Going circular: history, present, and future of circRNAs in cancer

To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene Jg. 42; H. 38; S. 2783 - 2800
Hauptverfasser: Pisignano, Giuseppina, Michael, David C., Visal, Tanvi H., Pirlog, Radu, Ladomery, Michael, Calin, George A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Nature Publishing Group UK 15.09.2023
Nature Publishing Group
Schlagworte:
ISSN:0950-9232, 1476-5594, 1476-5594
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
AbstractList To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.
Author Michael, David C.
Pisignano, Giuseppina
Pirlog, Radu
Visal, Tanvi H.
Ladomery, Michael
Calin, George A.
Author_xml – sequence: 1
  givenname: Giuseppina
  orcidid: 0000-0001-7476-3447
  surname: Pisignano
  fullname: Pisignano, Giuseppina
  email: gp529@bath.ac.uk
  organization: Department of Life Sciences, University of Bath, Claverton Down
– sequence: 2
  givenname: David C.
  orcidid: 0009-0000-0675-6202
  surname: Michael
  fullname: Michael, David C.
  organization: Department of Life Sciences, University of Bath, Claverton Down
– sequence: 3
  givenname: Tanvi H.
  surname: Visal
  fullname: Visal, Tanvi H.
  organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Radu
  orcidid: 0000-0003-2026-5543
  surname: Pirlog
  fullname: Pirlog, Radu
  organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center
– sequence: 5
  givenname: Michael
  orcidid: 0000-0001-8694-8545
  surname: Ladomery
  fullname: Ladomery, Michael
  organization: Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay
– sequence: 6
  givenname: George A.
  orcidid: 0000-0002-7427-0578
  surname: Calin
  fullname: Calin, George A.
  email: gcalin@mdanderson.org
  organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center
BookMark eNp9kc1O3DAUha0KVIahL8AqEhsWpL3-i2M2iKIWKiGQEF1bjudmMMrYg50U8fY1DFUFCxaWF_7O8bn37JKtEAMSsk_hKwXefsuC8ratgfFyVAv14ycyo0I1tZRabJEZaAm1ZpztkN2c7wFAaWCfyQ5XslWc8xn5fh59WFbOJzcNNh1Xdz6PMT0dVeuEGcN4VNmwqPppnBJWsX8hb65Oc-VD5WxwmPbIdm-HjF9e7zn5_fPH7dlFfXl9_uvs9LJ2QrKxplx2jgL2C0Eb5NBp2mkEKZl0ukeFoJjmjnW94EJaKxpFJZea9h2T3FE-Jycb3_XUrXDhSrhkB7NOfmXTk4nWm7cvwd-ZZfxjKEgQ0KjicPjqkOLDhHk0K58dDoMNGKdsWCtZw7Quq5mTg3fofZxSKPMVqpFUlOC6UO2GcinmnLA3zo929PE5gB_Kz-a5KbNpypSmzEtT5rFI2Tvpv0E-FPGNKBc4LDH9T_WB6i-3EKYC
CitedBy_id crossref_primary_10_3892_ijo_2025_5769
crossref_primary_10_1038_s41388_024_03099_w
crossref_primary_10_3389_fimmu_2025_1634326
crossref_primary_10_1007_s00299_025_03512_y
crossref_primary_10_1096_fj_202401151R
crossref_primary_10_3390_ijms241914545
crossref_primary_10_30699_jambr_33_157_96
crossref_primary_10_4103_ijh_ijh_34_25
crossref_primary_10_3390_cimb47090738
crossref_primary_10_3390_bios15050292
crossref_primary_10_1016_j_phrs_2024_107127
crossref_primary_10_3892_ijmm_2024_5411
crossref_primary_10_3389_fgene_2024_1450309
crossref_primary_10_1038_s41420_024_02185_y
crossref_primary_10_1007_s10555_024_10182_x
crossref_primary_10_1016_j_neulet_2025_138353
crossref_primary_10_1186_s40001_025_02382_0
crossref_primary_10_1177_10732748241257142
crossref_primary_10_3389_fonc_2024_1430051
crossref_primary_10_1038_s41380_025_02925_1
crossref_primary_10_1016_j_ncrna_2025_08_009
crossref_primary_10_1038_s41419_025_07830_7
crossref_primary_10_1038_s41598_024_63827_w
crossref_primary_10_3390_diagnostics15111355
crossref_primary_10_1016_j_trac_2024_118112
crossref_primary_10_1186_s12885_025_14390_8
crossref_primary_10_1016_j_prp_2024_155457
crossref_primary_10_3389_fonc_2025_1523061
crossref_primary_10_1038_s41419_024_07138_y
crossref_primary_10_1007_s11033_024_09211_3
crossref_primary_10_1038_s41598_025_07974_8
crossref_primary_10_3390_ijms252212235
crossref_primary_10_1186_s12935_024_03526_8
crossref_primary_10_1016_j_biopha_2024_117753
crossref_primary_10_1134_S0006297925600280
crossref_primary_10_2147_PGPM_S350238
crossref_primary_10_1007_s10616_025_00838_z
crossref_primary_10_1007_s12672_025_02888_3
crossref_primary_10_3390_ijms25168934
crossref_primary_10_1016_j_critrevonc_2025_104942
crossref_primary_10_1097_CU9_0000000000000305
crossref_primary_10_3390_ncrna9050063
crossref_primary_10_1111_1759_7714_15414
crossref_primary_10_1007_s12032_023_02275_4
crossref_primary_10_1042_BST20243001
crossref_primary_10_3389_fmolb_2024_1504876
crossref_primary_10_3389_fonc_2025_1554179
crossref_primary_10_1007_s13353_024_00840_9
crossref_primary_10_1007_s12672_024_01198_4
crossref_primary_10_1016_j_dib_2025_111724
crossref_primary_10_1016_j_ijbiomac_2024_135689
crossref_primary_10_3389_fsysb_2024_1497510
crossref_primary_10_3390_ijms26188774
crossref_primary_10_1038_s41420_025_02504_x
crossref_primary_10_1038_s41598_025_11641_3
crossref_primary_10_1016_j_jare_2025_09_017
crossref_primary_10_1038_s41419_024_07246_9
crossref_primary_10_1007_s00210_025_04221_9
crossref_primary_10_3389_fendo_2024_1351776
crossref_primary_10_3892_or_2025_8972
crossref_primary_10_1186_s13048_025_01636_z
crossref_primary_10_1186_s12943_024_02082_z
crossref_primary_10_1016_j_prp_2024_155315
crossref_primary_10_3390_biomedicines13061369
crossref_primary_10_5713_ab_24_0845
crossref_primary_10_1002_jmv_29191
crossref_primary_10_3390_pharmaceutics17040471
crossref_primary_10_1177_03000605251361960
crossref_primary_10_1016_j_prp_2024_155316
crossref_primary_10_1038_s41419_024_06980_4
crossref_primary_10_3390_ncrna10060054
crossref_primary_10_1002_adtp_202500082
crossref_primary_10_3390_ijms252212459
crossref_primary_10_1136_jitc_2023_008040
crossref_primary_10_1016_j_gene_2024_149060
crossref_primary_10_3390_ijms25126719
crossref_primary_10_1186_s12943_024_02074_z
crossref_primary_10_1186_s12964_024_01952_9
crossref_primary_10_1016_j_cellsig_2024_111526
crossref_primary_10_1002_jcla_70076
crossref_primary_10_1038_s41576_023_00662_1
crossref_primary_10_1038_s41584_025_01271_4
crossref_primary_10_3389_fvets_2025_1578941
crossref_primary_10_3390_cells13161316
crossref_primary_10_3389_fimmu_2025_1608509
crossref_primary_10_1007_s10142_025_01575_4
crossref_primary_10_1038_s12276_024_01220_3
crossref_primary_10_2174_0109298673276157231214094454
crossref_primary_10_1186_s12935_025_03645_w
crossref_primary_10_1016_j_gene_2025_149636
crossref_primary_10_3389_fonc_2025_1555002
crossref_primary_10_1038_s41388_025_03299_y
crossref_primary_10_1016_j_canlet_2025_217823
crossref_primary_10_1016_j_bcp_2024_116691
crossref_primary_10_1016_j_ajg_2024_09_002
crossref_primary_10_3389_fnmol_2025_1507575
crossref_primary_10_1016_j_prp_2024_155442
crossref_primary_10_3389_fgene_2024_1346119
crossref_primary_10_3390_cells13151245
crossref_primary_10_1002_mco2_70019
crossref_primary_10_3390_v16030360
crossref_primary_10_1016_j_cca_2024_120003
crossref_primary_10_3389_fcell_2024_1339274
crossref_primary_10_1007_s00210_025_04032_y
crossref_primary_10_1007_s12020_025_04335_3
crossref_primary_10_1002_jbt_70173
crossref_primary_10_1016_j_ijbiomac_2025_147664
crossref_primary_10_1186_s40364_025_00744_8
crossref_primary_10_1016_j_ijbiomac_2025_145187
crossref_primary_10_1186_s12951_025_03632_3
crossref_primary_10_1002_slct_202300537
crossref_primary_10_1093_plphys_kiae265
crossref_primary_10_1186_s12920_025_02182_9
crossref_primary_10_1186_s12864_024_10420_0
crossref_primary_10_3892_ol_2025_15037
crossref_primary_10_1186_s11658_025_00690_1
crossref_primary_10_1016_j_ccell_2025_03_028
crossref_primary_10_1021_acs_chemrestox_5c00146
crossref_primary_10_1158_0008_5472_CAN_23_3508
crossref_primary_10_1007_s10528_025_11068_5
crossref_primary_10_1016_j_omtn_2025_102687
crossref_primary_10_1002_2211_5463_70051
crossref_primary_10_1016_j_lfs_2025_123643
crossref_primary_10_1016_j_ncrna_2025_04_003
crossref_primary_10_3389_fmmed_2025_1607661
crossref_primary_10_3389_fimmu_2024_1476494
crossref_primary_10_1016_j_ejphar_2024_176944
crossref_primary_10_3390_ijms25063406
crossref_primary_10_1007_s12013_025_01720_7
crossref_primary_10_1007_s12672_025_02641_w
crossref_primary_10_1186_s12943_025_02239_4
crossref_primary_10_1016_j_microc_2025_114118
crossref_primary_10_1080_17501911_2025_2518918
crossref_primary_10_1186_s12943_025_02424_5
crossref_primary_10_1016_j_lfs_2024_123194
crossref_primary_10_3390_genes16020140
Cites_doi 10.3892/mmr.2020.11541
10.1038/S41467-019-11162-4
10.1261/rna.048272.114
10.1016/j.ymeth.2021.02.007
10.1016/j.gpb.2018.08.001
10.1038/s41576-019-0158-7
10.1093/nar/gkw027
10.1016/j.bbrc.2018.10.026
10.1016/0092-8674(81)90142-2
10.1038/s41418-019-0337-2
10.1038/nrg.2016.114
10.1038/s41374-018-0108-6
10.1038/S41419-018-1048-1
10.15252/emmm.201810168
10.1002/jcla.23045
10.1016/j.molcel.2015.03.027
10.1080/15384101.2022.2105087
10.1038/ncomms14741
10.1186/s12943-018-0935-5
10.1038/S41392-021-00569-5
10.1016/j.ymthe.2020.03.002
10.1093/jhered/esj037
10.1038/nature11993
10.1038/cdd.2016.133
10.1186/S12943-019-1015-1
10.1038/s41388-021-01960-w
10.1038/nn.3975
10.1186/s12943-019-1010-6
10.1002/advs.202001701
10.1038/s41419-019-2182-0
10.1186/s12943-020-01213-6
10.1016/j.cca.2017.10.011
10.7554/eLife.07540
10.18632/oncotarget.21748
10.1080/15476286.2016.1271524
10.1074/jbc.M606744200
10.1186/S13046-019-1487-2
10.1371/journal.pone.0030733
10.1016/j.omto.2021.07.010
10.1186/s12943-017-0719-3
10.1016/j.celrep.2017.08.027
10.1093/NAR/GKV1458
10.1186/s13059-020-02018-y
10.1038/srep38907
10.1042/BSR20190363
10.1016/j.bcmd.2018.09.002
10.1038/s41590-018-0297-6
10.1038/nature11928
10.1016/j.stem.2016.06.020
10.1038/nrg2484
10.1007/s11064-020-03132-w
10.1186/S12943-020-01184-8
10.3390/cancers13030365
10.1128/MCB.00259-18
10.1007/s00109-017-1600-y
10.1093/annonc/mds246
10.1111/jcmm.16541
10.1186/s12943-020-01222-5
10.1016/j.cell.2018.12.021
10.1002/cam4.1514
10.1186/s13045-017-0422-2
10.1155/2022/4541918
10.1186/S13046-018-0822-3
10.1126/science.1210944
10.1186/s12943-018-0887-9
10.1093/nar/20.20.5345
10.18632/oncotarget.13134
10.1038/s41392-020-00375-5
10.1038/srep08057
10.1016/j.celrep.2014.12.019
10.1016/J.BIOPHA.2021.112127
10.1038/nbt.2890
10.1016/j.omtn.2020.08.015
10.1038/cr.2017.31
10.1186/s12943-021-01388-6
10.1186/s12943-019-1041-z
10.1186/s13059-021-02263-9
10.1093/bib/bby006
10.3748/wjg.v23.i47.8345
10.1007/978-1-4939-7562-4_7
10.26508/lsa.201900398
10.1016/j.celrep.2021.109439
10.1038/S41592-022-01487-2
10.1038/emboj.2013.53
10.3390/ph14070618
10.1042/EBC20200060
10.1080/15476286.2016.1269999
10.1016/j.ccell.2019.12.007
10.1186/s12943-019-1061-8
10.1093/hmg/8.3.493
10.3389/fcell.2021.675043
10.1016/j.canlet.2019.05.036
10.1038/323558a0
10.1093/nar/24.7.1260
10.1261/rna.045781.114
10.1038/nrg.2016.49
10.3389/fcell.2021.709299
10.1016/j.celrep.2019.02.078
10.1038/S41598-019-47189-2
10.1101/gad.270421.115
10.1007/978-1-4939-6703-2_11
10.1038/S41419-018-0699-2
10.1038/s41467-022-31327-y
10.1038/s41419-018-0485-1
10.4274/TJH.GALENOS.2023.2022.0435
10.1016/j.celrep.2016.03.058
10.1371/journal.pbio.0020391
10.1093/nar/gkv1367
10.21037/tcr.2018.11.13
10.1016/J.TALANTA.2021.123066
10.1016/j.molcel.2014.03.045
10.3390/ijms22041678
10.1093/nar/gku523
10.1038/ng.2434
10.1038/s41580-020-0243-y
10.3389/FONC.2022.985470
10.1038/s41467-020-20527-z
10.1186/s13059-018-1594-y
10.1080/15476286.2017.1279788
10.1016/0092-8674(76)90223-3
10.1371/journal.pgen.1001233
10.1007/s10529-020-03036-3
10.1038/cr.2015.82
10.1038/s41467-021-24975-z
10.1016/j.molcel.2018.06.034
10.1016/j.exphem.2018.10.011
10.1073/pnas.1617467114
10.1186/S12943-020-01222-5
10.1371/journal.pcbi.1005420
10.1038/emboj.2011.359
10.1186/s12943-020-01149-x
10.1016/j.molcel.2021.11.032
10.1101/gad.314856.118
10.1186/s12864-017-4304-3
10.3390/ncrna6040041
10.1101/gad.251926.114
10.12659/MSM.910180
10.1007/978-981-13-1426-1_6
10.1016/j.cell.2014.09.001
10.18632/oncotarget.18350
10.1186/s12920-019-0616-2
10.1016/0092-8674(82)90414-7
10.1016/j.celrep.2020.107641
10.1093/nar/gkx297
10.1038/bjc.2014.279
10.1186/s13059-014-0571-3
10.1038/cdd.2017.86
10.1016/0092-8674(93)90279-Y
10.1371/journal.pone.0148407
10.18632/oncotarget.8589
10.1371/journal.pone.0158347
10.1038/s41592-020-01011-4
10.1111/cas.14645
10.1016/j.molcel.2014.08.019
10.1002/jcb.29631
10.1038/s41422-018-0033-7
10.1016/j.molcel.2017.02.021
10.1111/cas.13901
10.1016/j.cell.2016.03.020
10.1016/j.molcel.2017.10.034
10.1038/nature10442
10.1038/s41556-021-00639-4
10.1111/exd.14227
10.1073/pnas.73.11.3852
10.1038/nsmb.2959
10.1128/mcb.17.6.2985
10.1186/s12943-019-1085-0
10.1083/jcb.119.3.503
10.1080/13102818.2017.1398596
10.1016/j.molcel.2019.07.016
10.1080/15384101.2017.1278935
10.1038/nature13424
10.1007/s00401-021-02306-2
10.1093/bib/bbaa001
10.1096/fasebj.7.1.7678559
10.1186/s13059-017-1368-y
10.1038/s41388-017-0019-9
10.1186/s12864-017-4386-y
10.1261/rna.035667.112
10.1038/nrg3662
10.1038/nbt996
10.1038/280339a0
10.1073/pnas.93.13.6536
10.1080/15476286.2022.2043041
10.1002/ijc.32647
10.7554/eLife.09214
10.1186/S12943-021-01395-7
10.1261/rna.043687.113
10.1016/j.celrep.2014.12.002
10.4049/jimmunol.1302813
10.1101/gr.202895.115
10.1186/s13059-015-0801-3
10.18632/oncotarget.25673
10.1186/s12943-019-1006-2
10.1186/S12943-021-01475-8
10.1038/s41388-018-0369-y
10.1038/S41419-020-03237-8
10.1093/jnci/djx166
10.1373/clinchem.2014.230433
10.1111/bpa.12922
10.1038/ncomms11215
10.1038/s41375-021-01311-4
10.1016/j.canlet.2018.04.035
10.1016/0378-1119(95)00639-7
10.1186/s12943-017-0663-2
10.1186/s12943-019-1111-2
10.1016/j.ymthe.2019.05.011
10.1186/S13046-020-01555-5
10.1038/nature24049
10.1016/J.LFS.2020.118506
10.1016/j.molcel.2013.08.017
10.1186/s12943-020-01253-y
10.1016/j.cell.2015.02.014
10.1038/srep37982
10.1016/j.immuni.2018.03.016
10.1038/s41418-018-0220-6
10.1186/s13045-018-0643-z
10.1016/j.aca.2019.12.027
10.1038/s41467-019-12651-2
10.1016/j.celrep.2014.10.062
10.1038/301578a0
10.1186/s13073-019-0614-1
10.1126/science.1248882
10.1371/journal.pgen.1003777
10.1159/000489208
10.1002/jcla.23272
10.1007/978-1-0716-1581-2_23
10.1080/2159256X.2015.1045682
10.15252/embr.202052072
10.1186/s12943-021-01358-y
10.1186/s12943-020-01246-x
10.1016/j.molcel.2017.05.023
10.1016/j.omtn.2018.08.008
10.1016/0092-8674(91)90244-S
10.1016/j.molcel.2017.02.017
10.1038/s41467-019-10246-5
10.3389/FNMOL.2018.00225
10.1074/jbc.274.12.8153
10.1080/20013078.2018.1424473
10.1038/ncomms12429
10.1002/j.1460-2075.1992.tb05148.x
10.1016/j.talanta.2020.121021
10.1038/nrg.2016.20
10.18632/oncotarget.18671
10.1080/15476286.2017.1409931
10.1038/nbt.2024
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023. The Author(s).
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023. The Author(s).
DBID C6C
AAYXX
CITATION
3V.
7TM
7TO
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1038/s41388-023-02780-w
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database (Proquest)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Proquest Research Library
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep
MEDLINE - Academic


CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1476-5594
EndPage 2800
ExternalDocumentID PMC10504067
10_1038_s41388_023_02780_w
GrantInformation_xml – fundername: N/A
– fundername: ;
GroupedDBID ---
0R~
123
29N
36B
39C
4.4
406
53G
5RE
70F
7X7
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAYZH
AAZLF
ABAKF
ABJNI
ABLJU
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFSHS
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DNIVK
DPUIP
DU5
DWQXO
E3Z
EAP
EBLON
EBS
EE.
EIOEI
ESX
F5P
FDQFY
FEDTE
FERAY
FIGPU
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IHR
INH
INR
IWAJR
JSO
JZLTJ
KQ8
L7B
LGEZI
LK8
LOTEE
M1P
M2O
M7P
N9A
NADUK
NQJWS
NXXTH
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TSG
UKHRP
WH7
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
TUS
3V.
7TM
7TO
7U9
7XB
88A
8FD
8FK
FR3
H94
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c452t-135bc10efd416e30b91b9e05525c9fe7e07293c2bf4345aa467153591fb253c13
IEDL.DBID 8C1
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001049135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-9232
1476-5594
IngestDate Tue Nov 04 02:06:20 EST 2025
Sun Nov 09 12:54:04 EST 2025
Tue Oct 07 05:13:48 EDT 2025
Tue Nov 18 22:33:35 EST 2025
Sat Nov 29 04:02:57 EST 2025
Fri Feb 21 02:38:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 38
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-135bc10efd416e30b91b9e05525c9fe7e07293c2bf4345aa467153591fb253c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2026-5543
0000-0001-8694-8545
0000-0001-7476-3447
0000-0002-7427-0578
0009-0000-0675-6202
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10504067
PMID 37587333
PQID 2865140559
PQPubID 36330
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10504067
proquest_miscellaneous_2852629973
proquest_journals_2865140559
crossref_citationtrail_10_1038_s41388_023_02780_w
crossref_primary_10_1038_s41388_023_02780_w
springer_journals_10_1038_s41388_023_02780_w
PublicationCentury 2000
PublicationDate 2023-09-15
PublicationDateYYYYMMDD 2023-09-15
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: New York
PublicationTitle Oncogene
PublicationTitleAbbrev Oncogene
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References LiZYanfangWLiJJiangPPengTChenKTumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancerCancer Lett2018432237501:CAS:528:DC%2BC1cXhtF2ltbnL2970970210.1016/j.canlet.2018.04.035
Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996. https://doi.org/10.1073/pnas.93.13.6536.
Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7. https://doi.org/10.1080/20013078.2018.1424473.
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32. https://doi.org/10.1038/nbt.2890.
Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, et al. Serum extracellular vesicle-derived circhipk3 and circsmarca5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals. 2021;14. https://doi.org/10.3390/ph14070618.
Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993. https://doi.org/10.1096/fasebj.7.1.7678559.
You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015. https://doi.org/10.1038/nn.3975.
AhmadovUBendikasMMEbbesenKKSehestedAMKjemsJBroholmHDistinct circular RNA expression profiles in pediatric ependymomasBrain Pathol202131387921:CAS:528:DC%2BB3MXmslGnur8%3D33247464801815310.1111/bpa.12922
XiaXLiXLiFWuXZhangMZhouHA novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1Mol Cancer201918116.
XuJZShaoCCWangXJZhaoXChenJQOuyangYXcircTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axisCell Death Dis 2019 10:3201910116
He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother. 2021;143. https://doi.org/10.1016/J.BIOPHA.2021.112127.
DaiXChenCYangQXueJChenXSunBExosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferationCell Death Dis2018911410.1038/s41419-018-0485-1
Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5. https://doi.org/10.1038/srep08057.
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell 2019;176. https://doi.org/10.1016/j.cell.2018.12.021.
DuWWYangWLiXFangLWuNLiFThe Circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasionMol Ther2020281287981:CAS:528:DC%2BB3cXhtVeju77K32229309721074910.1016/j.ymthe.2020.03.002
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2014.08.019.
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487. https://doi.org/10.1016/j.cca.2017.10.011.
di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31. https://doi.org/10.1016/j.celrep.2020.107641.
Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, et al. A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis. 2020;11. https://doi.org/10.1038/S41419-020-03237-8.
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01253-y.
ZhangP-FGaoCHuangX-YLuJ-CGuoX-JShiG-MCancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinomaMol Cancer2020191:CAS:528:DC%2BB3cXhtlCqsLzJ32593303732058310.1186/s12943-020-01222-5
Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981;23. https://doi.org/10.1016/0092-8674(81)90142-2.
Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015. https://doi.org/10.1016/j.cell.2015.02.014.
Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016. https://doi.org/10.1038/srep38907.
Zhang PF, Zhang PF, Zhang PF, Gao C, Gao C, Huang XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01222-5.
Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.06.034.
MengLLiuSLiuFSangMJuYFanXZEB1-mediated transcriptional upregulation of circwwc3 promotes breast cancer progression through activating ras signaling pathwayMol Ther Nucleic Acids202022124371:CAS:528:DC%2BB3cXisFSgsL3K32916598749047110.1016/j.omtn.2020.08.015
Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell 1976;8. https://doi.org/10.1016/0092-8674(76)90223-3.
Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29. https://doi.org/10.1101/gad.270421.115.
LiuTLuQLiuJXieSFengBZhuWCircular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762Cell Death Dis2020111141:CAS:528:DC%2BB3cXit1Sisb7I
Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7. https://doi.org/10.18632/oncotarget.8589.
MorenaDPiccaFTaulliRCircNT5E/miR-422a: a new circRNA-based ceRNA network in glioblastomaTransl Cancer Res20198S106S109.1:CAS:528:DC%2BC1MXhvVOgtr3K35117075879765910.21037/tcr.2018.11.13
WangCTanSLiuWRLeiQQiaoWWuYRNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinomaMol Cancer2019181:CAS:528:DC%2BB38XhslCjsrjP31484581672433110.1186/s12943-019-1061-8
Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01358-y.
Dragomir MP, Manyam GC, Ott LF, Berland L, Knutsen E, Ivan C, et al. Funcpep: a database of functional peptides encoded by non-coding rnas. Noncoding RNA. 2020;6. https://doi.org/10.3390/ncrna6040041.
Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28. https://doi.org/10.1101/gad.251926.114.
Tan S, Sun D, Pu W, Gou Q, Guo C, Gong Y, et al. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol Cancer. 2018;17. https://doi.org/10.1186/s12943-018-0887-9.
WuNYuanZDuKYFangLLyuJZhangCTranslation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machineryCell Death Differ2019262758731:CAS:528:DC%2BC1MXhtFSmsbvI31092884722437810.1038/s41418-019-0337-2
Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021;22. https://doi.org/10.15252/embr.202052072.
LiPYangXYuanWYangCZhangXHanJCircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microRNA-135aCell Physiol Biochem2018461606161:CAS:528:DC%2BC1cXhtVajsbzE2969498110.1159/000489208
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25. https://doi.org/10.1111/jcmm.16541.
Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7. https://doi.org/10.1002/cam4.1514.
Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24. https://doi.org/10.1038/cdd.2017.86.
Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18671.
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.49.
Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, et al. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-4304-3.
Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;5.
Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol. 2021;23. https://doi.org/10.1038/s41556-021-00639-4.
Yu C,
A Bian (2780_CR242) 2018; 24
2780_CR58
2780_CR59
2780_CR188
2780_CR56
2780_CR57
2780_CR54
2780_CR55
2780_CR52
2780_CR194
2780_CR53
2780_CR193
2780_CR50
2780_CR51
2780_CR198
2780_CR197
2780_CR196
2780_CR195
2780_CR179
2780_CR69
2780_CR178
Y Sang (2780_CR216) 2019; 27
2780_CR177
2780_CR67
2780_CR68
2780_CR65
2780_CR66
2780_CR63
2780_CR183
2780_CR64
2780_CR182
2780_CR61
2780_CR181
2780_CR62
2780_CR180
2780_CR187
2780_CR60
MW Hentze (2780_CR111) 2013; 32
2780_CR186
2780_CR185
2780_CR184
N Wu (2780_CR228) 2019; 26
2780_CR38
Y Gao (2780_CR80) 2015; 16
2780_CR169
2780_CR39
2780_CR168
2780_CR36
2780_CR167
2780_CR37
2780_CR166
2780_CR34
2780_CR35
TR Mercer (2780_CR135) 2011; 30
2780_CR32
2780_CR33
2780_CR30
2780_CR172
2780_CR31
2780_CR171
2780_CR170
2780_CR176
2780_CR175
2780_CR174
2780_CR173
P Li (2780_CR147) 2018; 46
X Xia (2780_CR215) 2019; 18
AA Nair (2780_CR191) 2016; 7
2780_CR49
2780_CR158
2780_CR157
2780_CR47
2780_CR156
2780_CR48
2780_CR45
2780_CR46
2780_CR44
2780_CR159
2780_CR41
2780_CR161
2780_CR160
2780_CR40
2780_CR165
2780_CR164
2780_CR163
2780_CR162
TB Hansen (2780_CR99) 2013; 495
D Barbagallo (2780_CR243) 2021; 22
WW Du (2780_CR230) 2020; 28
DH Yuan (2780_CR241) 2019; 23
2780_CR98
Z Wang (2780_CR133) 2009; 10
2780_CR96
2780_CR97
2780_CR94
2780_CR95
2780_CR92
2780_CR93
2780_CR90
2780_CR91
L Koch (2780_CR155) 2020; 22
T Liu (2780_CR149) 2020; 11
J Shang (2780_CR244) 2019; 70
2780_CR78
2780_CR79
2780_CR76
2780_CR77
2780_CR74
2780_CR75
2780_CR72
2780_CR73
2780_CR71
D Rickert (2780_CR190) 2021; 141
Y Pan (2780_CR250) 2018; 73
2780_CR199
JZ Xu (2780_CR232) 2019; 10
2780_CR89
2780_CR87
2780_CR88
2780_CR85
2780_CR86
2780_CR83
2780_CR84
XY Huang (2780_CR219) 2020; 19
2780_CR81
I Legnini (2780_CR120) 2017; 66
2780_CR82
2780_CR109
2780_CR229
2780_CR103
2780_CR224
2780_CR102
2780_CR223
2780_CR101
2780_CR222
2780_CR100
2780_CR221
2780_CR107
2780_CR106
2780_CR105
2780_CR226
2780_CR104
2780_CR225
2780_CR110
C Kocks (2780_CR146) 2018; 1724
U Ahmadov (2780_CR189) 2021; 31
2780_CR218
C Wang (2780_CR192) 2019; 18
2780_CR213
H Xiao (2780_CR43) 2020; 22
2780_CR211
2780_CR210
2780_CR217
2780_CR214
2780_CR220
2780_CR209
MB Gerstein (2780_CR134) 2014; 512
T Fei (2780_CR70) 2017; 114
2780_CR200
2780_CR206
2780_CR204
2780_CR203
J Li (2780_CR212) 2020; 19
Y Chen (2780_CR208) 2019; 26
CE Burd (2780_CR16) 2010; 6
2780_CR18
2780_CR19
2780_CR17
2780_CR14
2780_CR145
2780_CR15
2780_CR144
2780_CR12
2780_CR13
Y Zhong (2780_CR202) 2021; 43
2780_CR10
2780_CR11
2780_CR148
2780_CR150
L Meng (2780_CR231) 2020; 22
2780_CR154
2780_CR153
2780_CR152
E D’Ambra (2780_CR139) 2021; 2348
2780_CR151
J Nie (2780_CR227) 2022; 21
Z Zeng (2780_CR201) 2021; 40
2780_CR29
2780_CR27
2780_CR136
2780_CR28
2780_CR25
2780_CR26
2780_CR23
X Dai (2780_CR42) 2018; 9
2780_CR24
2780_CR21
2780_CR138
2780_CR22
2780_CR137
2780_CR2
2780_CR1
2780_CR20
2780_CR4
2780_CR3
2780_CR6
2780_CR143
2780_CR5
2780_CR142
2780_CR8
2780_CR141
2780_CR7
2780_CR140
W Zhao (2780_CR108) 2020; 121
2780_CR9
2780_CR125
2780_CR246
2780_CR124
2780_CR245
2780_CR123
2780_CR122
2780_CR129
2780_CR128
2780_CR249
2780_CR127
2780_CR248
2780_CR126
2780_CR247
Z Li (2780_CR252) 2018; 432
2780_CR132
D Li (2780_CR234) 2021; 22
2780_CR253
2780_CR131
2780_CR130
2780_CR251
X Zhang (2780_CR207) 2020; 45
P-F Zhang (2780_CR205) 2020; 19
2780_CR119
2780_CR114
2780_CR235
2780_CR113
2780_CR112
2780_CR233
2780_CR118
2780_CR117
2780_CR238
2780_CR116
2780_CR237
2780_CR115
2780_CR236
D Morena (2780_CR239) 2019; 8
2780_CR121
2780_CR240
References_xml – reference: LiJMaMYangXZhangMLuoJZhouHCircular HER2 RNA positive triple negative breast cancer is sensitive to PertuzumabMol Cancer20201911831901224694227010.1186/s12943-019-1085-0
– reference: Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 2018;20. https://doi.org/10.1093/bib/bby006.
– reference: Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Hanan M, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2015.03.027.
– reference: Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.49.
– reference: Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14. https://doi.org/10.1080/15476286.2016.1271524.
– reference: Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21. https://doi.org/10.1038/s41580-020-0243-y.
– reference: Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1010-6.
– reference: Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, et al. circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci. 2019;110. https://doi.org/10.1111/cas.13901.
– reference: Xu XW, Zheng BA, Hu ZM, Qian ZY, Huang CJ, Liu XQ, et al. Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.21748.
– reference: Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell 1976;8. https://doi.org/10.1016/0092-8674(76)90223-3.
– reference: SangYChenBSongXLiYLiangYHanDcircRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancerMol Ther2019271638521:CAS:528:DC%2BC1MXhslCgsL7O31153828673117410.1016/j.ymthe.2019.05.011
– reference: Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements. 2015;5. https://doi.org/10.1080/2159256X.2015.1045682.
– reference: Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20. https://doi.org/10.1038/s41576-019-0158-7.
– reference: Greene J, Baird AM, Casey O, Brady L, Blackshields G, Lim M, et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep. 2019;9. https://doi.org/10.1038/S41598-019-47189-2.
– reference: Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via Notch signaling pathway. Front Mol Neurosci. 2018;11. https://doi.org/10.3389/FNMOL.2018.00225.
– reference: Zaug AJ, Grabowski PJ, Cech TR. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature 1983;301. https://doi.org/10.1038/301578a0.
– reference: BurdCEJeckWRLiuYSanoffHKWangZSharplessNEExpression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis riskPLoS Genet20106115.10.1371/journal.pgen.1001233
– reference: AhmadovUBendikasMMEbbesenKKSehestedAMKjemsJBroholmHDistinct circular RNA expression profiles in pediatric ependymomasBrain Pathol202131387921:CAS:528:DC%2BB3MXmslGnur8%3D33247464801815310.1111/bpa.12922
– reference: You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015. https://doi.org/10.1038/nn.3975.
– reference: ZhangP-FGaoCHuangX-YLuJ-CGuoX-JShiG-MCancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinomaMol Cancer2020191:CAS:528:DC%2BB3cXhtlCqsLzJ32593303732058310.1186/s12943-020-01222-5
– reference: Geng Y, Jiang J, Wu C. Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 2018;11. https://doi.org/10.1186/s13045-018-0643-z.
– reference: Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N 6 -methyladenosine. Cell Res. 2017;27. https://doi.org/10.1038/cr.2017.31.
– reference: Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, et al. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-4304-3.
– reference: Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01253-y.
– reference: ChenYYangFFangEXiaoWMeiHLiHCircular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexesCell Death Differ2019261346641:CAS:528:DC%2BC1cXitVWjsb%2FP3034142110.1038/s41418-018-0220-6
– reference: Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011. https://doi.org/10.1038/emboj.2011.359.
– reference: Pasman Z, Been MD, Garcia-Blanco MA. Exon circularization in mammalian nuclear extracts. RNA. 1996;2.
– reference: Lim AST, Lim TH. Fluorescence in situ hybridization on tissue sections. Methods Mol Biol. 2017;1541. https://doi.org/10.1007/978-1-4939-6703-2_11.
– reference: Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7. https://doi.org/10.18632/oncotarget.8589.
– reference: Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell 2019;176. https://doi.org/10.1016/j.cell.2018.12.021.
– reference: Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vítor AC, et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015;4. https://doi.org/10.7554/eLife.09214.
– reference: Wang S, Li Q, Wang Y, Li X, Wang R, Kang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem Biophys Res Commun. 2018;505. https://doi.org/10.1016/j.bbrc.2018.10.026.
– reference: XuJZShaoCCWangXJZhaoXChenJQOuyangYXcircTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axisCell Death Dis 2019 10:3201910116
– reference: Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;5.
– reference: Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.114.
– reference: Moldovan LI, Tsoi LC, Ranjitha U, Hager H, Weidinger S, Gudjonsson JE, et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp Dermatol. 2021;30. https://doi.org/10.1111/exd.14227.
– reference: Dahl M, Husby S, Eskelund CW, Besenbacher S, Fjelstrup S, Côme C, et al. Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: a study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia. 2022;36. https://doi.org/10.1038/s41375-021-01311-4.
– reference: Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods. 2021;18. https://doi.org/10.1038/s41592-020-01011-4.
– reference: He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother. 2021;143. https://doi.org/10.1016/J.BIOPHA.2021.112127.
– reference: Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018;28. https://doi.org/10.1038/s41422-018-0033-7.
– reference: Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 2017;16. https://doi.org/10.1186/s12943-017-0719-3.
– reference: LegniniIdi TimoteoGRossiFMorlandoMBrigantiFSthandierOCirc-ZNF609 is a circular RNA that can be translated and functions in myogenesisMol Cell2017662237.e91:CAS:528:DC%2BC2sXkvFWqtbs%3D28344082538767010.1016/j.molcel.2017.02.017
– reference: Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487. https://doi.org/10.1016/j.cca.2017.10.011.
– reference: BianAWangYLiuJWangXLiuDJiangJCircular RNA complement factor H (CFH) Promotes Glioma progression by sponging miR-149 and Regulating AKT1Med Sci Monit2018245704121:CAS:528:DC%2BC1MXhvFWmsLvO30111766610827010.12659/MSM.910180
– reference: LiPYangXYuanWYangCZhangXHanJCircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microRNA-135aCell Physiol Biochem2018461606161:CAS:528:DC%2BC1cXhtVajsbzE2969498110.1159/000489208
– reference: Wu J, Guo X, Wen Y, Huang S, Yuan X, Tang L, et al. N6-Methyladenosine modification opens a new chapter in circular RNA biology. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.709299.
– reference: Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, van Wittenberghe N, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017;20. https://doi.org/10.1016/j.celrep.2017.08.027.
– reference: He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333. https://doi.org/10.1126/science.1210944.
– reference: Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA. 2014;20. https://doi.org/10.1261/rna.045781.114.
– reference: Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982;31. https://doi.org/10.1016/0092-8674(82)90414-7.
– reference: Surono A. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum Mol Genet. 1999. https://doi.org/10.1093/hmg/8.3.493.
– reference: LiuTLuQLiuJXieSFengBZhuWCircular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762Cell Death Dis2020111141:CAS:528:DC%2BB3cXit1Sisb7I
– reference: WangCTanSLiuWRLeiQQiaoWWuYRNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinomaMol Cancer2019181:CAS:528:DC%2BB38XhslCjsrjP31484581672433110.1186/s12943-019-1061-8
– reference: Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110. https://doi.org/10.1093/jnci/djx166.
– reference: Zhang Y, Nguyen TM, Zhang XO, Wang L, Phan T, Clohessy JG, et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 2021;22. https://doi.org/10.1186/s13059-021-02263-9.
– reference: Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.20.
– reference: Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. Genomics Proteomics Bioinformatics. 2018;16. https://doi.org/10.1016/j.gpb.2018.08.001.
– reference: Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01184-8.
– reference: Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54. https://doi.org/10.1016/j.molcel.2014.03.045.
– reference: Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;9. https://doi.org/10.1038/S41592-022-01487-2.
– reference: Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, et al. The landscape of MicroRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61. https://doi.org/10.1373/clinchem.2014.230433.
– reference: MercerTRGerhardtDJDingerMECrawfordJTrapnellCJeddelohJATargeted RNA sequencing reveals the deep complexity of the human transcriptomeNat Biotechnol2011309910422081020371046210.1038/nbt.2024
– reference: Tan S, Sun D, Pu W, Gou Q, Guo C, Gong Y, et al. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol Cancer. 2018;17. https://doi.org/10.1186/s12943-018-0887-9.
– reference: Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sánchez-Sendra B, et al. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell. 2020;37. https://doi.org/10.1016/j.ccell.2019.12.007.
– reference: Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 2017;18. https://doi.org/10.1186/s13059-017-1368-y.
– reference: Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, et al. A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis. 2020;11. https://doi.org/10.1038/S41419-020-03237-8.
– reference: Yang F, Liu DY, Guo JT, Ge N, Zhu P, Liu X, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23. https://doi.org/10.3748/wjg.v23.i47.8345.
– reference: Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37. https://doi.org/10.1186/S13046-018-0822-3.
– reference: Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, et al. Scrambled exons. Cell. 1991. https://doi.org/10.1016/0092-8674(91)90244-S.
– reference: Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016. https://doi.org/10.1038/srep38907.
– reference: Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci. 2021;8. https://doi.org/10.1002/advs.202001701.
– reference: ZhaoWWangSQinTWangWCircular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3J Cell Biochem20201213516251:CAS:528:DC%2BB3cXjtVemtLk%3D3206544810.1002/jcb.29631
– reference: Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016. https://doi.org/10.1101/gr.202895.115.
– reference: Wen X, Huang X, Mok BW-Y, Chen Y, Zheng M, Lau S-Y, et al. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. J Immunol. 2014;192. https://doi.org/10.4049/jimmunol.1302813.
– reference: Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67. https://doi.org/10.1016/j.molcel.2017.05.023.
– reference: Xu C, Zhang J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 2021;36. https://doi.org/10.1016/j.celrep.2021.109439.
– reference: Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66. https://doi.org/10.1016/j.molcel.2017.02.021.
– reference: He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6. https://doi.org/10.1038/S41392-021-00569-5.
– reference: Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1041-z.
– reference: Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76. https://doi.org/10.1016/j.molcel.2019.07.016.
– reference: Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32. https://doi.org/10.1101/gad.314856.118.
– reference: Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene. 1995;167. https://doi.org/10.1016/0378-1119(95)00639-7.
– reference: Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-Mediated exhaustion. Immunity. 2018;48. https://doi.org/10.1016/j.immuni.2018.03.016.
– reference: Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. https://doi.org/10.1186/s12943-018-0935-5.
– reference: RickertDBartlJPicardDBernardiFQinNLovinoMCircular RNA profiling distinguishes medulloblastoma groups and shows aberrant RMST overexpression in WNT medulloblastomaActa Neuropathol202114197581:CAS:528:DC%2BB3MXhtFWgtrrP33866410811331010.1007/s00401-021-02306-2
– reference: Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013. https://doi.org/10.1261/rna.035667.112.
– reference: MengLLiuSLiuFSangMJuYFanXZEB1-mediated transcriptional upregulation of circwwc3 promotes breast cancer progression through activating ras signaling pathwayMol Ther Nucleic Acids202022124371:CAS:528:DC%2BB3cXisFSgsL3K32916598749047110.1016/j.omtn.2020.08.015
– reference: Zhao Y, Zhang C, Tang H, Wu X, Qi Q. Mechanism of RNA circHIPK3 involved in resistance of lung cancer cells to gefitinib. Biomed Res Int. 2022;2022. https://doi.org/10.1155/2022/4541918.
– reference: Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2014.08.019.
– reference: LiZYanfangWLiJJiangPPengTChenKTumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancerCancer Lett2018432237501:CAS:528:DC%2BC1cXhtF2ltbnL2970970210.1016/j.canlet.2018.04.035
– reference: Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32. https://doi.org/10.1038/nbt.2890.
– reference: Hu Y, Gu J, Shen H, Shao T, Li S, Wang W, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J Clin Lab Anal. 2020;34. https://doi.org/10.1002/jcla.23045.
– reference: Meganck RM, Borchardt EK, Castellanos Rivera RM, Scalabrino ML, Wilusz JE, Marzluff WF, et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids. 2018;13. https://doi.org/10.1016/j.omtn.2018.08.008.
– reference: ZhangXZhangJLiuQZhaoYZhangWYangHCirc-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 axisNeurochem Res2020452840551:CAS:528:DC%2BB3cXhvFKnt7nE3300043510.1007/s11064-020-03132-w
– reference: Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44. https://doi.org/10.1093/NAR/GKV1458.
– reference: Huijbers A, Tollenaar RAEM, Pelt GWV, Zeestraten ECM, Dutton S, McConkey CC, et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the victor trial. Ann Oncol. 2013;24. https://doi.org/10.1093/annonc/mds246.
– reference: Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 2017;45. https://doi.org/10.1093/nar/gkx297.
– reference: Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25. https://doi.org/10.1038/cr.2015.82.
– reference: Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5. https://doi.org/10.1038/srep08057.
– reference: Zhang XO, Wang H bin, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014. https://doi.org/10.1016/j.cell.2014.09.001.
– reference: Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0158347.
– reference: Zhang X, Su X, Guo Z, Jiang X, Li X. Circular RNA La-related RNA-binding protein 4 correlates with reduced tumor stage, as well as better prognosis, and promotes chemosensitivity to doxorubicin in breast cancer. J Clin Lab Anal. 2020;34. https://doi.org/10.1002/jcla.23272.
– reference: Dragomir MP, Manyam GC, Ott LF, Berland L, Knutsen E, Ivan C, et al. Funcpep: a database of functional peptides encoded by non-coding rnas. Noncoding RNA. 2020;6. https://doi.org/10.3390/ncrna6040041.
– reference: Schindewolf C, Braun S, Domdey H. In vitro generation of a circular exon from a linear pre-mRNA transcript. Nucleic Acids Res. 1996. https://doi.org/10.1093/nar/24.7.1260.
– reference: Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22. https://doi.org/10.1038/nbt996.
– reference: Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol. 2021;23. https://doi.org/10.1038/s41556-021-00639-4.
– reference: Zhang P, Gao K, Liang Y, Su F, Wang F, Li Z. Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification. Talanta. 2020;217. https://doi.org/10.1016/j.talanta.2020.121021.
– reference: Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550. https://doi.org/10.1038/nature24049.
– reference: Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7. https://doi.org/10.1080/20013078.2018.1424473.
– reference: Sheng X, Hong L, Fan L, Zhang Y, Che K, Mu J, et al. Circular RNA PVT1 regulates cell proliferation, migration and apoptosis by stabilizing c-Myc and its downstream target CXCR4 expression in acute myeloid leukemia. Turk J Haematol. 2023. https://doi.org/10.4274/TJH.GALENOS.2023.2022.0435.
– reference: Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993. https://doi.org/10.1016/0092-8674(93)90279-Y.
– reference: Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44. https://doi.org/10.1038/ng.2434.
– reference: Zhu P, Zhu X, Wu J, He L, Lu T, Wang Y, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat Immunol. 2019;20. https://doi.org/10.1038/s41590-018-0297-6.
– reference: Chen DL, Sheng H, Zhang DS, Jin Y, Zhao BT, Chen N, et al. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol Cancer. 2021;20. https://doi.org/10.1186/S12943-021-01475-8.
– reference: Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 2019;18. https://doi.org/10.1186/S12943-019-1015-1.
– reference: WangZGersteinMSnyderMRNA-Seq: a revolutionary tool for transcriptomicsNat Rev Genet20091057631:CAS:528:DC%2BD1cXhsFWis7bL19015660294928010.1038/nrg2484
– reference: Yi H, Han Y, Li S. Oncogenic circular RNA circ_0007534 contributes to paclitaxel resistance in endometrial cancer by sponging miR-625 and promoting ZEB2 expression. Front Oncol. 2022;12. https://doi.org/10.3389/FONC.2022.985470.
– reference: NairAANiuNTangXThompsonKJWangLKocherJPCircular RNAs and their associations with breast cancer subtypesOncotarget20167809677927829232534836910.18632/oncotarget.13134
– reference: Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circrna clearance. PLoS ONE 2016;11. https://doi.org/10.1371/journal.pone.0148407.
– reference: Stagsted LVW, Nielsen KM, Daugaard I, Hansen TB. Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci Alliance. 2019;2. https://doi.org/10.26508/lsa.201900398.
– reference: Liu Y, Zhang X, Liu M, Xu F, Zhang Q, Zhang Y, et al. Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification. Anal Chim Acta. 2020;1101. https://doi.org/10.1016/j.aca.2019.12.027.
– reference: Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms11215.
– reference: Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. https://doi.org/10.1038/s41467-022-31327-y.
– reference: Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992. https://doi.org/10.1002/j.1460-2075.1992.tb05148.x.
– reference: Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10. https://doi.org/10.1016/j.celrep.2014.12.019.
– reference: Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell. 2022;82. https://doi.org/10.1016/j.molcel.2021.11.032.
– reference: Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol. 2017;13. https://doi.org/10.1371/journal.pcbi.1005420.
– reference: Rahimi K, Venø MT, Dupont DM, Kjems J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-021-24975-z.
– reference: Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21. https://doi.org/10.1261/rna.048272.114.
– reference: Zhang PF, Zhang PF, Zhang PF, Gao C, Gao C, Huang XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01222-5.
– reference: HuangXYZhangPFWeiCYPengRLuJCGaoCCircular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axisMol Cancer20201911810.1186/s12943-020-01213-6
– reference: Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29. https://doi.org/10.1101/gad.270421.115.
– reference: Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15. https://doi.org/10.1016/j.celrep.2016.03.058.
– reference: Qian L, Vu MN, Carter M, Wilkinson MF. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acids Res. 1992;20. https://doi.org/10.1093/nar/20.20.5345.
– reference: LiDLiLChenXYangWCaoYCircular RNA SERPINE2 promotes development of glioblastoma by regulating the miR-361-3p/miR-324-5p/ BCL2 signaling pathwayMol Ther Oncolytics202122483941:CAS:528:DC%2BB38XjtVWjtro%3D34553034843306010.1016/j.omto.2021.07.010
– reference: He J, Chen J, Ma B, Jiang L, Zhao G. CircLMTK2 acts as a novel tumor suppressor in gastric cancer. Biosci Rep. 2019;39. https://doi.org/10.1042/BSR20190363.
– reference: Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0030733.
– reference: Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkv1367.
– reference: HansenTBJensenTIClausenBHBramsenJBFinsenBDamgaardCKNatural RNA circles function as efficient microRNA spongesNature201349538481:CAS:528:DC%2BC3sXktlCrtLg%3D2344634610.1038/nature11993
– reference: GaoYWangJZhaoFCIRI: An efficient and unbiased algorithm for de novo circular RNA identificationGenome Biol201516116.10.1186/s13059-014-0571-3
– reference: Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5. https://doi.org/10.1038/s41392-020-00375-5.
– reference: YuanDHZhaoJShaoGFCircular RNA TTBK2 promotes the development of human glioma cells via miR-520b/EZH2 axisEur Rev Med Pharmacol Sci201923108869831858557
– reference: Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15. https://doi.org/10.1038/nrg3662.
– reference: Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, et al. The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell. 2017;68. https://doi.org/10.1016/j.molcel.2017.10.034.
– reference: Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996. https://doi.org/10.1073/pnas.93.13.6536.
– reference: Yu J, Ding WB, Wang MC, Guo XG, Xu J, Xu QG, et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: a large-scale, multicenter study. Int J Cancer. 2020;146. https://doi.org/10.1002/ijc.32647.
– reference: Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 2020;39. https://doi.org/10.1186/S13046-019-1487-2.
– reference: Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26. https://doi.org/10.1016/j.celrep.2019.02.078.
– reference: Nanishi K, Konishi H, Shoda K, Arita T, Kosuga T, Komatsu S, et al. Circulating circERBB2 as a potential prognostic biomarker for gastric cancer: an investigative study. Cancer Sci. 2020;111. https://doi.org/10.1111/cas.14645.
– reference: WuNYuanZDuKYFangLLyuJZhangCTranslation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machineryCell Death Differ2019262758731:CAS:528:DC%2BC1MXhtFSmsbvI31092884722437810.1038/s41418-019-0337-2
– reference: Liu X, Liu X, Cai M, Luo A, He Y, Liu S, et al. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer. 2021;20. https://doi.org/10.1186/S12943-021-01395-7.
– reference: Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24. https://doi.org/10.1038/cdd.2017.86.
– reference: Wu W, Ji P, Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020;21. https://doi.org/10.1186/s13059-020-02018-y.
– reference: Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16. https://doi.org/10.1186/s12943-017-0663-2.
– reference: Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2. https://doi.org/10.1371/journal.pbio.0020391.
– reference: DuWWYangWLiXFangLWuNLiFThe Circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasionMol Ther2020281287981:CAS:528:DC%2BB3cXhtVeju77K32229309721074910.1016/j.ymthe.2020.03.002
– reference: Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, et al. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell. 2016;19. https://doi.org/10.1016/j.stem.2016.06.020.
– reference: Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-10246-5.
– reference: Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 2017;10. https://doi.org/10.1186/s13045-017-0422-2.
– reference: Zheng Y, Ji P, Chen S, Hou L, Zhao F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 2019;11. https://doi.org/10.1186/s13073-019-0614-1.
– reference: Kristensen LS, Okholm TLH, Venø MT, Kjems J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15. https://doi.org/10.1080/15476286.2017.1409931.
– reference: KocksCBoltengagenAPiweckaMRybak-WolfARajewskyNSingle-molecule fluorescence in situ hybridization (FISH) of circular RNA CDR1asMethods Mol Biol2018172477961:CAS:528:DC%2BC1cXhvFyqtbfO2932244210.1007/978-1-4939-7562-4_7
– reference: Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19. https://doi.org/10.1186/s13059-018-1594-y.
– reference: Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37. https://doi.org/10.1038/s41388-017-0019-9.
– reference: Liu J, Du F, Chen C, Li D, Chen Y, Xiao X, et al. CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615-3p/PRKCD axis in multiple myeloma. Life Sci 2020;262. https://doi.org/10.1016/J.LFS.2020.118506.
– reference: Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-020-20527-z.
– reference: NieJYangRZhouRDengYLiDGouDCircular RNA circFARSA promotes the tumorigenesis of non-small cell lung cancer by elevating B7H3 via sponging miR-15a-5pCell Cycle2022212575891:CAS:528:DC%2BB38XitVelt7vF35920698970438710.1080/15384101.2022.2105087
– reference: He Y di, Tao W, He T, Wang BY, Tang XM, Zhang LM, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/mL at initial biopsy. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01388-6.
– reference: Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 2016;165. https://doi.org/10.1016/j.cell.2016.03.020.
– reference: Dahl M, Daugaard I, Andersen MS, Hansen TB, Grønbæk K, Kjems J, et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Investig. 2018;98. https://doi.org/10.1038/s41374-018-0108-6.
– reference: Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015. https://doi.org/10.1016/j.cell.2015.02.014.
– reference: Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N 6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-12651-2.
– reference: ZhongYWangDDingYTianGJiangBCircular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5pBiotechnol Lett202143339511:CAS:528:DC%2BB3cXit1ers7nF3312382910.1007/s10529-020-03036-3
– reference: Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, et al. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 2018;9. https://doi.org/10.18632/oncotarget.25673.
– reference: Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25. https://doi.org/10.1111/jcmm.16541.
– reference: Yu C, Cheng Z, Cui S, Mao X, Li B, Fu Y, et al. circFOXM1 promotes proliferation of non-small cell lung carcinoma cells by acting as a ceRNA to upregulate FAM83D. J Exp Clin Cancer Res. 2020;39. https://doi.org/10.1186/S13046-020-01555-5.
– reference: Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986. https://doi.org/10.1038/323558a0.
– reference: Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981;23. https://doi.org/10.1016/0092-8674(81)90142-2.
– reference: HentzeMWPreissTCircular RNAs: splicing’s enigma variationsEMBO J20133292351:CAS:528:DC%2BC3sXjsFOnsbs%3D23463100361629310.1038/emboj.2013.53
– reference: D’AmbraEMorlandoMStudy of circular RNA expression by nonradioactive northern blot procedureMethods Mol Biol20212348371833416081810.1007/978-1-0716-1581-2_23
– reference: MorenaDPiccaFTaulliRCircNT5E/miR-422a: a new circRNA-based ceRNA network in glioblastomaTransl Cancer Res20198S106S109.1:CAS:528:DC%2BC1MXhvVOgtr3K35117075879765910.21037/tcr.2018.11.13
– reference: Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms12429.
– reference: Han YN, Xia SQ, Zhang YY, Zheng JH, Li W. Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18350.
– reference: Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.06.034.
– reference: Ju H, Zhao Q, Wang F, Lan P, Wang Z, Zuo Z, et al. A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol Med. 2019;11. https://doi.org/10.15252/emmm.201810168.
– reference: Kopczynski CC, Muskavitch MAT. Introns excised from the Delta primary transcript are localized near sites of Delta transcription. J Cell Biol. 1992;119. https://doi.org/10.1083/jcb.119.3.503.
– reference: Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7. https://doi.org/10.1002/cam4.1514.
– reference: Fang L, Du WW, Awan FM, Dong J, Yang BB. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 2019;459. https://doi.org/10.1016/j.canlet.2019.05.036.
– reference: Zhang T, Xu J, Shen H, Dong W, Ni Y, Du J. Tumor-stroma ratio is an independent predictor for survival in NSCLC. Int J Clin Exp Pathol. 2015;8.
– reference: Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013. https://doi.org/10.1016/j.molcel.2013.08.017.
– reference: Mi Z, Zhongqiang C, Caiyun J, Yanan L, Jianhua W, Liang L. Circular RNA detection methods: a minireview. Talanta. 2022;238. https://doi.org/10.1016/J.TALANTA.2021.123066.
– reference: Koh HR, Xing L, Kleiman L, Myong S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res. 2014;42. https://doi.org/10.1093/nar/gku523.
– reference: ZengZZhaoYChenQYZhuSNiuYYeZHypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysisOncogene2021405505171:CAS:528:DC%2BB3MXhs1WntLzP3429484510.1038/s41388-021-01960-w
– reference: Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014. https://doi.org/10.1016/j.celrep.2014.10.062.
– reference: Cortés-López M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, et al. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics. 2018. https://doi.org/10.1186/s12864-017-4386-y.
– reference: Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6. https://doi.org/10.1038/srep37982.
– reference: Dunn SJ, Martello G, Yordanov B, Emmott S, Smith AG. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344. https://doi.org/10.1126/science.1248882.
– reference: Hansen TB. Signal and noise in circRNA translation. Methods. 2021;196. https://doi.org/10.1016/j.ymeth.2021.02.007.
– reference: Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44. https://doi.org/10.1093/nar/gkw027.
– reference: Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017;24. https://doi.org/10.1038/cdd.2016.133.
– reference: FeiTChenYXiaoTLiWCatoLZhangPGenome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicingProc Natl Acad Sci USA2017114E5207E5215.1:CAS:528:DC%2BC2sXpvFCmtr0%3D28611215549522510.1073/pnas.1617467114
– reference: Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms14741.
– reference: DaiXChenCYangQXueJChenXSunBExosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferationCell Death Dis2018911410.1038/s41419-018-0485-1
– reference: BarbagalloDCaponnettoABarbagalloCBattagliaRMirabellaFBrexDThe GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic PotentialInt J Mol Sci202122116.10.3390/ijms22041678
– reference: Moldovan LI, Hansen TB, Venø MT, Okholm TLH, Andersen TL, Hager H, et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med Genomics. 2019;12. https://doi.org/10.1186/s12920-019-0616-2.
– reference: Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10. https://doi.org/10.1038/S41467-019-11162-4.
– reference: Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993. https://doi.org/10.1096/fasebj.7.1.7678559.
– reference: Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem. 2006;281. https://doi.org/10.1074/jbc.M606744200.
– reference: Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, et al. Serum extracellular vesicle-derived circhipk3 and circsmarca5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals. 2021;14. https://doi.org/10.3390/ph14070618.
– reference: Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015. https://doi.org/10.1186/s13059-015-0801-3.
– reference: Hong X, Liu N, Liang Y, He Q, Yang X, Lei Y, et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01149-x.
– reference: di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31. https://doi.org/10.1016/j.celrep.2020.107641.
– reference: Houseley JM, Garcia-Casado Z, Pascual M, Paricio N, O’Dell KMC, Monckton DG, et al. Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. J Heredity. 2006. https://doi.org/10.1093/jhered/esj037.
– reference: Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, et al. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis. 2018;9. https://doi.org/10.1038/S41419-018-0699-2.
– reference: Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979. https://doi.org/10.1038/280339a0.
– reference: Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37. https://doi.org/10.1038/s41388-018-0369-y.
– reference: Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013. https://doi.org/10.1038/nature11928.
– reference: Panda AC. Circular RNAs act as miRNA sponges. In: Advances in experimental medicine and biology; 2018. https://doi.org/10.1007/978-981-13-1426-1_6.
– reference: Lu W-Y. Cell Cycle Roles of the circular RNA circ-Foxo3 in breast cancer progression. 2017. https://doi.org/10.1080/15384101.2017.1278935.
– reference: Jakobsen T, Dahl M, Dimopoulos K, Grønbæk K, Kjems J, Kristensen LS. Genome-wide circular rna expression patterns reflect resistance to immunomodulatory drugs in multiple myeloma cells. Cancers. 2021;13. https://doi.org/10.3390/cancers13030365.
– reference: ShangJChenWMWangZHWeiTNChenZZWuWBCircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axisExp Hematol2019704254.e31:CAS:528:DC%2BC1cXitlalsbjF3039590810.1016/j.exphem.2018.10.011
– reference: Zaphiropoulos PG. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol. 1997. https://doi.org/10.1128/mcb.17.6.2985.
– reference: Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019;10. https://doi.org/10.1038/S41419-018-1048-1.
– reference: Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14. https://doi.org/10.1080/15476286.2017.1279788.
– reference: Wu D-M, Wen X, Han X-R, Wang S, Wang Y-J, Shen M, et al. Role of circular RNA DLEU2 in human acute myeloid leukemia. Mol Cell Biol. 2018;38. https://doi.org/10.1128/MCB.00259-18.
– reference: Glažar P, Papavasileiou P, Rajewsky N. CircBase: A database for circular RNAs. RNA. 2014;20. https://doi.org/10.1261/rna.043687.113.
– reference: Mecozzi N, Nenci A, Vera O, Bok I, Falzone A, DeNicola GM, et al. Genetic tools for the stable overexpression of circular RNAs. RNA Biol. 2022;19. https://doi.org/10.1080/15476286.2022.2043041.
– reference: Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-Type Specific Features of Circular RNA Expression. PLoS Genet. 2013. https://doi.org/10.1371/journal.pgen.1003777.
– reference: Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011. https://doi.org/10.1038/nature10442.
– reference: Olesen MTJ, Kristensen LS. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65. https://doi.org/10.1042/EBC20200060.
– reference: Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021;22. https://doi.org/10.15252/embr.202052072.
– reference: Liu B, Tian Y, Chen M, Shen H, Xia J, Nan J, et al. CircUBAP2 Promotes MMP9-Mediated Oncogenic Effect via Sponging miR-194-3p in Hepatocellular Carcinoma. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.675043.
– reference: Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol 2017;14. https://doi.org/10.1080/15476286.2016.1269999.
– reference: Chen DF, Zhang LJ, Tan K, Jing Q. Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs. Biotechnol Biotechnol Equip. 2018;32. https://doi.org/10.1080/13102818.2017.1398596.
– reference: Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22. https://doi.org/10.1093/bib/bbaa001.
– reference: XiaoHShiJExosomal circular RNA_400068 promotes the development of renal cell carcinoma via the miR-210-5p/SOCS1 axisMol Med Rep20202248101:CAS:528:DC%2BB3cXisVyqsr3O33173957764690710.3892/mmr.2020.11541
– reference: Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18671.
– reference: Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem. 1999. https://doi.org/10.1074/jbc.274.12.8153.
– reference: KochLCRISPR–Cas13 targets circRNAsNat Rev Genet2020226868
– reference: Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med. 2018;96. https://doi.org/10.1007/s00109-017-1600-y.
– reference: Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01246-x.
– reference: Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28. https://doi.org/10.1101/gad.251926.114.
– reference: Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22. https://doi.org/10.1038/nsmb.2959.
– reference: Gujam FJA, Edwards J, Mohammed ZMA, Going JJ, McMillan DC. The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer. 2014;111. https://doi.org/10.1038/bjc.2014.279.
– reference: Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015. https://doi.org/10.7554/eLife.07540.
– reference: XiaXLiXLiFWuXZhangMZhouHA novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1Mol Cancer201918116.
– reference: Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. https://doi.org/10.1186/s12943-019-1006-2.
– reference: Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single stranded covalently closed circular RNA molecules existing as highly base paired rod like structures. Proc Natl Acad Sci USA. 1976. https://doi.org/10.1073/pnas.73.11.3852.
– reference: GersteinMBRozowskyJYanKKWangDChengCBrownJBComparative analysis of the transcriptome across distant speciesNature201451244581:CAS:528:DC%2BC2cXhsVers7bK25164755415573710.1038/nature13424
– reference: PanYLouJWangHAnNChenHZhangQCircBA9.3 supports the survival of leukaemic cells by up-regulating c-ABL1 or BCR-ABL1 protein levelsBlood Cells Mol Dis20187338441:CAS:528:DC%2BC1cXhslahtb3E3022429810.1016/j.bcmd.2018.09.002
– reference: Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015. https://doi.org/10.1016/j.celrep.2014.12.002.
– reference: Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01358-y.
– reference: Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu J, et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1111-2.
– volume: 22
  start-page: 4810
  year: 2020
  ident: 2780_CR43
  publication-title: Mol Med Rep
  doi: 10.3892/mmr.2020.11541
– ident: 2780_CR225
  doi: 10.1038/S41467-019-11162-4
– ident: 2780_CR47
  doi: 10.1261/rna.048272.114
– ident: 2780_CR125
  doi: 10.1016/j.ymeth.2021.02.007
– ident: 2780_CR95
  doi: 10.1016/j.gpb.2018.08.001
– ident: 2780_CR165
  doi: 10.1038/s41576-019-0158-7
– ident: 2780_CR115
  doi: 10.1093/nar/gkw027
– ident: 2780_CR186
  doi: 10.1016/j.bbrc.2018.10.026
– ident: 2780_CR7
  doi: 10.1016/0092-8674(81)90142-2
– volume: 26
  start-page: 2758
  year: 2019
  ident: 2780_CR228
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-019-0337-2
– ident: 2780_CR143
  doi: 10.1038/nrg.2016.114
– ident: 2780_CR162
  doi: 10.1038/s41374-018-0108-6
– ident: 2780_CR217
  doi: 10.1038/S41419-018-1048-1
– ident: 2780_CR188
  doi: 10.15252/emmm.201810168
– ident: 2780_CR184
  doi: 10.1002/jcla.23045
– ident: 2780_CR34
  doi: 10.1016/j.molcel.2015.03.027
– volume: 21
  start-page: 2575
  year: 2022
  ident: 2780_CR227
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2022.2105087
– ident: 2780_CR69
  doi: 10.1038/ncomms14741
– ident: 2780_CR233
  doi: 10.1186/s12943-018-0935-5
– ident: 2780_CR206
  doi: 10.1038/S41392-021-00569-5
– volume: 28
  start-page: 1287
  year: 2020
  ident: 2780_CR230
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2020.03.002
– ident: 2780_CR15
  doi: 10.1093/jhered/esj037
– volume: 495
  start-page: 384
  year: 2013
  ident: 2780_CR99
  publication-title: Nature
  doi: 10.1038/nature11993
– ident: 2780_CR117
  doi: 10.1038/cdd.2016.133
– ident: 2780_CR236
  doi: 10.1186/S12943-019-1015-1
– volume: 40
  start-page: 5505
  year: 2021
  ident: 2780_CR201
  publication-title: Oncogene
  doi: 10.1038/s41388-021-01960-w
– ident: 2780_CR35
  doi: 10.1038/nn.3975
– ident: 2780_CR128
  doi: 10.1186/s12943-019-1010-6
– ident: 2780_CR71
  doi: 10.1002/advs.202001701
– volume: 23
  start-page: 10886
  year: 2019
  ident: 2780_CR241
  publication-title: Eur Rev Med Pharmacol Sci
– volume: 11
  start-page: 1
  year: 2020
  ident: 2780_CR149
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-019-2182-0
– volume: 19
  start-page: 1
  year: 2020
  ident: 2780_CR219
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01213-6
– ident: 2780_CR196
  doi: 10.1016/j.cca.2017.10.011
– ident: 2780_CR23
  doi: 10.7554/eLife.07540
– ident: 2780_CR103
  doi: 10.18632/oncotarget.21748
– ident: 2780_CR57
  doi: 10.1080/15476286.2016.1271524
– ident: 2780_CR138
  doi: 10.1074/jbc.M606744200
– ident: 2780_CR148
  doi: 10.1186/S13046-019-1487-2
– ident: 2780_CR20
  doi: 10.1371/journal.pone.0030733
– volume: 22
  start-page: 483
  year: 2021
  ident: 2780_CR234
  publication-title: Mol Ther Oncolytics
  doi: 10.1016/j.omto.2021.07.010
– ident: 2780_CR183
  doi: 10.1186/s12943-017-0719-3
– ident: 2780_CR88
  doi: 10.1016/j.celrep.2017.08.027
– ident: 2780_CR136
  doi: 10.1093/NAR/GKV1458
– ident: 2780_CR94
  doi: 10.1186/s13059-020-02018-y
– ident: 2780_CR33
  doi: 10.1038/srep38907
– ident: 2780_CR237
  doi: 10.1042/BSR20190363
– volume: 73
  start-page: 38
  year: 2018
  ident: 2780_CR250
  publication-title: Blood Cells Mol Dis
  doi: 10.1016/j.bcmd.2018.09.002
– ident: 2780_CR169
  doi: 10.1038/s41590-018-0297-6
– ident: 2780_CR18
  doi: 10.1038/nature11928
– ident: 2780_CR51
  doi: 10.1016/j.stem.2016.06.020
– volume: 10
  start-page: 57
  year: 2009
  ident: 2780_CR133
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2484
– volume: 45
  start-page: 2840
  year: 2020
  ident: 2780_CR207
  publication-title: Neurochem Res
  doi: 10.1007/s11064-020-03132-w
– ident: 2780_CR209
  doi: 10.1186/S12943-020-01184-8
– ident: 2780_CR53
  doi: 10.3390/cancers13030365
– ident: 2780_CR107
– ident: 2780_CR245
  doi: 10.1128/MCB.00259-18
– ident: 2780_CR152
  doi: 10.1007/s00109-017-1600-y
– ident: 2780_CR179
  doi: 10.1093/annonc/mds246
– ident: 2780_CR171
  doi: 10.1111/jcmm.16541
– volume: 19
  year: 2020
  ident: 2780_CR205
  publication-title: Mol Cancer
  doi: 10.1186/s12943-020-01222-5
– ident: 2780_CR81
  doi: 10.1016/j.cell.2018.12.021
– ident: 2780_CR176
  doi: 10.1002/cam4.1514
– ident: 2780_CR105
  doi: 10.1186/s13045-017-0422-2
– ident: 2780_CR224
  doi: 10.1155/2022/4541918
– ident: 2780_CR251
  doi: 10.1186/S13046-018-0822-3
– ident: 2780_CR97
  doi: 10.1126/science.1210944
– ident: 2780_CR85
  doi: 10.1186/s12943-018-0887-9
– ident: 2780_CR78
  doi: 10.1093/nar/20.20.5345
– volume: 7
  start-page: 80967
  year: 2016
  ident: 2780_CR191
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13134
– ident: 2780_CR214
  doi: 10.1038/s41392-020-00375-5
– ident: 2780_CR45
  doi: 10.1038/srep08057
– ident: 2780_CR61
  doi: 10.1016/j.celrep.2014.12.019
– ident: 2780_CR121
  doi: 10.1016/J.BIOPHA.2021.112127
– ident: 2780_CR58
  doi: 10.1038/nbt.2890
– volume: 22
  start-page: 124
  year: 2020
  ident: 2780_CR231
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2020.08.015
– ident: 2780_CR130
  doi: 10.1038/cr.2017.31
– ident: 2780_CR193
  doi: 10.1186/s12943-021-01388-6
– ident: 2780_CR41
  doi: 10.1186/s12943-019-1041-z
– ident: 2780_CR158
  doi: 10.1186/s13059-021-02263-9
– ident: 2780_CR140
  doi: 10.1093/bib/bby006
– ident: 2780_CR197
  doi: 10.3748/wjg.v23.i47.8345
– volume: 1724
  start-page: 77
  year: 2018
  ident: 2780_CR146
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-7562-4_7
– ident: 2780_CR123
  doi: 10.26508/lsa.201900398
– ident: 2780_CR91
  doi: 10.1016/j.celrep.2021.109439
– ident: 2780_CR221
  doi: 10.1038/S41592-022-01487-2
– volume: 32
  start-page: 923
  year: 2013
  ident: 2780_CR111
  publication-title: EMBO J
  doi: 10.1038/emboj.2013.53
– ident: 2780_CR195
  doi: 10.3390/ph14070618
– ident: 2780_CR223
  doi: 10.1042/EBC20200060
– ident: 2780_CR66
  doi: 10.1080/15476286.2016.1269999
– ident: 2780_CR55
  doi: 10.1016/j.ccell.2019.12.007
– volume: 18
  year: 2019
  ident: 2780_CR192
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1061-8
– ident: 2780_CR13
  doi: 10.1093/hmg/8.3.493
– ident: 2780_CR187
  doi: 10.3389/fcell.2021.675043
– ident: 2780_CR211
  doi: 10.1016/j.canlet.2019.05.036
– ident: 2780_CR4
  doi: 10.1038/323558a0
– ident: 2780_CR24
  doi: 10.1093/nar/24.7.1260
– ident: 2780_CR77
  doi: 10.1261/rna.045781.114
– ident: 2780_CR220
  doi: 10.1038/nrg.2016.49
– ident: 2780_CR87
  doi: 10.3389/fcell.2021.709299
– ident: 2780_CR93
  doi: 10.1016/j.celrep.2019.02.078
– ident: 2780_CR200
  doi: 10.1038/S41598-019-47189-2
– ident: 2780_CR48
  doi: 10.1101/gad.270421.115
– ident: 2780_CR145
  doi: 10.1007/978-1-4939-6703-2_11
– ident: 2780_CR247
  doi: 10.1038/S41419-018-0699-2
– ident: 2780_CR122
  doi: 10.1038/s41467-022-31327-y
– volume: 9
  start-page: 1
  year: 2018
  ident: 2780_CR42
  publication-title: Cell Death Dis
  doi: 10.1038/s41419-018-0485-1
– ident: 2780_CR246
  doi: 10.4274/TJH.GALENOS.2023.2022.0435
– ident: 2780_CR28
  doi: 10.1016/j.celrep.2016.03.058
– ident: 2780_CR73
  doi: 10.1371/journal.pbio.0020391
– ident: 2780_CR29
  doi: 10.1093/nar/gkv1367
– volume: 8
  start-page: S106
  year: 2019
  ident: 2780_CR239
  publication-title: Transl Cancer Res
  doi: 10.21037/tcr.2018.11.13
– ident: 2780_CR150
  doi: 10.1016/J.TALANTA.2021.123066
– ident: 2780_CR222
  doi: 10.1016/j.molcel.2014.03.045
– volume: 22
  start-page: 1
  year: 2021
  ident: 2780_CR243
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22041678
– ident: 2780_CR72
  doi: 10.1093/nar/gku523
– ident: 2780_CR112
  doi: 10.1038/ng.2434
– ident: 2780_CR166
  doi: 10.1038/s41580-020-0243-y
– ident: 2780_CR199
  doi: 10.3389/FONC.2022.985470
– ident: 2780_CR118
  doi: 10.1038/s41467-020-20527-z
– ident: 2780_CR98
  doi: 10.1186/s13059-018-1594-y
– ident: 2780_CR116
  doi: 10.1080/15476286.2017.1279788
– ident: 2780_CR1
  doi: 10.1016/0092-8674(76)90223-3
– volume: 6
  start-page: 1
  year: 2010
  ident: 2780_CR16
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001233
– volume: 43
  start-page: 339
  year: 2021
  ident: 2780_CR202
  publication-title: Biotechnol Lett
  doi: 10.1007/s10529-020-03036-3
– ident: 2780_CR40
  doi: 10.1038/cr.2015.82
– ident: 2780_CR161
  doi: 10.1038/s41467-021-24975-z
– ident: 2780_CR46
  doi: 10.1016/j.molcel.2018.06.034
– volume: 70
  start-page: 42
  year: 2019
  ident: 2780_CR244
  publication-title: Exp Hematol
  doi: 10.1016/j.exphem.2018.10.011
– volume: 114
  start-page: E5207
  year: 2017
  ident: 2780_CR70
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1617467114
– ident: 2780_CR218
  doi: 10.1186/S12943-020-01222-5
– ident: 2780_CR142
  doi: 10.1371/journal.pcbi.1005420
– ident: 2780_CR17
  doi: 10.1038/emboj.2011.359
– ident: 2780_CR198
  doi: 10.1186/s12943-020-01149-x
– ident: 2780_CR109
  doi: 10.1016/j.molcel.2021.11.032
– volume: 18
  start-page: 1
  year: 2019
  ident: 2780_CR215
  publication-title: Mol Cancer
– ident: 2780_CR59
  doi: 10.1101/gad.314856.118
– ident: 2780_CR32
  doi: 10.1186/s12864-017-4304-3
– ident: 2780_CR132
  doi: 10.3390/ncrna6040041
– ident: 2780_CR62
  doi: 10.1101/gad.251926.114
– volume: 24
  start-page: 5704
  year: 2018
  ident: 2780_CR242
  publication-title: Med Sci Monit
  doi: 10.12659/MSM.910180
– ident: 2780_CR101
  doi: 10.1007/978-981-13-1426-1_6
– ident: 2780_CR60
  doi: 10.1016/j.cell.2014.09.001
– ident: 2780_CR174
  doi: 10.18632/oncotarget.18350
– ident: 2780_CR44
  doi: 10.1186/s12920-019-0616-2
– ident: 2780_CR6
  doi: 10.1016/0092-8674(82)90414-7
– ident: 2780_CR90
  doi: 10.1016/j.celrep.2020.107641
– ident: 2780_CR253
  doi: 10.1093/nar/gkx297
– ident: 2780_CR181
  doi: 10.1038/bjc.2014.279
– volume: 16
  start-page: 1
  year: 2015
  ident: 2780_CR80
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0571-3
– ident: 2780_CR119
  doi: 10.1038/cdd.2017.86
– ident: 2780_CR9
  doi: 10.1016/0092-8674(93)90279-Y
– ident: 2780_CR38
  doi: 10.1371/journal.pone.0148407
– ident: 2780_CR167
  doi: 10.18632/oncotarget.8589
– ident: 2780_CR102
  doi: 10.1371/journal.pone.0158347
– ident: 2780_CR157
  doi: 10.1038/s41592-020-01011-4
– ident: 2780_CR177
  doi: 10.1111/cas.14645
– ident: 2780_CR27
  doi: 10.1016/j.molcel.2014.08.019
– volume: 121
  start-page: 3516
  year: 2020
  ident: 2780_CR108
  publication-title: J Cell Biochem
  doi: 10.1002/jcb.29631
– ident: 2780_CR83
  doi: 10.1038/s41422-018-0033-7
– ident: 2780_CR124
  doi: 10.1016/j.molcel.2017.02.021
– ident: 2780_CR63
– ident: 2780_CR182
  doi: 10.1111/cas.13901
– ident: 2780_CR84
  doi: 10.1016/j.cell.2016.03.020
– ident: 2780_CR49
  doi: 10.1016/j.molcel.2017.10.034
– ident: 2780_CR52
  doi: 10.1038/nature10442
– ident: 2780_CR129
  doi: 10.1038/s41556-021-00639-4
– ident: 2780_CR170
  doi: 10.1111/exd.14227
– ident: 2780_CR180
– ident: 2780_CR2
  doi: 10.1073/pnas.73.11.3852
– ident: 2780_CR68
  doi: 10.1038/nsmb.2959
– ident: 2780_CR12
  doi: 10.1128/mcb.17.6.2985
– volume: 19
  start-page: 1
  year: 2020
  ident: 2780_CR212
  publication-title: Mol Cancer
  doi: 10.1186/s12943-019-1085-0
– ident: 2780_CR79
  doi: 10.1083/jcb.119.3.503
– ident: 2780_CR151
  doi: 10.1080/13102818.2017.1398596
– ident: 2780_CR86
  doi: 10.1016/j.molcel.2019.07.016
– ident: 2780_CR229
  doi: 10.1080/15384101.2017.1278935
– volume: 512
  start-page: 445
  year: 2014
  ident: 2780_CR134
  publication-title: Nature
  doi: 10.1038/nature13424
– volume: 141
  start-page: 975
  year: 2021
  ident: 2780_CR190
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-021-02306-2
– ident: 2780_CR144
  doi: 10.1093/bib/bbaa001
– ident: 2780_CR19
  doi: 10.1096/fasebj.7.1.7678559
– ident: 2780_CR104
  doi: 10.1186/s13059-017-1368-y
– ident: 2780_CR126
  doi: 10.1038/s41388-017-0019-9
– ident: 2780_CR31
  doi: 10.1186/s12864-017-4386-y
– ident: 2780_CR21
  doi: 10.1261/rna.035667.112
– ident: 2780_CR22
  doi: 10.1038/nrg3662
– ident: 2780_CR74
  doi: 10.1038/nbt996
– ident: 2780_CR3
  doi: 10.1038/280339a0
– ident: 2780_CR11
  doi: 10.1073/pnas.93.13.6536
– ident: 2780_CR160
  doi: 10.1080/15476286.2022.2043041
– ident: 2780_CR194
  doi: 10.1002/ijc.32647
– ident: 2780_CR82
  doi: 10.7554/eLife.09214
– ident: 2780_CR248
  doi: 10.1186/S12943-021-01395-7
– volume: 10
  start-page: 1
  year: 2019
  ident: 2780_CR232
  publication-title: Cell Death Dis 2019 10:3
– ident: 2780_CR92
  doi: 10.1261/rna.043687.113
– ident: 2780_CR25
  doi: 10.1016/j.celrep.2014.12.002
– ident: 2780_CR75
  doi: 10.4049/jimmunol.1302813
– ident: 2780_CR26
  doi: 10.1101/gr.202895.115
– ident: 2780_CR36
  doi: 10.1186/s13059-015-0801-3
– ident: 2780_CR54
  doi: 10.18632/oncotarget.25673
– ident: 2780_CR235
  doi: 10.1186/s12943-019-1006-2
– ident: 2780_CR204
  doi: 10.1186/S12943-021-01475-8
– ident: 2780_CR210
  doi: 10.1038/s41388-018-0369-y
– ident: 2780_CR110
  doi: 10.1038/S41419-020-03237-8
– ident: 2780_CR127
  doi: 10.1093/jnci/djx166
– ident: 2780_CR178
  doi: 10.1373/clinchem.2014.230433
– volume: 31
  start-page: 387
  year: 2021
  ident: 2780_CR189
  publication-title: Brain Pathol
  doi: 10.1111/bpa.12922
– ident: 2780_CR106
  doi: 10.1038/ncomms11215
– ident: 2780_CR163
  doi: 10.1038/s41375-021-01311-4
– volume: 432
  start-page: 237
  year: 2018
  ident: 2780_CR252
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2018.04.035
– ident: 2780_CR64
  doi: 10.1016/0378-1119(95)00639-7
– ident: 2780_CR175
  doi: 10.1186/s12943-017-0663-2
– ident: 2780_CR203
  doi: 10.1186/s12943-019-1111-2
– volume: 27
  start-page: 1638
  year: 2019
  ident: 2780_CR216
  publication-title: Mol Ther
  doi: 10.1016/j.ymthe.2019.05.011
– ident: 2780_CR226
  doi: 10.1186/S13046-020-01555-5
– ident: 2780_CR156
  doi: 10.1038/nature24049
– ident: 2780_CR249
  doi: 10.1016/J.LFS.2020.118506
– ident: 2780_CR56
  doi: 10.1016/j.molcel.2013.08.017
– ident: 2780_CR114
  doi: 10.1186/s12943-020-01253-y
– ident: 2780_CR67
  doi: 10.1016/j.cell.2015.02.014
– volume: 22
  start-page: 68
  year: 2020
  ident: 2780_CR155
  publication-title: Nat Rev Genet
– ident: 2780_CR37
  doi: 10.1038/srep37982
– ident: 2780_CR168
  doi: 10.1016/j.immuni.2018.03.016
– volume: 26
  start-page: 1346
  year: 2019
  ident: 2780_CR208
  publication-title: Cell Death Differ
  doi: 10.1038/s41418-018-0220-6
– ident: 2780_CR173
  doi: 10.1186/s13045-018-0643-z
– ident: 2780_CR153
  doi: 10.1016/j.aca.2019.12.027
– ident: 2780_CR89
  doi: 10.1038/s41467-019-12651-2
– ident: 2780_CR30
  doi: 10.1016/j.celrep.2014.10.062
– ident: 2780_CR5
  doi: 10.1038/301578a0
– ident: 2780_CR141
  doi: 10.1186/s13073-019-0614-1
– ident: 2780_CR172
  doi: 10.1126/science.1248882
– ident: 2780_CR137
  doi: 10.1371/journal.pgen.1003777
– volume: 46
  start-page: 1606
  year: 2018
  ident: 2780_CR147
  publication-title: Cell Physiol Biochem
  doi: 10.1159/000489208
– ident: 2780_CR185
  doi: 10.1002/jcla.23272
– volume: 2348
  start-page: 371
  year: 2021
  ident: 2780_CR139
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-1581-2_23
– ident: 2780_CR65
  doi: 10.1080/2159256X.2015.1045682
– ident: 2780_CR164
  doi: 10.15252/embr.202052072
– ident: 2780_CR238
  doi: 10.1186/s12943-021-01358-y
– ident: 2780_CR96
  doi: 10.1186/s12943-020-01246-x
– ident: 2780_CR76
  doi: 10.1016/j.molcel.2017.05.023
– ident: 2780_CR213
  doi: 10.1016/j.omtn.2018.08.008
– ident: 2780_CR8
  doi: 10.1016/0092-8674(91)90244-S
– volume: 66
  start-page: 22
  year: 2017
  ident: 2780_CR120
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2017.02.017
– ident: 2780_CR131
  doi: 10.1038/s41467-019-10246-5
– ident: 2780_CR240
  doi: 10.3389/FNMOL.2018.00225
– ident: 2780_CR14
  doi: 10.1074/jbc.274.12.8153
– ident: 2780_CR39
  doi: 10.1080/20013078.2018.1424473
– ident: 2780_CR113
  doi: 10.1038/ncomms12429
– ident: 2780_CR10
  doi: 10.1002/j.1460-2075.1992.tb05148.x
– ident: 2780_CR154
  doi: 10.1016/j.talanta.2020.121021
– ident: 2780_CR100
  doi: 10.1038/nrg.2016.20
– ident: 2780_CR159
  doi: 10.18632/oncotarget.18671
– ident: 2780_CR50
  doi: 10.1080/15476286.2017.1409931
– volume: 30
  start-page: 99
  year: 2011
  ident: 2780_CR135
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2024
SSID ssj0007902
Score 2.7007852
SecondaryResourceType review_article
Snippet To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2783
SubjectTerms 45/47
45/77
631/67/68
692/53/2421
Apoptosis
Biosynthesis
Cancer
Cell Biology
Cell division
Circular RNA
DNA methylation
Gene expression
Human Genetics
Internal Medicine
Medicine
Medicine & Public Health
Oncology
Post-transcription
Review
Review Article
Tumorigenesis
Title Going circular: history, present, and future of circRNAs in cancer
URI https://link.springer.com/article/10.1038/s41388-023-02780-w
https://www.proquest.com/docview/2865140559
https://www.proquest.com/docview/2852629973
https://pubmed.ncbi.nlm.nih.gov/PMC10504067
Volume 42
WOSCitedRecordID wos001049135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: M7P
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: 8C1
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1476-5594
  dateEnd: 20241206
  omitProxy: false
  ssIdentifier: ssj0007902
  issn: 0950-9232
  databaseCode: M2O
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWdq_LHtmGee0CDdhtEWpLdmztUrRBu12aBcUG5GZYD2MBBjuL2xX996MeTpAC7aUXAYZk60GKpEXqI8BnewNNVFJQzVNJUxFXtGLKUKZiaQox1ir2ySby6bSYz8UsHLh1Iayyl4lOUOtW2TPyQ3uDEn8G0AA-Wv6lNmuU9a6GFBo7sJewOLUbs5hsQjxyH3OIVkRM0ZBh4dJMzIvDDoU38ghqLOvFLGJ6va2YNtbm7VjJWw5Tp4fOXj50Bq_gRbBAybFnmdfwyDQDeOJzUt4M4NmkTwE3gKfnwfP-Bk6-tTgcohYrF7j6lXig4psRWfoLTCNSNZp4iBLS1q7lxfS4I4uGKMtaq7fw6-z05-Q7DfkXqEozZrPUZ1Ilsak1Wm2Gx1IkUhicAMuUqE1uLOo4V0zWKU-zqkKZi_IzE0ktWcZVwt_BbtM25j0QrVILCSqLvFYpak2pq8SkGj-gBedZHUHSL36pAji5zZHxp3ROcl6UnmAlEqx0BCuvI_iyfmfpoTnubX3QU6UM27QrNySJ4NO6GhfZek2qxrRXtk3Gxqi0cx5BscUL614tRPd2TbP47aC60XpFKTnOIxj1bLPp_e7Bfrh_sPvwnDnOFTTJDmD3cnVlPsJj9e9y0a2GsJPPc1cWQ7cfhrB3cjqdXeDTOfthy3z2HzoNEJc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4zJeuHRDBAYYCZ6otcROmngSQmMwNm2rEBpS30x8iaiEktJsVP1T_MYdx0mrTmJve-DZjq-fz_kcnwvAG-eBJnIlqOGxorEIc5ozbSnTobKZGBgd-mQT6XCYjUbi6xr87XxhnFllJxMbQW0q7f6R7zgPSrwMIAH-MPlNXdYo97rapdDwsDi28xle2er3R59wf98ydvD5bP-QtlkFqI4T5nKvJ0pHoS0MchHLQyUiJSw2zBItCptaF0uba6aKmMdJnqMkQamQiKhQLOE64tjuLbiNcjx1JmTpaHHBC1Nv44isJaRInFjrpBPybKdGZYGYRA3pXk2zkM5WFeGS3V61zbzyQNvovYOH_9uKPYIHLcMme_5IPIY1W_bgrs-5Oe_Bxn6X4q4H905by4JN-PilwukTPZ42hrm7xAdinvfJxDto9UleGuJDsJCqaGp-G-7VZFwS7Y7OdAu-38i8nsB6WZX2KRCjYxfyVGVpoWNkBcrkkY0NNmAE50kRQNRtttRt8HWXA-SXbIwAeCY9QCQCRDYAkbMA3i2-mfjQI9fW3u5QIFsxVMslBAJ4vSjGRXavQnlpqwtXJ2EDJCUpDyBbwd6iVxeCfLWkHP9sQpEjO0ctMEgD6HcwXfb-78E-u36wr2Dj8Oz0RJ4cDY-fw33WnBpBo2Qb1s-nF_YF3NF_zsf19GVz_gj8uGn4XgIWNmZH
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aGwxeuBQmAgOMBE_UamInTYyE0G6FaRBVE0h7M7HjaJVQUpqNqn-NX8dxnLTqJPa2B57j2I79nXM-x-cC8MZGoIlMCZrzUNFQ-BnNmDaUaV-ZRAxz7btiE3GaJmdnYrwBf7pYGOtW2enERlHnlbb_yAc2ghIPA0iAB0XrFjE-HH2c_qK2gpS9ae3KaTiInJjFHI9v9YfjQ9zrt4yNjr4dfKZthQGqw4jZOuyR0oFvihx5ieG-EoESBgdhkRaFiY3Nq801U0XIwyjLUKughohEUCgWcR1w7PcWbMVIMlC6tvaP0vHp0g7EzuMROYxPkUaxNmTH58mgRtOBCEV7ae9QE5_O183iiute9dS8cl3bWMHRg_95_R7C_ZZ7kz0nLI9gw5Q9uOOqcS56cPegK37Xg-2vrc_BY9j_VOFSED2ZNS6774lL0bzok6kL3eqTrMyJS85CqqJpeZru1WRSEm2FavYEvt_Id-3AZlmV5imQXIc2GapK4kKHyBdUngUmzLGDXHAeFR4E3cZL3aZlt9VBfsrGPYAn0oFFIlhkAxY59-Dd8p2pS0pybevdDhGyVVC1XMHBg9fLx7jI9r4oK011adtEbIh0JeYeJGs4XI5qk5OvPykn502ScuTtaB-GsQf9DrKr0f892WfXT_YVbCNq5Zfj9OQ53GONAAkaRLuweTG7NC_gtv59MalnL1thJPDjpvH7F-ehcGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Going+circular%3A+history%2C+present%2C+and+future+of+circRNAs+in+cancer&rft.jtitle=Oncogene&rft.au=Pisignano%2C+Giuseppina&rft.au=Michael%2C+David+C.&rft.au=Visal%2C+Tanvi+H.&rft.au=Pirlog%2C+Radu&rft.date=2023-09-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0950-9232&rft.eissn=1476-5594&rft.volume=42&rft.issue=38&rft.spage=2783&rft.epage=2800&rft_id=info:doi/10.1038%2Fs41388-023-02780-w&rft_id=info%3Apmid%2F37587333&rft.externalDocID=PMC10504067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-9232&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-9232&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-9232&client=summon