results are available on GitHub: https://gitfront.io/r/user-4316673/36e8714573f3fbfa0b24690af5d1a9d5ca159cf4/scan/. Supplementary information Supplementary data are available at Bioinformatics Advances online. |
| Author | Hsu, Te-Cheng Lin, Che |
| Author_xml | – sequence: 1 givenname: Te-Cheng surname: Hsu fullname: Hsu, Te-Cheng – sequence: 2 givenname: Che orcidid: 0000-0002-4986-311X surname: Lin fullname: Lin, Che email: chelin@ntu.edu.tw |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36698767$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUctu1TAQtVARLaVblsgSG1ik9SNx4g0SVLykK7GBtTV2JreuEjvYSVDFho_gC_kS0t5LVSohVh55zjkzZ85jchBiQEKecnbKmZZn1kdol7PFguOMPSBHQsmqYKzkB3fqQ3KS8yVjTNS14qV8RA6lUrqpVX1Evm8QUvBhS7sUB5oH6Hs6YOsd9LSFCX79-JminfNEMw6-yPOIafEZW-ogOEx0THEbYvaZuh5y9p1fP7_56YK-gSvMHgJdIHmYfAyrJsxTxOBii-kJedhBn_Fk_x6TL-_efj7_UGw-vf94_npTuLISUyF4pZVymnMrsbRNh13DmWhEZVtVlhzAWtdYixU60Tmo9OpTWGWZQw1SymPyaqc7zna15jBMCXozJj9AujIRvPm7E_yF2cbF6EYKrZpV4MVeIMWvM-bJDD477HsIGOdsRK201lV5M-v5PehlnNNqPBvJtZCCl8214LO7G92u8ieXFXC6A7gUc07Y3UI4M9fZm132Zp_9SijvEZyfbm6-OvL9v2kvd7Q4j_8b8Rvwr8lI |
| CitedBy_id | crossref_primary_10_7759_cureus_82310 crossref_primary_10_1007_s10462_024_10768_5 crossref_primary_10_3390_info15050246 crossref_primary_10_3389_fgene_2023_1199087 crossref_primary_10_1002_wcms_70042 |
| Cites_doi | 10.1158/0008-5472.CAN-13-2775 10.1016/S0140-6736(16)30958-8 10.1158/1078-0432.CCR-06-3045 10.1172/JCI45014 10.1038/nature10983 10.1158/1078-0432.CCR-06-1109 10.3390/ht8010004 10.1023/A:1010933404324 10.3322/caac.21551 10.1007/s11704-020-0025-x 10.1016/j.patrec.2005.10.010 10.1016/S0304-3800(02)00064-9 10.1002/ijc.29210 10.1093/swr/30.1.19 10.3390/fi4030621 10.1038/sj.bjc.6603494 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.1145/1961189.1961199 10.1007/978-3-030-53352-6_8 10.1109/TCBB.2018.2806438 10.1186/bcr1639 10.1007/s11634-017-0285-y 10.2196/medinform.8960 10.4097/kjae.2013.64.5.402 10.1016/j.metabol.2015.10.007 10.1200/JCO.2007.12.0352 10.1038/bjc.2014.492 10.1038/ncomms11479 10.1093/bib/bbu003 10.1038/s41598-020-61588-w 10.1038/s41598-018-24271-9 10.1093/neuonc/noaa028 10.1371/journal.pone.0118432 10.1109/JBHI.2017.2767063 10.1038/s41598-021-92864-y 10.1109/JBHI.2016.2636665 10.1038/35021093 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023. Published by Oxford University Press. 2023 The Author(s) 2023. Published by Oxford University Press. The Author(s) 2023. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. 2023 – notice: The Author(s) 2023. Published by Oxford University Press. – notice: The Author(s) 2023. Published by Oxford University Press. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
| DOI | 10.1093/bioadv/vbac100 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: PIMPY name: ProQuest - Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2635-0041 |
| ExternalDocumentID | PMC9832968 36698767 10_1093_bioadv_vbac100 10.1093/bioadv/vbac100 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: MOST 110-2221-E-002-112-MY3 |
| GroupedDBID | 0R~ ABDBF ABEJV ABGNP ABXVV ALMA_UNASSIGNED_HOLDINGS AMNDL GROUPED_DOAJ M~E OK1 RPM TOX ZCN AAYXX AFFHD AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY PQGLB NPM 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
| ID | FETCH-LOGICAL-c452t-215966c911b3e4b8fef8102825bd6441aabbc8bbe5ec2fca597762b6b0ce9a333 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001124263600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2635-0041 |
| IngestDate | Tue Nov 04 02:06:34 EST 2025 Sun Nov 09 10:17:59 EST 2025 Fri Sep 19 20:58:16 EDT 2025 Wed Feb 19 02:25:46 EST 2025 Sat Nov 29 03:11:04 EST 2025 Tue Nov 18 21:03:46 EST 2025 Wed Apr 02 07:05:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2023. Published by Oxford University Press. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-215966c911b3e4b8fef8102825bd6441aabbc8bbe5ec2fca597762b6b0ce9a333 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4986-311X |
| OpenAccessLink | https://www.proquest.com/docview/3192321488?pq-origsite=%requestingapplication% |
| PMID | 36698767 |
| PQID | 3192321488 |
| PQPubID | 7215308 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9832968 proquest_miscellaneous_2769995433 proquest_journals_3192321488 pubmed_primary_36698767 crossref_primary_10_1093_bioadv_vbac100 crossref_citationtrail_10_1093_bioadv_vbac100 oup_primary_10_1093_bioadv_vbac100 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Bioinformatics advances |
| PublicationTitleAlternate | Bioinform Adv |
| PublicationYear | 2023 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Dusenberry (2023011113332395000_vbac100-B16) 2020 Lehmann (2023011113332395000_vbac100-B38) 2011; 121 Papadaki (2023011113332395000_vbac100-B41) 2014; 111 Kingma (2023011113332395000_vbac100-B32) 2013 Che (2023011113332395000_vbac100-B10) 2018; 8 Carey (2023011113332395000_vbac100-B8) 2007; 13 Gao (2023011113332395000_vbac100-B21) 2020 Baeuerle (2023011113332395000_vbac100-B2) 2007; 96 AbuKhousa (2023011113332395000_vbac100-B1) 2012; 4 Shickel (2023011113332395000_vbac100-B49) 2018; 22 Ravì (2023011113332395000_vbac100-B46) 2017; 21 Kingma (2023011113332395000_vbac100-B33) 2014 Dent (2023011113332395000_vbac100-B14) 2007; 13 Siegel (2023011113332395000_vbac100-B50) 2019; 69 Olden (2023011113332395000_vbac100-B40) 2002; 154 Barron (2023011113332395000_vbac100-B3) 2016; 65 Beaulieu-Jones (2023011113332395000_vbac100-B4) 2018; 6 Hsu (2023011113332395000_vbac100-B26) 2020 Breiman (2023011113332395000_vbac100-B7) 2001; 45 Jahanian (2023011113332395000_vbac100-B30) 2021 Hastie (2023011113332395000_vbac100-B24) 2020 Sun (2023011113332395000_vbac100-B51) 2019; 16 Wei (2023011113332395000_vbac100-B53) 2022; 16 Zhao (2023011113332395000_vbac100-B57) 2015; 16 Ben Brahim (2023011113332395000_vbac100-B5) 2018; 12 Goldstein (2023011113332395000_vbac100-B22) 2015 Saito (2023011113332395000_vbac100-B47) 2015; 10 Fawcett (2023011113332395000_vbac100-B17) 2006; 27 Kingma (2023011113332395000_vbac100-B34) 2015 Ferlay (2023011113332395000_vbac100-B18) 2015; 136 Lai (2023011113332395000_vbac100-B35) 2020; 10 Zhu (2023011113332395000_vbac100-B58) 2004 Cheng (2023011113332395000_vbac100-B12) 2021; 11 Tomczak (2023011113332395000_vbac100-B52) 2015; 19 Perou (2023011113332395000_vbac100-B43) 2000; 406 Hügle (2023011113332395000_vbac100-B28) 2021 Saunders (2023011113332395000_vbac100-B48) 2006; 30 Powers (2023011113332395000_vbac100-B45) 2020 Wu (2023011113332395000_vbac100-B55) 2020; 2 Hirsch (2023011113332395000_vbac100-B25) 2017; 389 Chen (2023011113332395000_vbac100-B11) 2014; 74 Dunnwald (2023011113332395000_vbac100-B15) 2007; 9 Pignon (2023011113332395000_vbac100-B44) 2008 Wu (2023011113332395000_vbac100-B54) 2019; 8 Bishop (2023011113332395000_vbac100-B6) 2006 Chang (2023011113332395000_vbac100-B9) 2011; 2 Pereira (2023011113332395000_vbac100-B42) 2016; 7 Curtis (2023011113332395000_vbac100-B13) 2012; 486 Hsu (2023011113332395000_vbac100-B27) 2021 Indyk (2023011113332395000_vbac100-B29) 1998 Futoma (2023011113332395000_vbac100-B20) 2017 Münsterberg (2023011113332395000_vbac100-B39) 2020; 22 Zeng (2023011113332395000_vbac100-B56) 2015; 2016 Kang (2023011113332395000_vbac100-B31) 2013; 64 Harrell (2023011113332395000_vbac100-B23) 1996; 15 Lakshminarayanan (2023011113332395000_vbac100-B36) 2017 Fortuin (2023011113332395000_vbac100-B19) 2020 Lau (2023011113332395000_vbac100-B37) 2007; 25 |
| References_xml | – start-page: 243 year: 2017 ident: 2023011113332395000_vbac100-B20 – volume: 74 start-page: 2892 year: 2014 ident: 2023011113332395000_vbac100-B11 article-title: A meta-analysis of lung cancer gene expression identifies PTK7 as a survival gene in lung adenocarcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-2775 – start-page: 1651 year: 2020 ident: 2023011113332395000_vbac100-B19 – start-page: 604 year: 1998 ident: 2023011113332395000_vbac100-B29 – volume: 389 start-page: 299 year: 2017 ident: 2023011113332395000_vbac100-B25 article-title: Lung cancer: current therapies and new targeted treatments publication-title: Lancet doi: 10.1016/S0140-6736(16)30958-8 – volume-title: arXiv preprint year: 2021 ident: 2023011113332395000_vbac100-B30 – volume: 13 start-page: 4429 year: 2007 ident: 2023011113332395000_vbac100-B14 article-title: Triple-negative breast cancer: clinical features and patterns of recurrence publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-06-3045 – volume: 121 start-page: 2750 year: 2011 ident: 2023011113332395000_vbac100-B38 article-title: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies publication-title: J. Clin. Invest doi: 10.1172/JCI45014 – volume-title: Adv. Neural Inf. Process. Syst. year: 2014 ident: 2023011113332395000_vbac100-B33 – start-page: 5669 volume-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) year: 2020 ident: 2023011113332395000_vbac100-B26 – volume-title: arXiv preprint arXiv:2010.16061 year: 2020 ident: 2023011113332395000_vbac100-B45 – volume: 486 start-page: 346 year: 2012 ident: 2023011113332395000_vbac100-B13 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – year: 2008 ident: 2023011113332395000_vbac100-B44 – volume: 13 start-page: 2329 year: 2007 ident: 2023011113332395000_vbac100-B8 article-title: The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes publication-title: Clin. Cancer Res doi: 10.1158/1078-0432.CCR-06-1109 – volume: 8 start-page: 4 year: 2019 ident: 2023011113332395000_vbac100-B54 article-title: A selective review of multi-level omics data integration using variable selection publication-title: High Throughput doi: 10.3390/ht8010004 – volume: 45 start-page: 5 year: 2001 ident: 2023011113332395000_vbac100-B7 article-title: Random forests publication-title: Mach. Learn doi: 10.1023/A:1010933404324 – start-page: 2030 volume-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) year: 2021 ident: 2023011113332395000_vbac100-B27 – volume: 69 start-page: 7 year: 2019 ident: 2023011113332395000_vbac100-B50 article-title: Cancer statistics, 2019 publication-title: CA Cancer J. Clin doi: 10.3322/caac.21551 – volume-title: Adv. Neural Inf. Process. Syst. year: 2015 ident: 2023011113332395000_vbac100-B34 – volume: 16 start-page: 162601 year: 2022 ident: 2023011113332395000_vbac100-B53 article-title: Cancer classification with data augmentation based on generative adversarial networks publication-title: Front. Comput. Sci doi: 10.1007/s11704-020-0025-x – volume: 27 start-page: 861 year: 2006 ident: 2023011113332395000_vbac100-B17 article-title: An introduction to ROC analysis publication-title: Pattern Recognit. Lett doi: 10.1016/j.patrec.2005.10.010 – volume: 154 start-page: 135 year: 2002 ident: 2023011113332395000_vbac100-B40 article-title: Illuminating the ‘black box’: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol. Model doi: 10.1016/S0304-3800(02)00064-9 – volume: 136 start-page: E359 year: 2015 ident: 2023011113332395000_vbac100-B18 article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int. J. Cancer doi: 10.1002/ijc.29210 – volume: 30 start-page: 19 year: 2006 ident: 2023011113332395000_vbac100-B48 article-title: Imputing missing data: a comparison of methods for social work researchers publication-title: Soc. Work Res doi: 10.1093/swr/30.1.19 – volume: 4 start-page: 621 year: 2012 ident: 2023011113332395000_vbac100-B1 article-title: e-Health cloud: opportunities and challenges publication-title: Future Internet doi: 10.3390/fi4030621 – volume: 96 start-page: 417 year: 2007 ident: 2023011113332395000_vbac100-B2 article-title: EpCAM (CD326) finding its role in cancer publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6603494 – volume: 15 start-page: 361 year: 1996 ident: 2023011113332395000_vbac100-B23 article-title: Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat. Med doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – volume: 2 start-page: 1 year: 2011 ident: 2023011113332395000_vbac100-B9 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol doi: 10.1145/1961189.1961199 – start-page: 1697 year: 2020 ident: 2023011113332395000_vbac100-B21 – start-page: 79 volume-title: Explainable AI in Healthcare and Medicine: Building a Culture of Transparency and Accountability, Studies in Computational Intelligence year: 2021 ident: 2023011113332395000_vbac100-B28 doi: 10.1007/978-3-030-53352-6_8 – volume: 16 start-page: 841 year: 2019 ident: 2023011113332395000_vbac100-B51 article-title: A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2018.2806438 – volume: 9 start-page: R6 year: 2007 ident: 2023011113332395000_vbac100-B15 article-title: Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients publication-title: Breast Cancer Res doi: 10.1186/bcr1639 – year: 2013 ident: 2023011113332395000_vbac100-B32 – volume: 12 start-page: 937 year: 2018 ident: 2023011113332395000_vbac100-B5 article-title: Ensemble feature selection for high dimensional data: a new method and a comparative study publication-title: Adv. Data Anal. Classif doi: 10.1007/s11634-017-0285-y – volume: 6 start-page: e8960 year: 2018 ident: 2023011113332395000_vbac100-B4 article-title: Characterizing and managing missing structured data in electronic health records: data analysis publication-title: JMIR Med. Inform doi: 10.2196/medinform.8960 – volume: 19 start-page: A68 year: 2015 ident: 2023011113332395000_vbac100-B52 article-title: The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge publication-title: Contemp. Oncol. (Pozn) – volume: 64 start-page: 402 year: 2013 ident: 2023011113332395000_vbac100-B31 article-title: The prevention and handling of the missing data publication-title: Korean J. Anesthesiol doi: 10.4097/kjae.2013.64.5.402 – volume: 65 start-page: 124 year: 2016 ident: 2023011113332395000_vbac100-B3 article-title: Facilitative glucose transporters: implications for cancer detection, prognosis and treatment publication-title: Metabolism doi: 10.1016/j.metabol.2015.10.007 – volume-title: Adv. Neural Inf. Process. Syst. year: 2017 ident: 2023011113332395000_vbac100-B36 – volume: 2016 start-page: e6947623 year: 2015 ident: 2023011113332395000_vbac100-B56 article-title: Loss of CADM1/TSLC1 expression is associated with poor clinical outcome in patients with esophageal squamous cell carcinoma publication-title: Gastroenterol. Res. Pract – volume: 25 start-page: 5562 year: 2007 ident: 2023011113332395000_vbac100-B37 article-title: Three-gene prognostic classifier for early-stage non small-cell lung cancer publication-title: J. Clin. Oncol doi: 10.1200/JCO.2007.12.0352 – volume: 111 start-page: 1757 year: 2014 ident: 2023011113332395000_vbac100-B41 article-title: PKM2 as a biomarker for chemosensitivity to front-line platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.492 – volume: 7 start-page: 11479 year: 2016 ident: 2023011113332395000_vbac100-B42 article-title: The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes publication-title: Nat. Commun doi: 10.1038/ncomms11479 – start-page: 204 year: 2020 ident: 2023011113332395000_vbac100-B16 – volume: 2 start-page: 307 year: 2020 ident: 2023011113332395000_vbac100-B55 article-title: Attention-based learning for missing data imputation in HoloClean publication-title: Proc. Mach. Learn. Syst – volume: 16 start-page: 291 year: 2015 ident: 2023011113332395000_vbac100-B57 article-title: Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA publication-title: Brief. Bioinform doi: 10.1093/bib/bbu003 – start-page: 426 volume-title: Technometrics year: 2020 ident: 2023011113332395000_vbac100-B24 – volume: 10 start-page: 4679 year: 2020 ident: 2023011113332395000_vbac100-B35 article-title: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning publication-title: Sci. Rep doi: 10.1038/s41598-020-61588-w – volume: 8 start-page: 6085 year: 2018 ident: 2023011113332395000_vbac100-B10 article-title: Recurrent neural networks for multivariate time series with missing values publication-title: Sci. Rep doi: 10.1038/s41598-018-24271-9 – start-page: 44 volume-title: J. Comput. Graph. year: 2015 ident: 2023011113332395000_vbac100-B22 – volume: 22 start-page: 955 year: 2020 ident: 2023011113332395000_vbac100-B39 article-title: ALCAM contributes to brain metastasis formation in non-small-cell lung cancer through interaction with the vascular endothelium publication-title: Neuro Oncol doi: 10.1093/neuonc/noaa028 – volume: 10 start-page: e0118432 year: 2015 ident: 2023011113332395000_vbac100-B47 article-title: The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLoS One doi: 10.1371/journal.pone.0118432 – volume: 22 start-page: 1589 year: 2018 ident: 2023011113332395000_vbac100-B49 article-title: Deep EHR: a survey of recent advances in deep learning techniques for electronic health record (EHR) analysis publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2017.2767063 – year: 2006 ident: 2023011113332395000_vbac100-B6 publication-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 11 start-page: 14914 year: 2021 ident: 2023011113332395000_vbac100-B12 article-title: Integrating ensemble systems biology feature selection and bimodal deep neural network for breast cancer prognosis prediction publication-title: Sci. Rep doi: 10.1038/s41598-021-92864-y – volume: 21 start-page: 4 year: 2017 ident: 2023011113332395000_vbac100-B46 article-title: Deep learning for health informatics publication-title: IEEE J. Biomed. Health Inform doi: 10.1109/JBHI.2016.2636665 – start-page: 6 volume-title: Recall, precision and average precision year: 2004 ident: 2023011113332395000_vbac100-B58 – volume: 406 start-page: 747 year: 2000 ident: 2023011113332395000_vbac100-B43 article-title: Molecular portraits of human breast tumours publication-title: Nature doi: 10.1038/35021093 |
| SSID | ssj0002776143 |
| Score | 2.271974 |
| Snippet | Abstract
Motivation
Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions... Cancer is one of the world's leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among heterogeneous data... Motivation Cancer is one of the world’s leading mortality causes, and its prognosis is hard to predict due to complicated biological interactions among... |
| SourceID | pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | vbac100 |
| SubjectTerms | Bayesian analysis Bioinformatics Breast cancer Deep learning Mathematical models Medical prognosis Neural networks Non-small cell lung carcinoma Original Paper Precision medicine Prognosis Small cell lung carcinoma |
| Title | Learning from small medical data—robust semi-supervised cancer prognosis classifier with Bayesian variational autoencoder |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/36698767 https://www.proquest.com/docview/3192321488 https://www.proquest.com/docview/2769995433 https://pubmed.ncbi.nlm.nih.gov/PMC9832968 |
| Volume | 3 |
| WOSCitedRecordID | wos001124263600026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access资源_DOAJ customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: TOX dateStart: 20210101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: M7P dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest - Publicly Available Content Database customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: PIMPY dateStart: 20220101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2635-0041 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002776143 issn: 2635-0041 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6xuyBx4f0ILJVBSJyitrHrJCfEol3BgRKhRSqnyHacJVKblDiptOLCj-AX8kvwJG5okYADxySWEmXGM5_n8Q3Ac8YnOsy59nOeMZ8xe0CJp2riW11RYSSZ9TKsGzYRzufRYhEnLuBmXFnl1iZ2hjqrFMbIxxShSGDBe_Ry_cXHqVGYXXUjNA7gCFkSgq50LxliLEFoD-mMDlyNdCyLSmSb8UYKNcWmth1ftNfftgMzf6-W3HE_Zzf_98NvwQ0HPMmrXlNuwxVd3oFr_SjKy7vw1RGtXhBsOCFmJZZLsuqzOATLSH98-15XsjUNMXpV-KZdo5UxOiMKFacmWOlVVqYwRCEiL3LrcAmGecmJuNTYq0k29mDugo9EtE2FJJqZru_Bx7PT89dvfDeYwVdsFjS-_dX2lKSsnZRUMxnlOo-mXReszBBfCSGliqTUM62CXAnkuOOB5HKidCwopffhsKxK_RDITEsVC64tLqEsU0Gkc4twZpkSmLIUuQf-VkSpcqzlODxjmfbZc5r2Ik2dSD14Maxf93wdf1z5zEr8n4uOt0JN3eY26S-JevB0eGy3JeZaRKmr1qRByGOk2qPUgwe9_gyvopzH1gmFHoR7mjUsQMrv_Sdl8bmj_o6tAY559Ojvn_UYrgcWi_WRomM4bOpWP4GratMUph7BQbiIRnB0cjpPPoy6IMSo2zf2XvL2XfLJXp2_X_wEKW4qZQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tuiC48H4EFjAIxClq67hOckCI12qr3a16WKTlFGzHgUhtUuKkqOLCj-B38KP4JXiaBy0ScNoD54yU1-eZz-OZbwAeMz7QfsK1m_CYuYzZDUo4VAPXYkX5gWQ2yrD1sAl_MglOT8PpDnxve2GwrLL1iWtHHecKc-R9D6kIteQ9eL745OLUKDxdbUdo1LA41KvPdstmno1f2__7hNL9NyevDtxmqoCr2IiWrr27pfjKLnLpaSaDRCfBcN3CKWMkB0JIqQIp9UgrmiiBAm2cSi4HSofCwwSodfm7DMHeg93p-Hj6rsvqUGtrGUinDun1ZZqLeNlfSqGG2Ea3Ef22Ouo2iO3v9ZkbAW__8v_2qa7ApYZakxf1WrgKOzq7BufrYZur6_ClkZL9QLClhpi5mM3IvD6nIlgo--PrtyKXlSmJ0fPUNdUC_ajRMVG4NAqCtWxZblJDFO450sRSCoKJbPJSrDR2o5KlKNImvUpEVeYoExrr4ga8PZM3vwm9LM_0bSAjLVUouLbMy2OxooFOLIcbxUrgoaxIHHBbSESq0WXH8SCzqK4P8KIaQlEDIQeedvaLWpHkj5aPLML-abTXgihq3JeJfiHIgYfdZet48DRJZDqvTER9HqKYoOc5cKvGa3crj_PQhlnfAX8LyZ0BippvX8nSj2tx89CGmJAHd_7-WA_gwsHJ8VF0NJ4c3oWL1DLPOi-2B72yqPQ9OKeWZWqK-80KJfD-rJH-E8Mbg9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+small+medical+data%E2%80%94robust+semi-supervised+cancer+prognosis+classifier+with+Bayesian+variational+autoencoder&rft.jtitle=Bioinformatics+advances&rft.au=Te-Cheng%2C+Hsu&rft.au=Lin%2C+Che&rft.date=2023&rft.pub=Oxford+University+Press&rft.eissn=2635-0041&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1093%2Fbioadv%2Fvbac100 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon |