Going circular: history, present, and future of circRNAs in cancer
To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tis...
Gespeichert in:
| Veröffentlicht in: | Oncogene Jg. 42; H. 38; S. 2783 - 2800 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Nature Publishing Group UK
15.09.2023
Nature Publishing Group |
| Schlagworte: | |
| ISSN: | 0950-9232, 1476-5594, 1476-5594 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy. |
|---|---|
| AbstractList | To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy. To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy.To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are multifunctional molecules that have been shown to regulate gene expression transcriptionally and post-transcriptionally and exhibit distinct tissue- and development-specific expression patterns associated with a variety of normal and disease conditions, including cancer pathogenesis. Over the past years, due to their intrinsic stability and resistance to ribonucleases, particular attention has been drawn to their use as reliable diagnostic and prognostic biomarkers in cancer diagnosis, treatment, and prevention. However, there are some critical caveats to their utility in the clinic. Their circular shape limits their annotation and a complete functional elucidation is lacking. This makes their detection and biomedical application still challenging. Herein, we review the current knowledge of circRNA biogenesis and function, and of their involvement in tumorigenesis and potential utility in cancer-targeted therapy. |
| Author | Michael, David C. Pisignano, Giuseppina Pirlog, Radu Visal, Tanvi H. Ladomery, Michael Calin, George A. |
| Author_xml | – sequence: 1 givenname: Giuseppina orcidid: 0000-0001-7476-3447 surname: Pisignano fullname: Pisignano, Giuseppina email: gp529@bath.ac.uk organization: Department of Life Sciences, University of Bath, Claverton Down – sequence: 2 givenname: David C. orcidid: 0009-0000-0675-6202 surname: Michael fullname: Michael, David C. organization: Department of Life Sciences, University of Bath, Claverton Down – sequence: 3 givenname: Tanvi H. surname: Visal fullname: Visal, Tanvi H. organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center – sequence: 4 givenname: Radu orcidid: 0000-0003-2026-5543 surname: Pirlog fullname: Pirlog, Radu organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center – sequence: 5 givenname: Michael orcidid: 0000-0001-8694-8545 surname: Ladomery fullname: Ladomery, Michael organization: Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay – sequence: 6 givenname: George A. orcidid: 0000-0002-7427-0578 surname: Calin fullname: Calin, George A. email: gcalin@mdanderson.org organization: Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center |
| BookMark | eNp9kc1O3DAUha0KVIahL8AqEhsWpL3-i2M2iKIWKiGQEF1bjudmMMrYg50U8fY1DFUFCxaWF_7O8bn37JKtEAMSsk_hKwXefsuC8ratgfFyVAv14ycyo0I1tZRabJEZaAm1ZpztkN2c7wFAaWCfyQ5XslWc8xn5fh59WFbOJzcNNh1Xdz6PMT0dVeuEGcN4VNmwqPppnBJWsX8hb65Oc-VD5WxwmPbIdm-HjF9e7zn5_fPH7dlFfXl9_uvs9LJ2QrKxplx2jgL2C0Eb5NBp2mkEKZl0ukeFoJjmjnW94EJaKxpFJZea9h2T3FE-Jycb3_XUrXDhSrhkB7NOfmXTk4nWm7cvwd-ZZfxjKEgQ0KjicPjqkOLDhHk0K58dDoMNGKdsWCtZw7Quq5mTg3fofZxSKPMVqpFUlOC6UO2GcinmnLA3zo929PE5gB_Kz-a5KbNpypSmzEtT5rFI2Tvpv0E-FPGNKBc4LDH9T_WB6i-3EKYC |
| CitedBy_id | crossref_primary_10_3892_ijo_2025_5769 crossref_primary_10_1038_s41388_024_03099_w crossref_primary_10_3389_fimmu_2025_1634326 crossref_primary_10_1007_s00299_025_03512_y crossref_primary_10_1096_fj_202401151R crossref_primary_10_3390_ijms241914545 crossref_primary_10_30699_jambr_33_157_96 crossref_primary_10_4103_ijh_ijh_34_25 crossref_primary_10_3390_cimb47090738 crossref_primary_10_3390_bios15050292 crossref_primary_10_1016_j_phrs_2024_107127 crossref_primary_10_3892_ijmm_2024_5411 crossref_primary_10_3389_fgene_2024_1450309 crossref_primary_10_1038_s41420_024_02185_y crossref_primary_10_1007_s10555_024_10182_x crossref_primary_10_1016_j_neulet_2025_138353 crossref_primary_10_1186_s40001_025_02382_0 crossref_primary_10_1177_10732748241257142 crossref_primary_10_3389_fonc_2024_1430051 crossref_primary_10_1038_s41380_025_02925_1 crossref_primary_10_1016_j_ncrna_2025_08_009 crossref_primary_10_1038_s41419_025_07830_7 crossref_primary_10_1038_s41598_024_63827_w crossref_primary_10_3390_diagnostics15111355 crossref_primary_10_1016_j_trac_2024_118112 crossref_primary_10_1186_s12885_025_14390_8 crossref_primary_10_1016_j_prp_2024_155457 crossref_primary_10_3389_fonc_2025_1523061 crossref_primary_10_1038_s41419_024_07138_y crossref_primary_10_1007_s11033_024_09211_3 crossref_primary_10_1038_s41598_025_07974_8 crossref_primary_10_3390_ijms252212235 crossref_primary_10_1186_s12935_024_03526_8 crossref_primary_10_1016_j_biopha_2024_117753 crossref_primary_10_1134_S0006297925600280 crossref_primary_10_2147_PGPM_S350238 crossref_primary_10_1007_s10616_025_00838_z crossref_primary_10_1007_s12672_025_02888_3 crossref_primary_10_3390_ijms25168934 crossref_primary_10_1016_j_critrevonc_2025_104942 crossref_primary_10_1097_CU9_0000000000000305 crossref_primary_10_3390_ncrna9050063 crossref_primary_10_1111_1759_7714_15414 crossref_primary_10_1007_s12032_023_02275_4 crossref_primary_10_1042_BST20243001 crossref_primary_10_3389_fmolb_2024_1504876 crossref_primary_10_3389_fonc_2025_1554179 crossref_primary_10_1007_s13353_024_00840_9 crossref_primary_10_1007_s12672_024_01198_4 crossref_primary_10_1016_j_dib_2025_111724 crossref_primary_10_1016_j_ijbiomac_2024_135689 crossref_primary_10_3389_fsysb_2024_1497510 crossref_primary_10_3390_ijms26188774 crossref_primary_10_1038_s41420_025_02504_x crossref_primary_10_1038_s41598_025_11641_3 crossref_primary_10_1016_j_jare_2025_09_017 crossref_primary_10_1038_s41419_024_07246_9 crossref_primary_10_1007_s00210_025_04221_9 crossref_primary_10_3389_fendo_2024_1351776 crossref_primary_10_3892_or_2025_8972 crossref_primary_10_1186_s13048_025_01636_z crossref_primary_10_1186_s12943_024_02082_z crossref_primary_10_1016_j_prp_2024_155315 crossref_primary_10_3390_biomedicines13061369 crossref_primary_10_5713_ab_24_0845 crossref_primary_10_1002_jmv_29191 crossref_primary_10_3390_pharmaceutics17040471 crossref_primary_10_1177_03000605251361960 crossref_primary_10_1016_j_prp_2024_155316 crossref_primary_10_1038_s41419_024_06980_4 crossref_primary_10_3390_ncrna10060054 crossref_primary_10_1002_adtp_202500082 crossref_primary_10_3390_ijms252212459 crossref_primary_10_1136_jitc_2023_008040 crossref_primary_10_1016_j_gene_2024_149060 crossref_primary_10_3390_ijms25126719 crossref_primary_10_1186_s12943_024_02074_z crossref_primary_10_1186_s12964_024_01952_9 crossref_primary_10_1016_j_cellsig_2024_111526 crossref_primary_10_1002_jcla_70076 crossref_primary_10_1038_s41576_023_00662_1 crossref_primary_10_1038_s41584_025_01271_4 crossref_primary_10_3389_fvets_2025_1578941 crossref_primary_10_3390_cells13161316 crossref_primary_10_3389_fimmu_2025_1608509 crossref_primary_10_1007_s10142_025_01575_4 crossref_primary_10_1038_s12276_024_01220_3 crossref_primary_10_2174_0109298673276157231214094454 crossref_primary_10_1186_s12935_025_03645_w crossref_primary_10_1016_j_gene_2025_149636 crossref_primary_10_3389_fonc_2025_1555002 crossref_primary_10_1038_s41388_025_03299_y crossref_primary_10_1016_j_canlet_2025_217823 crossref_primary_10_1016_j_bcp_2024_116691 crossref_primary_10_1016_j_ajg_2024_09_002 crossref_primary_10_3389_fnmol_2025_1507575 crossref_primary_10_1016_j_prp_2024_155442 crossref_primary_10_3389_fgene_2024_1346119 crossref_primary_10_3390_cells13151245 crossref_primary_10_1002_mco2_70019 crossref_primary_10_3390_v16030360 crossref_primary_10_1016_j_cca_2024_120003 crossref_primary_10_3389_fcell_2024_1339274 crossref_primary_10_1007_s00210_025_04032_y crossref_primary_10_1007_s12020_025_04335_3 crossref_primary_10_1002_jbt_70173 crossref_primary_10_1016_j_ijbiomac_2025_147664 crossref_primary_10_1186_s40364_025_00744_8 crossref_primary_10_1016_j_ijbiomac_2025_145187 crossref_primary_10_1186_s12951_025_03632_3 crossref_primary_10_1002_slct_202300537 crossref_primary_10_1093_plphys_kiae265 crossref_primary_10_1186_s12920_025_02182_9 crossref_primary_10_1186_s12864_024_10420_0 crossref_primary_10_3892_ol_2025_15037 crossref_primary_10_1186_s11658_025_00690_1 crossref_primary_10_1016_j_ccell_2025_03_028 crossref_primary_10_1021_acs_chemrestox_5c00146 crossref_primary_10_1158_0008_5472_CAN_23_3508 crossref_primary_10_1007_s10528_025_11068_5 crossref_primary_10_1016_j_omtn_2025_102687 crossref_primary_10_1002_2211_5463_70051 crossref_primary_10_1016_j_lfs_2025_123643 crossref_primary_10_1016_j_ncrna_2025_04_003 crossref_primary_10_3389_fmmed_2025_1607661 crossref_primary_10_3389_fimmu_2024_1476494 crossref_primary_10_1016_j_ejphar_2024_176944 crossref_primary_10_3390_ijms25063406 crossref_primary_10_1007_s12013_025_01720_7 crossref_primary_10_1007_s12672_025_02641_w crossref_primary_10_1186_s12943_025_02239_4 crossref_primary_10_1016_j_microc_2025_114118 crossref_primary_10_1080_17501911_2025_2518918 crossref_primary_10_1186_s12943_025_02424_5 crossref_primary_10_1016_j_lfs_2024_123194 crossref_primary_10_3390_genes16020140 |
| Cites_doi | 10.3892/mmr.2020.11541 10.1038/S41467-019-11162-4 10.1261/rna.048272.114 10.1016/j.ymeth.2021.02.007 10.1016/j.gpb.2018.08.001 10.1038/s41576-019-0158-7 10.1093/nar/gkw027 10.1016/j.bbrc.2018.10.026 10.1016/0092-8674(81)90142-2 10.1038/s41418-019-0337-2 10.1038/nrg.2016.114 10.1038/s41374-018-0108-6 10.1038/S41419-018-1048-1 10.15252/emmm.201810168 10.1002/jcla.23045 10.1016/j.molcel.2015.03.027 10.1080/15384101.2022.2105087 10.1038/ncomms14741 10.1186/s12943-018-0935-5 10.1038/S41392-021-00569-5 10.1016/j.ymthe.2020.03.002 10.1093/jhered/esj037 10.1038/nature11993 10.1038/cdd.2016.133 10.1186/S12943-019-1015-1 10.1038/s41388-021-01960-w 10.1038/nn.3975 10.1186/s12943-019-1010-6 10.1002/advs.202001701 10.1038/s41419-019-2182-0 10.1186/s12943-020-01213-6 10.1016/j.cca.2017.10.011 10.7554/eLife.07540 10.18632/oncotarget.21748 10.1080/15476286.2016.1271524 10.1074/jbc.M606744200 10.1186/S13046-019-1487-2 10.1371/journal.pone.0030733 10.1016/j.omto.2021.07.010 10.1186/s12943-017-0719-3 10.1016/j.celrep.2017.08.027 10.1093/NAR/GKV1458 10.1186/s13059-020-02018-y 10.1038/srep38907 10.1042/BSR20190363 10.1016/j.bcmd.2018.09.002 10.1038/s41590-018-0297-6 10.1038/nature11928 10.1016/j.stem.2016.06.020 10.1038/nrg2484 10.1007/s11064-020-03132-w 10.1186/S12943-020-01184-8 10.3390/cancers13030365 10.1128/MCB.00259-18 10.1007/s00109-017-1600-y 10.1093/annonc/mds246 10.1111/jcmm.16541 10.1186/s12943-020-01222-5 10.1016/j.cell.2018.12.021 10.1002/cam4.1514 10.1186/s13045-017-0422-2 10.1155/2022/4541918 10.1186/S13046-018-0822-3 10.1126/science.1210944 10.1186/s12943-018-0887-9 10.1093/nar/20.20.5345 10.18632/oncotarget.13134 10.1038/s41392-020-00375-5 10.1038/srep08057 10.1016/j.celrep.2014.12.019 10.1016/J.BIOPHA.2021.112127 10.1038/nbt.2890 10.1016/j.omtn.2020.08.015 10.1038/cr.2017.31 10.1186/s12943-021-01388-6 10.1186/s12943-019-1041-z 10.1186/s13059-021-02263-9 10.1093/bib/bby006 10.3748/wjg.v23.i47.8345 10.1007/978-1-4939-7562-4_7 10.26508/lsa.201900398 10.1016/j.celrep.2021.109439 10.1038/S41592-022-01487-2 10.1038/emboj.2013.53 10.3390/ph14070618 10.1042/EBC20200060 10.1080/15476286.2016.1269999 10.1016/j.ccell.2019.12.007 10.1186/s12943-019-1061-8 10.1093/hmg/8.3.493 10.3389/fcell.2021.675043 10.1016/j.canlet.2019.05.036 10.1038/323558a0 10.1093/nar/24.7.1260 10.1261/rna.045781.114 10.1038/nrg.2016.49 10.3389/fcell.2021.709299 10.1016/j.celrep.2019.02.078 10.1038/S41598-019-47189-2 10.1101/gad.270421.115 10.1007/978-1-4939-6703-2_11 10.1038/S41419-018-0699-2 10.1038/s41467-022-31327-y 10.1038/s41419-018-0485-1 10.4274/TJH.GALENOS.2023.2022.0435 10.1016/j.celrep.2016.03.058 10.1371/journal.pbio.0020391 10.1093/nar/gkv1367 10.21037/tcr.2018.11.13 10.1016/J.TALANTA.2021.123066 10.1016/j.molcel.2014.03.045 10.3390/ijms22041678 10.1093/nar/gku523 10.1038/ng.2434 10.1038/s41580-020-0243-y 10.3389/FONC.2022.985470 10.1038/s41467-020-20527-z 10.1186/s13059-018-1594-y 10.1080/15476286.2017.1279788 10.1016/0092-8674(76)90223-3 10.1371/journal.pgen.1001233 10.1007/s10529-020-03036-3 10.1038/cr.2015.82 10.1038/s41467-021-24975-z 10.1016/j.molcel.2018.06.034 10.1016/j.exphem.2018.10.011 10.1073/pnas.1617467114 10.1186/S12943-020-01222-5 10.1371/journal.pcbi.1005420 10.1038/emboj.2011.359 10.1186/s12943-020-01149-x 10.1016/j.molcel.2021.11.032 10.1101/gad.314856.118 10.1186/s12864-017-4304-3 10.3390/ncrna6040041 10.1101/gad.251926.114 10.12659/MSM.910180 10.1007/978-981-13-1426-1_6 10.1016/j.cell.2014.09.001 10.18632/oncotarget.18350 10.1186/s12920-019-0616-2 10.1016/0092-8674(82)90414-7 10.1016/j.celrep.2020.107641 10.1093/nar/gkx297 10.1038/bjc.2014.279 10.1186/s13059-014-0571-3 10.1038/cdd.2017.86 10.1016/0092-8674(93)90279-Y 10.1371/journal.pone.0148407 10.18632/oncotarget.8589 10.1371/journal.pone.0158347 10.1038/s41592-020-01011-4 10.1111/cas.14645 10.1016/j.molcel.2014.08.019 10.1002/jcb.29631 10.1038/s41422-018-0033-7 10.1016/j.molcel.2017.02.021 10.1111/cas.13901 10.1016/j.cell.2016.03.020 10.1016/j.molcel.2017.10.034 10.1038/nature10442 10.1038/s41556-021-00639-4 10.1111/exd.14227 10.1073/pnas.73.11.3852 10.1038/nsmb.2959 10.1128/mcb.17.6.2985 10.1186/s12943-019-1085-0 10.1083/jcb.119.3.503 10.1080/13102818.2017.1398596 10.1016/j.molcel.2019.07.016 10.1080/15384101.2017.1278935 10.1038/nature13424 10.1007/s00401-021-02306-2 10.1093/bib/bbaa001 10.1096/fasebj.7.1.7678559 10.1186/s13059-017-1368-y 10.1038/s41388-017-0019-9 10.1186/s12864-017-4386-y 10.1261/rna.035667.112 10.1038/nrg3662 10.1038/nbt996 10.1038/280339a0 10.1073/pnas.93.13.6536 10.1080/15476286.2022.2043041 10.1002/ijc.32647 10.7554/eLife.09214 10.1186/S12943-021-01395-7 10.1261/rna.043687.113 10.1016/j.celrep.2014.12.002 10.4049/jimmunol.1302813 10.1101/gr.202895.115 10.1186/s13059-015-0801-3 10.18632/oncotarget.25673 10.1186/s12943-019-1006-2 10.1186/S12943-021-01475-8 10.1038/s41388-018-0369-y 10.1038/S41419-020-03237-8 10.1093/jnci/djx166 10.1373/clinchem.2014.230433 10.1111/bpa.12922 10.1038/ncomms11215 10.1038/s41375-021-01311-4 10.1016/j.canlet.2018.04.035 10.1016/0378-1119(95)00639-7 10.1186/s12943-017-0663-2 10.1186/s12943-019-1111-2 10.1016/j.ymthe.2019.05.011 10.1186/S13046-020-01555-5 10.1038/nature24049 10.1016/J.LFS.2020.118506 10.1016/j.molcel.2013.08.017 10.1186/s12943-020-01253-y 10.1016/j.cell.2015.02.014 10.1038/srep37982 10.1016/j.immuni.2018.03.016 10.1038/s41418-018-0220-6 10.1186/s13045-018-0643-z 10.1016/j.aca.2019.12.027 10.1038/s41467-019-12651-2 10.1016/j.celrep.2014.10.062 10.1038/301578a0 10.1186/s13073-019-0614-1 10.1126/science.1248882 10.1371/journal.pgen.1003777 10.1159/000489208 10.1002/jcla.23272 10.1007/978-1-0716-1581-2_23 10.1080/2159256X.2015.1045682 10.15252/embr.202052072 10.1186/s12943-021-01358-y 10.1186/s12943-020-01246-x 10.1016/j.molcel.2017.05.023 10.1016/j.omtn.2018.08.008 10.1016/0092-8674(91)90244-S 10.1016/j.molcel.2017.02.017 10.1038/s41467-019-10246-5 10.3389/FNMOL.2018.00225 10.1074/jbc.274.12.8153 10.1080/20013078.2018.1424473 10.1038/ncomms12429 10.1002/j.1460-2075.1992.tb05148.x 10.1016/j.talanta.2020.121021 10.1038/nrg.2016.20 10.18632/oncotarget.18671 10.1080/15476286.2017.1409931 10.1038/nbt.2024 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. The Author(s). |
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. The Author(s). |
| DBID | C6C AAYXX CITATION 3V. 7TM 7TO 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
| DOI | 10.1038/s41388-023-02780-w |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Proquest Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Chemistry Biology |
| EISSN | 1476-5594 |
| EndPage | 2800 |
| ExternalDocumentID | PMC10504067 10_1038_s41388_023_02780_w |
| GrantInformation_xml | – fundername: N/A – fundername: ; |
| GroupedDBID | --- 0R~ 123 29N 36B 39C 4.4 406 53G 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AACDK AANZL AASML AATNV AAYZH AAZLF ABAKF ABJNI ABLJU ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMJI ACPRK ACRQY ACZOJ ADBBV ADFRT ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFKRA AFSHS AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG AVWKF AXYYD AZFZN AZQEC BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU CS3 DNIVK DPUIP DU5 DWQXO E3Z EAP EBLON EBS EE. EIOEI ESX F5P FDQFY FEDTE FERAY FIGPU FSGXE FYUFA GNUQQ GUQSH HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR IWAJR JSO JZLTJ KQ8 L7B LGEZI LK8 LOTEE M1P M2O M7P N9A NADUK NQJWS NXXTH O9- OK1 P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SWTZT TAOOD TBHMF TDRGL TSG UKHRP WH7 AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB TUS 3V. 7TM 7TO 7U9 7XB 88A 8FD 8FK FR3 H94 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c452t-135bc10efd416e30b91b9e05525c9fe7e07293c2bf4345aa467153591fb253c13 |
| IEDL.DBID | 8C1 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001049135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-9232 1476-5594 |
| IngestDate | Tue Nov 04 02:06:20 EST 2025 Sun Nov 09 12:54:04 EST 2025 Tue Oct 07 05:13:48 EDT 2025 Tue Nov 18 22:33:35 EST 2025 Sat Nov 29 04:02:57 EST 2025 Fri Feb 21 02:38:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 38 |
| Language | English |
| License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c452t-135bc10efd416e30b91b9e05525c9fe7e07293c2bf4345aa467153591fb253c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2026-5543 0000-0001-8694-8545 0000-0001-7476-3447 0000-0002-7427-0578 0009-0000-0675-6202 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10504067 |
| PMID | 37587333 |
| PQID | 2865140559 |
| PQPubID | 36330 |
| PageCount | 18 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10504067 proquest_miscellaneous_2852629973 proquest_journals_2865140559 crossref_citationtrail_10_1038_s41388_023_02780_w crossref_primary_10_1038_s41388_023_02780_w springer_journals_10_1038_s41388_023_02780_w |
| PublicationCentury | 2000 |
| PublicationDate | 2023-09-15 |
| PublicationDateYYYYMMDD | 2023-09-15 |
| PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: New York |
| PublicationTitle | Oncogene |
| PublicationTitleAbbrev | Oncogene |
| PublicationYear | 2023 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | LiZYanfangWLiJJiangPPengTChenKTumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancerCancer Lett2018432237501:CAS:528:DC%2BC1cXhtF2ltbnL2970970210.1016/j.canlet.2018.04.035 Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996. https://doi.org/10.1073/pnas.93.13.6536. Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7. https://doi.org/10.1080/20013078.2018.1424473. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32. https://doi.org/10.1038/nbt.2890. Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, et al. Serum extracellular vesicle-derived circhipk3 and circsmarca5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals. 2021;14. https://doi.org/10.3390/ph14070618. Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993. https://doi.org/10.1096/fasebj.7.1.7678559. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015. https://doi.org/10.1038/nn.3975. AhmadovUBendikasMMEbbesenKKSehestedAMKjemsJBroholmHDistinct circular RNA expression profiles in pediatric ependymomasBrain Pathol202131387921:CAS:528:DC%2BB3MXmslGnur8%3D33247464801815310.1111/bpa.12922 XiaXLiXLiFWuXZhangMZhouHA novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1Mol Cancer201918116. XuJZShaoCCWangXJZhaoXChenJQOuyangYXcircTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axisCell Death Dis 2019 10:3201910116 He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother. 2021;143. https://doi.org/10.1016/J.BIOPHA.2021.112127. DaiXChenCYangQXueJChenXSunBExosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferationCell Death Dis2018911410.1038/s41419-018-0485-1 Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5. https://doi.org/10.1038/srep08057. Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell 2019;176. https://doi.org/10.1016/j.cell.2018.12.021. DuWWYangWLiXFangLWuNLiFThe Circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasionMol Ther2020281287981:CAS:528:DC%2BB3cXhtVeju77K32229309721074910.1016/j.ymthe.2020.03.002 Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2014.08.019. Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487. https://doi.org/10.1016/j.cca.2017.10.011. di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31. https://doi.org/10.1016/j.celrep.2020.107641. Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, et al. A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis. 2020;11. https://doi.org/10.1038/S41419-020-03237-8. Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01253-y. ZhangP-FGaoCHuangX-YLuJ-CGuoX-JShiG-MCancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinomaMol Cancer2020191:CAS:528:DC%2BB3cXhtlCqsLzJ32593303732058310.1186/s12943-020-01222-5 Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981;23. https://doi.org/10.1016/0092-8674(81)90142-2. Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015. https://doi.org/10.1016/j.cell.2015.02.014. Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016. https://doi.org/10.1038/srep38907. Zhang PF, Zhang PF, Zhang PF, Gao C, Gao C, Huang XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01222-5. Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.06.034. MengLLiuSLiuFSangMJuYFanXZEB1-mediated transcriptional upregulation of circwwc3 promotes breast cancer progression through activating ras signaling pathwayMol Ther Nucleic Acids202022124371:CAS:528:DC%2BB3cXisFSgsL3K32916598749047110.1016/j.omtn.2020.08.015 Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell 1976;8. https://doi.org/10.1016/0092-8674(76)90223-3. Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29. https://doi.org/10.1101/gad.270421.115. LiuTLuQLiuJXieSFengBZhuWCircular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762Cell Death Dis2020111141:CAS:528:DC%2BB3cXit1Sisb7I Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7. https://doi.org/10.18632/oncotarget.8589. MorenaDPiccaFTaulliRCircNT5E/miR-422a: a new circRNA-based ceRNA network in glioblastomaTransl Cancer Res20198S106S109.1:CAS:528:DC%2BC1MXhvVOgtr3K35117075879765910.21037/tcr.2018.11.13 WangCTanSLiuWRLeiQQiaoWWuYRNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinomaMol Cancer2019181:CAS:528:DC%2BB38XhslCjsrjP31484581672433110.1186/s12943-019-1061-8 Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01358-y. Dragomir MP, Manyam GC, Ott LF, Berland L, Knutsen E, Ivan C, et al. Funcpep: a database of functional peptides encoded by non-coding rnas. Noncoding RNA. 2020;6. https://doi.org/10.3390/ncrna6040041. Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28. https://doi.org/10.1101/gad.251926.114. Tan S, Sun D, Pu W, Gou Q, Guo C, Gong Y, et al. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol Cancer. 2018;17. https://doi.org/10.1186/s12943-018-0887-9. WuNYuanZDuKYFangLLyuJZhangCTranslation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machineryCell Death Differ2019262758731:CAS:528:DC%2BC1MXhtFSmsbvI31092884722437810.1038/s41418-019-0337-2 Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021;22. https://doi.org/10.15252/embr.202052072. LiPYangXYuanWYangCZhangXHanJCircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microRNA-135aCell Physiol Biochem2018461606161:CAS:528:DC%2BC1cXhtVajsbzE2969498110.1159/000489208 Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25. https://doi.org/10.1111/jcmm.16541. Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7. https://doi.org/10.1002/cam4.1514. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24. https://doi.org/10.1038/cdd.2017.86. Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18671. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.49. Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, et al. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-4304-3. Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;5. Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol. 2021;23. https://doi.org/10.1038/s41556-021-00639-4. Yu C, A Bian (2780_CR242) 2018; 24 2780_CR58 2780_CR59 2780_CR188 2780_CR56 2780_CR57 2780_CR54 2780_CR55 2780_CR52 2780_CR194 2780_CR53 2780_CR193 2780_CR50 2780_CR51 2780_CR198 2780_CR197 2780_CR196 2780_CR195 2780_CR179 2780_CR69 2780_CR178 Y Sang (2780_CR216) 2019; 27 2780_CR177 2780_CR67 2780_CR68 2780_CR65 2780_CR66 2780_CR63 2780_CR183 2780_CR64 2780_CR182 2780_CR61 2780_CR181 2780_CR62 2780_CR180 2780_CR187 2780_CR60 MW Hentze (2780_CR111) 2013; 32 2780_CR186 2780_CR185 2780_CR184 N Wu (2780_CR228) 2019; 26 2780_CR38 Y Gao (2780_CR80) 2015; 16 2780_CR169 2780_CR39 2780_CR168 2780_CR36 2780_CR167 2780_CR37 2780_CR166 2780_CR34 2780_CR35 TR Mercer (2780_CR135) 2011; 30 2780_CR32 2780_CR33 2780_CR30 2780_CR172 2780_CR31 2780_CR171 2780_CR170 2780_CR176 2780_CR175 2780_CR174 2780_CR173 P Li (2780_CR147) 2018; 46 X Xia (2780_CR215) 2019; 18 AA Nair (2780_CR191) 2016; 7 2780_CR49 2780_CR158 2780_CR157 2780_CR47 2780_CR156 2780_CR48 2780_CR45 2780_CR46 2780_CR44 2780_CR159 2780_CR41 2780_CR161 2780_CR160 2780_CR40 2780_CR165 2780_CR164 2780_CR163 2780_CR162 TB Hansen (2780_CR99) 2013; 495 D Barbagallo (2780_CR243) 2021; 22 WW Du (2780_CR230) 2020; 28 DH Yuan (2780_CR241) 2019; 23 2780_CR98 Z Wang (2780_CR133) 2009; 10 2780_CR96 2780_CR97 2780_CR94 2780_CR95 2780_CR92 2780_CR93 2780_CR90 2780_CR91 L Koch (2780_CR155) 2020; 22 T Liu (2780_CR149) 2020; 11 J Shang (2780_CR244) 2019; 70 2780_CR78 2780_CR79 2780_CR76 2780_CR77 2780_CR74 2780_CR75 2780_CR72 2780_CR73 2780_CR71 D Rickert (2780_CR190) 2021; 141 Y Pan (2780_CR250) 2018; 73 2780_CR199 JZ Xu (2780_CR232) 2019; 10 2780_CR89 2780_CR87 2780_CR88 2780_CR85 2780_CR86 2780_CR83 2780_CR84 XY Huang (2780_CR219) 2020; 19 2780_CR81 I Legnini (2780_CR120) 2017; 66 2780_CR82 2780_CR109 2780_CR229 2780_CR103 2780_CR224 2780_CR102 2780_CR223 2780_CR101 2780_CR222 2780_CR100 2780_CR221 2780_CR107 2780_CR106 2780_CR105 2780_CR226 2780_CR104 2780_CR225 2780_CR110 C Kocks (2780_CR146) 2018; 1724 U Ahmadov (2780_CR189) 2021; 31 2780_CR218 C Wang (2780_CR192) 2019; 18 2780_CR213 H Xiao (2780_CR43) 2020; 22 2780_CR211 2780_CR210 2780_CR217 2780_CR214 2780_CR220 2780_CR209 MB Gerstein (2780_CR134) 2014; 512 T Fei (2780_CR70) 2017; 114 2780_CR200 2780_CR206 2780_CR204 2780_CR203 J Li (2780_CR212) 2020; 19 Y Chen (2780_CR208) 2019; 26 CE Burd (2780_CR16) 2010; 6 2780_CR18 2780_CR19 2780_CR17 2780_CR14 2780_CR145 2780_CR15 2780_CR144 2780_CR12 2780_CR13 Y Zhong (2780_CR202) 2021; 43 2780_CR10 2780_CR11 2780_CR148 2780_CR150 L Meng (2780_CR231) 2020; 22 2780_CR154 2780_CR153 2780_CR152 E D’Ambra (2780_CR139) 2021; 2348 2780_CR151 J Nie (2780_CR227) 2022; 21 Z Zeng (2780_CR201) 2021; 40 2780_CR29 2780_CR27 2780_CR136 2780_CR28 2780_CR25 2780_CR26 2780_CR23 X Dai (2780_CR42) 2018; 9 2780_CR24 2780_CR21 2780_CR138 2780_CR22 2780_CR137 2780_CR2 2780_CR1 2780_CR20 2780_CR4 2780_CR3 2780_CR6 2780_CR143 2780_CR5 2780_CR142 2780_CR8 2780_CR141 2780_CR7 2780_CR140 W Zhao (2780_CR108) 2020; 121 2780_CR9 2780_CR125 2780_CR246 2780_CR124 2780_CR245 2780_CR123 2780_CR122 2780_CR129 2780_CR128 2780_CR249 2780_CR127 2780_CR248 2780_CR126 2780_CR247 Z Li (2780_CR252) 2018; 432 2780_CR132 D Li (2780_CR234) 2021; 22 2780_CR253 2780_CR131 2780_CR130 2780_CR251 X Zhang (2780_CR207) 2020; 45 P-F Zhang (2780_CR205) 2020; 19 2780_CR119 2780_CR114 2780_CR235 2780_CR113 2780_CR112 2780_CR233 2780_CR118 2780_CR117 2780_CR238 2780_CR116 2780_CR237 2780_CR115 2780_CR236 D Morena (2780_CR239) 2019; 8 2780_CR121 2780_CR240 |
| References_xml | – reference: LiJMaMYangXZhangMLuoJZhouHCircular HER2 RNA positive triple negative breast cancer is sensitive to PertuzumabMol Cancer20201911831901224694227010.1186/s12943-019-1085-0 – reference: Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, et al. Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 2018;20. https://doi.org/10.1093/bib/bby006. – reference: Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Hanan M, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2015.03.027. – reference: Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.49. – reference: Ebbesen KK, Hansen TB, Kjems J. Insights into circular RNA biology. RNA Biol. 2017;14. https://doi.org/10.1080/15476286.2016.1271524. – reference: Chen LL. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat Rev Mol Cell Biol. 2020;21. https://doi.org/10.1038/s41580-020-0243-y. – reference: Zheng X, Chen L, Zhou Y, Wang Q, Zheng Z, Xu B, et al. A novel protein encoded by a circular RNA circPPP1R12A promotes tumor pathogenesis and metastasis of colon cancer via Hippo-YAP signaling. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1010-6. – reference: Chen Z, Zuo X, Pu L, Zhang Y, Han G, Zhang L, et al. circLARP4 induces cellular senescence through regulating miR-761/RUNX3/p53/p21 signaling in hepatocellular carcinoma. Cancer Sci. 2019;110. https://doi.org/10.1111/cas.13901. – reference: Xu XW, Zheng BA, Hu ZM, Qian ZY, Huang CJ, Liu XQ, et al. Circular RNA hsa_circ_000984 promotes colon cancer growth and metastasis by sponging miR-106b. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.21748. – reference: Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell 1976;8. https://doi.org/10.1016/0092-8674(76)90223-3. – reference: SangYChenBSongXLiYLiangYHanDcircRNA_0025202 regulates tamoxifen sensitivity and tumor progression via regulating the miR-182-5p/FOXO3a axis in breast cancerMol Ther2019271638521:CAS:528:DC%2BC1MXhslCgsL7O31153828673117410.1016/j.ymthe.2019.05.011 – reference: Wilusz JE. Repetitive elements regulate circular RNA biogenesis. Mob Genet Elements. 2015;5. https://doi.org/10.1080/2159256X.2015.1045682. – reference: Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20. https://doi.org/10.1038/s41576-019-0158-7. – reference: Greene J, Baird AM, Casey O, Brady L, Blackshields G, Lim M, et al. Circular RNAs are differentially expressed in prostate cancer and are potentially associated with resistance to enzalutamide. Sci Rep. 2019;9. https://doi.org/10.1038/S41598-019-47189-2. – reference: Xu H, Zhang Y, Qi L, Ding L, Jiang H, Yu H. NFIX circular RNA promotes glioma progression by regulating miR-34a-5p via Notch signaling pathway. Front Mol Neurosci. 2018;11. https://doi.org/10.3389/FNMOL.2018.00225. – reference: Zaug AJ, Grabowski PJ, Cech TR. Autocatalytic cyclization of an excised intervening sequence RNA is a cleavage-ligation reaction. Nature 1983;301. https://doi.org/10.1038/301578a0. – reference: BurdCEJeckWRLiuYSanoffHKWangZSharplessNEExpression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis riskPLoS Genet20106115.10.1371/journal.pgen.1001233 – reference: AhmadovUBendikasMMEbbesenKKSehestedAMKjemsJBroholmHDistinct circular RNA expression profiles in pediatric ependymomasBrain Pathol202131387921:CAS:528:DC%2BB3MXmslGnur8%3D33247464801815310.1111/bpa.12922 – reference: You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci. 2015. https://doi.org/10.1038/nn.3975. – reference: ZhangP-FGaoCHuangX-YLuJ-CGuoX-JShiG-MCancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinomaMol Cancer2020191:CAS:528:DC%2BB3cXhtlCqsLzJ32593303732058310.1186/s12943-020-01222-5 – reference: Geng Y, Jiang J, Wu C. Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 2018;11. https://doi.org/10.1186/s13045-018-0643-z. – reference: Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, et al. Extensive translation of circular RNAs driven by N 6 -methyladenosine. Cell Res. 2017;27. https://doi.org/10.1038/cr.2017.31. – reference: Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, et al. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics. 2017. https://doi.org/10.1186/s12864-017-4304-3. – reference: Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, et al. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01253-y. – reference: ChenYYangFFangEXiaoWMeiHLiHCircular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexesCell Death Differ2019261346641:CAS:528:DC%2BC1cXitVWjsb%2FP3034142110.1038/s41418-018-0220-6 – reference: Hansen TB, Wiklund ED, Bramsen JB, Villadsen SB, Statham AL, Clark SJ, et al. MiRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011. https://doi.org/10.1038/emboj.2011.359. – reference: Pasman Z, Been MD, Garcia-Blanco MA. Exon circularization in mammalian nuclear extracts. RNA. 1996;2. – reference: Lim AST, Lim TH. Fluorescence in situ hybridization on tissue sections. Methods Mol Biol. 2017;1541. https://doi.org/10.1007/978-1-4939-6703-2_11. – reference: Xie H, Ren X, Xin S, Lan X, Lu G, Lin Y, et al. Emerging roles of circRNA_001569 targeting miR-145 in the proliferation and invasion of colorectal cancer. Oncotarget. 2016;7. https://doi.org/10.18632/oncotarget.8589. – reference: Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, et al. The Landscape of Circular RNA in Cancer. Cell 2019;176. https://doi.org/10.1016/j.cell.2018.12.021. – reference: Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vítor AC, et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife. 2015;4. https://doi.org/10.7554/eLife.09214. – reference: Wang S, Li Q, Wang Y, Li X, Wang R, Kang Y, et al. Upregulation of circ-UBAP2 predicts poor prognosis and promotes triple-negative breast cancer progression through the miR-661/MTA1 pathway. Biochem Biophys Res Commun. 2018;505. https://doi.org/10.1016/j.bbrc.2018.10.026. – reference: XuJZShaoCCWangXJZhaoXChenJQOuyangYXcircTADA2As suppress breast cancer progression and metastasis via targeting miR-203a-3p/SOCS3 axisCell Death Dis 2019 10:3201910116 – reference: Abdelmohsen K, Panda AC, De S, Grammatikakis I, Kim J, Ding J, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;5. – reference: Szabo L, Salzman J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.114. – reference: Moldovan LI, Tsoi LC, Ranjitha U, Hager H, Weidinger S, Gudjonsson JE, et al. Characterization of circular RNA transcriptomes in psoriasis and atopic dermatitis reveals disease-specific expression profiles. Exp Dermatol. 2021;30. https://doi.org/10.1111/exd.14227. – reference: Dahl M, Husby S, Eskelund CW, Besenbacher S, Fjelstrup S, Côme C, et al. Expression patterns and prognostic potential of circular RNAs in mantle cell lymphoma: a study of younger patients from the MCL2 and MCL3 clinical trials. Leukemia. 2022;36. https://doi.org/10.1038/s41375-021-01311-4. – reference: Li S, Li X, Xue W, Zhang L, Yang LZ, Cao SM, et al. Screening for functional circular RNAs using the CRISPR–Cas13 system. Nat Methods. 2021;18. https://doi.org/10.1038/s41592-020-01011-4. – reference: He T, Yuan C, Zhao C. Long intragenic non-coding RNA p53-induced transcript (LINC-PINT) as a novel prognosis indicator and therapeutic target in cancer. Biomed Pharmacother. 2021;143. https://doi.org/10.1016/J.BIOPHA.2021.112127. – reference: Tan S, Gou Q, Pu W, Guo C, Yang Y, Wu K, et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018;28. https://doi.org/10.1038/s41422-018-0033-7. – reference: Zhang J, Liu H, Hou L, Wang G, Zhang R, Huang Y, et al. Circular RNA_LARP4 inhibits cell proliferation and invasion of gastric cancer by sponging miR-424-5p and regulating LATS1 expression. Mol Cancer. 2017;16. https://doi.org/10.1186/s12943-017-0719-3. – reference: LegniniIdi TimoteoGRossiFMorlandoMBrigantiFSthandierOCirc-ZNF609 is a circular RNA that can be translated and functions in myogenesisMol Cell2017662237.e91:CAS:528:DC%2BC2sXkvFWqtbs%3D28344082538767010.1016/j.molcel.2017.02.017 – reference: Yin WB, Yan MG, Fang X, Guo JJ, Xiong W, Zhang RP. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 2018;487. https://doi.org/10.1016/j.cca.2017.10.011. – reference: BianAWangYLiuJWangXLiuDJiangJCircular RNA complement factor H (CFH) Promotes Glioma progression by sponging miR-149 and Regulating AKT1Med Sci Monit2018245704121:CAS:528:DC%2BC1MXhvFWmsLvO30111766610827010.12659/MSM.910180 – reference: LiPYangXYuanWYangCZhangXHanJCircRNA-Cdr1as exerts anti-oncogenic functions in bladder cancer by sponging microRNA-135aCell Physiol Biochem2018461606161:CAS:528:DC%2BC1cXhtVajsbzE2969498110.1159/000489208 – reference: Wu J, Guo X, Wen Y, Huang S, Yuan X, Tang L, et al. N6-Methyladenosine modification opens a new chapter in circular RNA biology. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.709299. – reference: Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, van Wittenberghe N, et al. Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 2017;20. https://doi.org/10.1016/j.celrep.2017.08.027. – reference: He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333. https://doi.org/10.1126/science.1210944. – reference: Talhouarne GJS, Gall JG. Lariat intronic RNAs in the cytoplasm of Xenopus tropicalis oocytes. RNA. 2014;20. https://doi.org/10.1261/rna.045781.114. – reference: Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of tetrahymena. Cell. 1982;31. https://doi.org/10.1016/0092-8674(82)90414-7. – reference: Surono A. Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing. Hum Mol Genet. 1999. https://doi.org/10.1093/hmg/8.3.493. – reference: LiuTLuQLiuJXieSFengBZhuWCircular RNA FAM114A2 suppresses progression of bladder cancer via regulating ∆NP63 by sponging miR-762Cell Death Dis2020111141:CAS:528:DC%2BB3cXit1Sisb7I – reference: WangCTanSLiuWRLeiQQiaoWWuYRNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinomaMol Cancer2019181:CAS:528:DC%2BB38XhslCjsrjP31484581672433110.1186/s12943-019-1061-8 – reference: Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 2018;110. https://doi.org/10.1093/jnci/djx166. – reference: Zhang Y, Nguyen TM, Zhang XO, Wang L, Phan T, Clohessy JG, et al. Optimized RNA-targeting CRISPR/Cas13d technology outperforms shRNA in identifying functional circRNAs. Genome Biol. 2021;22. https://doi.org/10.1186/s13059-021-02263-9. – reference: Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17. https://doi.org/10.1038/nrg.2016.20. – reference: Dong R, Ma XK, Li GW, Yang L. CIRCpedia v2: An Updated Database for Comprehensive Circular RNA Annotation and Expression Comparison. Genomics Proteomics Bioinformatics. 2018;16. https://doi.org/10.1016/j.gpb.2018.08.001. – reference: Han K, Wang FW, Cao CH, Ling H, Chen JW, Chen RX, et al. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01184-8. – reference: Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell. 2014;54. https://doi.org/10.1016/j.molcel.2014.03.045. – reference: Nielsen AF, Bindereif A, Bozzoni I, Hanan M, Hansen TB, Irimia M, et al. Best practice standards for circular RNA research. Nat Methods. 2022;9. https://doi.org/10.1038/S41592-022-01487-2. – reference: Bahn JH, Zhang Q, Li F, Chan TM, Lin X, Kim Y, et al. The landscape of MicroRNA, piwi-interacting RNA, and circular RNA in human saliva. Clin Chem. 2015;61. https://doi.org/10.1373/clinchem.2014.230433. – reference: MercerTRGerhardtDJDingerMECrawfordJTrapnellCJeddelohJATargeted RNA sequencing reveals the deep complexity of the human transcriptomeNat Biotechnol2011309910422081020371046210.1038/nbt.2024 – reference: Tan S, Sun D, Pu W, Gou Q, Guo C, Gong Y, et al. Circular RNA F-circEA-2a derived from EML4-ALK fusion gene promotes cell migration and invasion in non-small cell lung cancer. Mol Cancer. 2018;17. https://doi.org/10.1186/s12943-018-0887-9. – reference: Hanniford D, Ulloa-Morales A, Karz A, Berzoti-Coelho MG, Moubarak RS, Sánchez-Sendra B, et al. Epigenetic Silencing of CDR1as Drives IGF2BP3-Mediated Melanoma Invasion and Metastasis. Cancer Cell. 2020;37. https://doi.org/10.1016/j.ccell.2019.12.007. – reference: Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 2017;18. https://doi.org/10.1186/s13059-017-1368-y. – reference: Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, et al. A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis. 2020;11. https://doi.org/10.1038/S41419-020-03237-8. – reference: Yang F, Liu DY, Guo JT, Ge N, Zhu P, Liu X, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol. 2017;23. https://doi.org/10.3748/wjg.v23.i47.8345. – reference: Li J, Li Z, Jiang P, Peng M, Zhang X, Chen K, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res. 2018;37. https://doi.org/10.1186/S13046-018-0822-3. – reference: Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, et al. Scrambled exons. Cell. 1991. https://doi.org/10.1016/0092-8674(91)90244-S. – reference: Gruner H, Cortés-López M, Cooper DA, Bauer M, Miura P. CircRNA accumulation in the aging mouse brain. Sci Rep. 2016. https://doi.org/10.1038/srep38907. – reference: Li Y, Chen B, Zhao J, Li Q, Chen S, Guo T, et al. HNRNPL circularizes ARHGAP35 to produce an oncogenic protein. Adv Sci. 2021;8. https://doi.org/10.1002/advs.202001701. – reference: ZhaoWWangSQinTWangWCircular RNA (circ-0075804) promotes the proliferation of retinoblastoma via combining heterogeneous nuclear ribonucleoprotein K (HNRNPK) to improve the stability of E2F transcription factor 3 E2F3J Cell Biochem20201213516251:CAS:528:DC%2BB3cXjtVemtLk%3D3206544810.1002/jcb.29631 – reference: Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, et al. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res. 2016. https://doi.org/10.1101/gr.202895.115. – reference: Wen X, Huang X, Mok BW-Y, Chen Y, Zheng M, Lau S-Y, et al. NF90 Exerts Antiviral Activity through Regulation of PKR Phosphorylation and Stress Granules in Infected Cells. J Immunol. 2014;192. https://doi.org/10.4049/jimmunol.1302813. – reference: Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, et al. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67. https://doi.org/10.1016/j.molcel.2017.05.023. – reference: Xu C, Zhang J. Mammalian circular RNAs result largely from splicing errors. Cell Rep. 2021;36. https://doi.org/10.1016/j.celrep.2021.109439. – reference: Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, et al. Translation of CircRNAs. Mol Cell. 2017;66. https://doi.org/10.1016/j.molcel.2017.02.021. – reference: He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach: current strategies and challenges. Signal Transduct Target Ther. 2021;6. https://doi.org/10.1038/S41392-021-00569-5. – reference: Wang Y, Liu J, Ma J, Sun T, Zhou Q, Wang W, et al. Exosomal circRNAs: Biogenesis, effect and application in human diseases. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1041-z. – reference: Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, et al. N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 2019;76. https://doi.org/10.1016/j.molcel.2019.07.016. – reference: Huang C, Liang D, Tatomer DC, Wilusz JE. A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 2018;32. https://doi.org/10.1101/gad.314856.118. – reference: Dubin RA, Kazmi MA, Ostrer H. Inverted repeats are necessary for circularization of the mouse testis Sry transcript. Gene. 1995;167. https://doi.org/10.1016/0378-1119(95)00639-7. – reference: Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, et al. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-Mediated exhaustion. Immunity. 2018;48. https://doi.org/10.1016/j.immuni.2018.03.016. – reference: Zhang X, Wang S, Wang H, Cao J, Huang X, Chen Z, et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. https://doi.org/10.1186/s12943-018-0935-5. – reference: RickertDBartlJPicardDBernardiFQinNLovinoMCircular RNA profiling distinguishes medulloblastoma groups and shows aberrant RMST overexpression in WNT medulloblastomaActa Neuropathol202114197581:CAS:528:DC%2BB3MXhtFWgtrrP33866410811331010.1007/s00401-021-02306-2 – reference: Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013. https://doi.org/10.1261/rna.035667.112. – reference: MengLLiuSLiuFSangMJuYFanXZEB1-mediated transcriptional upregulation of circwwc3 promotes breast cancer progression through activating ras signaling pathwayMol Ther Nucleic Acids202022124371:CAS:528:DC%2BB3cXisFSgsL3K32916598749047110.1016/j.omtn.2020.08.015 – reference: Zhao Y, Zhang C, Tang H, Wu X, Qi Q. Mechanism of RNA circHIPK3 involved in resistance of lung cancer cells to gefitinib. Biomed Res Int. 2022;2022. https://doi.org/10.1155/2022/4541918. – reference: Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, et al. CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 2014. https://doi.org/10.1016/j.molcel.2014.08.019. – reference: LiZYanfangWLiJJiangPPengTChenKTumor-released exosomal circular RNA PDE8A promotes invasive growth via the miR-338/MACC1/MET pathway in pancreatic cancerCancer Lett2018432237501:CAS:528:DC%2BC1cXhtF2ltbnL2970970210.1016/j.canlet.2018.04.035 – reference: Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol. 2014;32. https://doi.org/10.1038/nbt.2890. – reference: Hu Y, Gu J, Shen H, Shao T, Li S, Wang W, et al. Circular RNA LARP4 correlates with decreased Enneking stage, better histological response, and prolonged survival profiles, and it elevates chemosensitivity to cisplatin and doxorubicin via sponging microRNA-424 in osteosarcoma. J Clin Lab Anal. 2020;34. https://doi.org/10.1002/jcla.23045. – reference: Meganck RM, Borchardt EK, Castellanos Rivera RM, Scalabrino ML, Wilusz JE, Marzluff WF, et al. Tissue-dependent expression and translation of circular RNAs with recombinant AAV vectors in vivo. Mol Ther Nucleic Acids. 2018;13. https://doi.org/10.1016/j.omtn.2018.08.008. – reference: ZhangXZhangJLiuQZhaoYZhangWYangHCirc-CUX1 accelerates the progression of neuroblastoma via miR-16-5p/DMRT2 axisNeurochem Res2020452840551:CAS:528:DC%2BB3cXhvFKnt7nE3300043510.1007/s11064-020-03132-w – reference: Hansen TB, Venø MT, Damgaard CK, Kjems J. Comparison of circular RNA prediction tools. Nucleic Acids Res. 2016;44. https://doi.org/10.1093/NAR/GKV1458. – reference: Huijbers A, Tollenaar RAEM, Pelt GWV, Zeestraten ECM, Dutton S, McConkey CC, et al. The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the victor trial. Ann Oncol. 2013;24. https://doi.org/10.1093/annonc/mds246. – reference: Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, et al. High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res. 2017;45. https://doi.org/10.1093/nar/gkx297. – reference: Li Y, Zheng Q, Bao C, Li S, Guo W, Zhao J, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis. Cell Res. 2015;25. https://doi.org/10.1038/cr.2015.82. – reference: Bachmayr-Heyda A, Reiner AT, Auer K, Sukhbaatar N, Aust S, Bachleitner-Hofmann T, et al. Correlation of circular RNA abundance with proliferation - exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci Rep. 2015;5. https://doi.org/10.1038/srep08057. – reference: Zhang XO, Wang H bin, Zhang Y, Lu X, Chen LL, Yang L. Complementary sequence-mediated exon circularization. Cell. 2014. https://doi.org/10.1016/j.cell.2014.09.001. – reference: Yu L, Gong X, Sun L, Zhou Q, Lu B, Zhu L. The circular RNA Cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS ONE. 2016;11. https://doi.org/10.1371/journal.pone.0158347. – reference: Zhang X, Su X, Guo Z, Jiang X, Li X. Circular RNA La-related RNA-binding protein 4 correlates with reduced tumor stage, as well as better prognosis, and promotes chemosensitivity to doxorubicin in breast cancer. J Clin Lab Anal. 2020;34. https://doi.org/10.1002/jcla.23272. – reference: Dragomir MP, Manyam GC, Ott LF, Berland L, Knutsen E, Ivan C, et al. Funcpep: a database of functional peptides encoded by non-coding rnas. Noncoding RNA. 2020;6. https://doi.org/10.3390/ncrna6040041. – reference: Schindewolf C, Braun S, Domdey H. In vitro generation of a circular exon from a linear pre-mRNA transcript. Nucleic Acids Res. 1996. https://doi.org/10.1093/nar/24.7.1260. – reference: Levanon EY, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol. 2004;22. https://doi.org/10.1038/nbt996. – reference: Gao X, Xia X, Li F, Zhang M, Zhou H, Wu X, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling. Nat Cell Biol. 2021;23. https://doi.org/10.1038/s41556-021-00639-4. – reference: Zhang P, Gao K, Liang Y, Su F, Wang F, Li Z. Ultrasensitive detection of circular RNA by accurate recognition of the specific junction site using stem-loop primer induced double exponential amplification. Talanta. 2020;217. https://doi.org/10.1016/j.talanta.2020.121021. – reference: Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13. Nature. 2017;550. https://doi.org/10.1038/nature24049. – reference: Preußer C, Hung LH, Schneider T, Schreiner S, Hardt M, Moebus A, et al. Selective release of circRNAs in platelet-derived extracellular vesicles. J Extracell Vesicles. 2018;7. https://doi.org/10.1080/20013078.2018.1424473. – reference: Sheng X, Hong L, Fan L, Zhang Y, Che K, Mu J, et al. Circular RNA PVT1 regulates cell proliferation, migration and apoptosis by stabilizing c-Myc and its downstream target CXCR4 expression in acute myeloid leukemia. Turk J Haematol. 2023. https://doi.org/10.4274/TJH.GALENOS.2023.2022.0435. – reference: Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, et al. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993. https://doi.org/10.1016/0092-8674(93)90279-Y. – reference: Armakola M, Higgins MJ, Figley MD, Barmada SJ, Scarborough EA, Diaz Z, et al. Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models. Nat Genet. 2012;44. https://doi.org/10.1038/ng.2434. – reference: Zhu P, Zhu X, Wu J, He L, Lu T, Wang Y, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3. Nat Immunol. 2019;20. https://doi.org/10.1038/s41590-018-0297-6. – reference: Chen DL, Sheng H, Zhang DS, Jin Y, Zhao BT, Chen N, et al. The circular RNA circDLG1 promotes gastric cancer progression and anti-PD-1 resistance through the regulation of CXCL12 by sponging miR-141-3p. Mol Cancer. 2021;20. https://doi.org/10.1186/S12943-021-01475-8. – reference: Zhang J, Hou L, Liang R, Chen X, Zhang R, Chen W, et al. CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling. Mol Cancer. 2019;18. https://doi.org/10.1186/S12943-019-1015-1. – reference: WangZGersteinMSnyderMRNA-Seq: a revolutionary tool for transcriptomicsNat Rev Genet20091057631:CAS:528:DC%2BD1cXhsFWis7bL19015660294928010.1038/nrg2484 – reference: Yi H, Han Y, Li S. Oncogenic circular RNA circ_0007534 contributes to paclitaxel resistance in endometrial cancer by sponging miR-625 and promoting ZEB2 expression. Front Oncol. 2022;12. https://doi.org/10.3389/FONC.2022.985470. – reference: NairAANiuNTangXThompsonKJWangLKocherJPCircular RNAs and their associations with breast cancer subtypesOncotarget20167809677927829232534836910.18632/oncotarget.13134 – reference: Lasda E, Parker R. Circular RNAs co-precipitate with extracellular vesicles: a possible mechanism for circrna clearance. PLoS ONE 2016;11. https://doi.org/10.1371/journal.pone.0148407. – reference: Stagsted LVW, Nielsen KM, Daugaard I, Hansen TB. Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci Alliance. 2019;2. https://doi.org/10.26508/lsa.201900398. – reference: Liu Y, Zhang X, Liu M, Xu F, Zhang Q, Zhang Y, et al. Direct detection of circRNA in real samples using reverse transcription-rolling circle amplification. Anal Chim Acta. 2020;1101. https://doi.org/10.1016/j.aca.2019.12.027. – reference: Zheng Q, Bao C, Guo W, Li S, Chen J, Chen B, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms11215. – reference: Fan X, Yang Y, Chen C, Wang Z. Pervasive translation of circular RNAs driven by short IRES-like elements. https://doi.org/10.1038/s41467-022-31327-y. – reference: Cocquerelle C, Daubersies P, Majerus MA, Kerckaert JP, Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992. https://doi.org/10.1002/j.1460-2075.1992.tb05148.x. – reference: Ivanov A, Memczak S, Wyler E, Torti F, Porath HT, Orejuela MR, et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 2015;10. https://doi.org/10.1016/j.celrep.2014.12.019. – reference: Rossi F, Beltran M, Damizia M, Grelloni C, Colantoni A, Setti A, et al. Circular RNA ZNF609/CKAP5 mRNA interaction regulates microtubule dynamics and tumorigenicity. Mol Cell. 2022;82. https://doi.org/10.1016/j.molcel.2021.11.032. – reference: Zeng X, Lin W, Guo M, Zou Q. A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol. 2017;13. https://doi.org/10.1371/journal.pcbi.1005420. – reference: Rahimi K, Venø MT, Dupont DM, Kjems J. Nanopore sequencing of brain-derived full-length circRNAs reveals circRNA-specific exon usage, intron retention and microexons. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-021-24975-z. – reference: Wang Y, Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21. https://doi.org/10.1261/rna.048272.114. – reference: Zhang PF, Zhang PF, Zhang PF, Gao C, Gao C, Huang XY, et al. Cancer cell-derived exosomal circUHRF1 induces natural killer cell exhaustion and may cause resistance to anti-PD1 therapy in hepatocellular carcinoma. Mol Cancer. 2020;19. https://doi.org/10.1186/S12943-020-01222-5. – reference: HuangXYZhangPFWeiCYPengRLuJCGaoCCircular RNA circMET drives immunosuppression and anti-PD1 therapy resistance in hepatocellular carcinoma via the miR-30-5p/snail/DPP4 axisMol Cancer20201911810.1186/s12943-020-01213-6 – reference: Kramer MC, Liang D, Tatomer DC, Gold B, March ZM, Cherry S, et al. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29. https://doi.org/10.1101/gad.270421.115. – reference: Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, et al. The biogenesis of nascent circular RNAs. Cell Rep. 2016;15. https://doi.org/10.1016/j.celrep.2016.03.058. – reference: Qian L, Vu MN, Carter M, Wilkinson MF. A spliced intron accumulates as a lariat in the nucleus of T cells. Nucleic Acids Res. 1992;20. https://doi.org/10.1093/nar/20.20.5345. – reference: LiDLiLChenXYangWCaoYCircular RNA SERPINE2 promotes development of glioblastoma by regulating the miR-361-3p/miR-324-5p/ BCL2 signaling pathwayMol Ther Oncolytics202122483941:CAS:528:DC%2BB38XjtVWjtro%3D34553034843306010.1016/j.omto.2021.07.010 – reference: He J, Chen J, Ma B, Jiang L, Zhao G. CircLMTK2 acts as a novel tumor suppressor in gastric cancer. Biosci Rep. 2019;39. https://doi.org/10.1042/BSR20190363. – reference: Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE. 2012. https://doi.org/10.1371/journal.pone.0030733. – reference: Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I, Yarden Y. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkv1367. – reference: HansenTBJensenTIClausenBHBramsenJBFinsenBDamgaardCKNatural RNA circles function as efficient microRNA spongesNature201349538481:CAS:528:DC%2BC3sXktlCrtLg%3D2344634610.1038/nature11993 – reference: GaoYWangJZhaoFCIRI: An efficient and unbiased algorithm for de novo circular RNA identificationGenome Biol201516116.10.1186/s13059-014-0571-3 – reference: Xu J, Ji L, Liang Y, Wan Z, Zheng W, Song X, et al. CircRNA-SORE mediates sorafenib resistance in hepatocellular carcinoma by stabilizing YBX1. Signal Transduct Target Ther. 2020;5. https://doi.org/10.1038/s41392-020-00375-5. – reference: YuanDHZhaoJShaoGFCircular RNA TTBK2 promotes the development of human glioma cells via miR-520b/EZH2 axisEur Rev Med Pharmacol Sci201923108869831858557 – reference: Bentley DL. Coupling mRNA processing with transcription in time and space. Nat Rev Genet. 2014;15. https://doi.org/10.1038/nrg3662. – reference: Liang D, Tatomer DC, Luo Z, Wu H, Yang L, Chen LL, et al. The output of protein-coding genes shifts to circular RNAs when the Pre-mRNA processing machinery is limiting. Mol Cell. 2017;68. https://doi.org/10.1016/j.molcel.2017.10.034. – reference: Zaphiropoulos PG. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci USA. 1996. https://doi.org/10.1073/pnas.93.13.6536. – reference: Yu J, Ding WB, Wang MC, Guo XG, Xu J, Xu QG, et al. Plasma circular RNA panel to diagnose hepatitis B virus-related hepatocellular carcinoma: a large-scale, multicenter study. Int J Cancer. 2020;146. https://doi.org/10.1002/ijc.32647. – reference: Deng G, Mou T, He J, Chen D, Lv D, Liu H, et al. Circular RNA circRHOBTB3 acts as a sponge for miR-654-3p inhibiting gastric cancer growth. J Exp Clin Cancer Res. 2020;39. https://doi.org/10.1186/S13046-019-1487-2. – reference: Ji P, Wu W, Chen S, Zheng Y, Zhou L, Zhang J, et al. Expanded Expression Landscape and Prioritization of Circular RNAs in Mammals. Cell Rep. 2019;26. https://doi.org/10.1016/j.celrep.2019.02.078. – reference: Nanishi K, Konishi H, Shoda K, Arita T, Kosuga T, Komatsu S, et al. Circulating circERBB2 as a potential prognostic biomarker for gastric cancer: an investigative study. Cancer Sci. 2020;111. https://doi.org/10.1111/cas.14645. – reference: WuNYuanZDuKYFangLLyuJZhangCTranslation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machineryCell Death Differ2019262758731:CAS:528:DC%2BC1MXhtFSmsbvI31092884722437810.1038/s41418-019-0337-2 – reference: Liu X, Liu X, Cai M, Luo A, He Y, Liu S, et al. CircRNF220, not its linear cognate gene RNF220, regulates cell growth and is associated with relapse in pediatric acute myeloid leukemia. Mol Cancer. 2021;20. https://doi.org/10.1186/S12943-021-01395-7. – reference: Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24. https://doi.org/10.1038/cdd.2017.86. – reference: Wu W, Ji P, Zhao F. CircAtlas: An integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020;21. https://doi.org/10.1186/s13059-020-02018-y. – reference: Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, et al. CircRNA: Functions and properties of a novel potential biomarker for cancer. Mol Cancer. 2017;16. https://doi.org/10.1186/s12943-017-0663-2. – reference: Athanasiadis A, Rich A, Maas S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004;2. https://doi.org/10.1371/journal.pbio.0020391. – reference: DuWWYangWLiXFangLWuNLiFThe Circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasionMol Ther2020281287981:CAS:528:DC%2BB3cXhtVeju77K32229309721074910.1016/j.ymthe.2020.03.002 – reference: Rinaldi L, Datta D, Serrat J, Morey L, Solanas G, Avgustinova A, et al. Dnmt3a and Dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell. 2016;19. https://doi.org/10.1016/j.stem.2016.06.020. – reference: Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, et al. Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-10246-5. – reference: Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, et al. TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 2017;10. https://doi.org/10.1186/s13045-017-0422-2. – reference: Zheng Y, Ji P, Chen S, Hou L, Zhao F. Reconstruction of full-length circular RNAs enables isoform-level quantification. Genome Med. 2019;11. https://doi.org/10.1186/s13073-019-0614-1. – reference: Kristensen LS, Okholm TLH, Venø MT, Kjems J. Circular RNAs are abundantly expressed and upregulated during human epidermal stem cell differentiation. RNA Biol. 2018;15. https://doi.org/10.1080/15476286.2017.1409931. – reference: KocksCBoltengagenAPiweckaMRybak-WolfARajewskyNSingle-molecule fluorescence in situ hybridization (FISH) of circular RNA CDR1asMethods Mol Biol2018172477961:CAS:528:DC%2BC1cXhvFyqtbfO2932244210.1007/978-1-4939-7562-4_7 – reference: Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, et al. A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 2018;19. https://doi.org/10.1186/s13059-018-1594-y. – reference: Zhang M, Huang N, Yang X, Luo J, Yan S, Xiao F, et al. A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis. Oncogene. 2018;37. https://doi.org/10.1038/s41388-017-0019-9. – reference: Liu J, Du F, Chen C, Li D, Chen Y, Xiao X, et al. CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615-3p/PRKCD axis in multiple myeloma. Life Sci 2020;262. https://doi.org/10.1016/J.LFS.2020.118506. – reference: Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 2021;12. https://doi.org/10.1038/s41467-020-20527-z. – reference: NieJYangRZhouRDengYLiDGouDCircular RNA circFARSA promotes the tumorigenesis of non-small cell lung cancer by elevating B7H3 via sponging miR-15a-5pCell Cycle2022212575891:CAS:528:DC%2BB38XitVelt7vF35920698970438710.1080/15384101.2022.2105087 – reference: He Y di, Tao W, He T, Wang BY, Tang XM, Zhang LM, et al. A urine extracellular vesicle circRNA classifier for detection of high-grade prostate cancer in patients with prostate-specific antigen 2–10 ng/mL at initial biopsy. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01388-6. – reference: Guarnerio J, Bezzi M, Jeong JC, Paffenholz SV, Berry K, Naldini MM, et al. Oncogenic role of fusion-circRNAs derived from cancer-associated chromosomal translocations. Cell. 2016;165. https://doi.org/10.1016/j.cell.2016.03.020. – reference: Dahl M, Daugaard I, Andersen MS, Hansen TB, Grønbæk K, Kjems J, et al. Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies. Lab Investig. 2018;98. https://doi.org/10.1038/s41374-018-0108-6. – reference: Conn SJ, Pillman KA, Toubia J, Conn VM, Salmanidis M, Phillips CA, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015. https://doi.org/10.1016/j.cell.2015.02.014. – reference: Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, et al. N 6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10. https://doi.org/10.1038/s41467-019-12651-2. – reference: ZhongYWangDDingYTianGJiangBCircular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5pBiotechnol Lett202143339511:CAS:528:DC%2BB3cXit1ers7nF3312382910.1007/s10529-020-03036-3 – reference: Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, et al. Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 2018;9. https://doi.org/10.18632/oncotarget.25673. – reference: Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med. 2021;25. https://doi.org/10.1111/jcmm.16541. – reference: Yu C, Cheng Z, Cui S, Mao X, Li B, Fu Y, et al. circFOXM1 promotes proliferation of non-small cell lung carcinoma cells by acting as a ceRNA to upregulate FAM83D. J Exp Clin Cancer Res. 2020;39. https://doi.org/10.1186/S13046-020-01555-5. – reference: Kos A, Dijkema R, Arnberg AC, van der Meide PH, Schellekens H. The hepatitis delta (δ) virus possesses a circular RNA. Nature. 1986. https://doi.org/10.1038/323558a0. – reference: Grabowski PJ, Zaug AJ, Cech TR. The intervening sequence of the ribosomal RNA precursor is converted to a circular RNA in isolated nuclei of tetrahymena. Cell 1981;23. https://doi.org/10.1016/0092-8674(81)90142-2. – reference: HentzeMWPreissTCircular RNAs: splicing’s enigma variationsEMBO J20133292351:CAS:528:DC%2BC3sXjsFOnsbs%3D23463100361629310.1038/emboj.2013.53 – reference: D’AmbraEMorlandoMStudy of circular RNA expression by nonradioactive northern blot procedureMethods Mol Biol20212348371833416081810.1007/978-1-0716-1581-2_23 – reference: MorenaDPiccaFTaulliRCircNT5E/miR-422a: a new circRNA-based ceRNA network in glioblastomaTransl Cancer Res20198S106S109.1:CAS:528:DC%2BC1MXhvVOgtr3K35117075879765910.21037/tcr.2018.11.13 – reference: Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W, et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 2016;7. https://doi.org/10.1038/ncomms12429. – reference: Han YN, Xia SQ, Zhang YY, Zheng JH, Li W. Circular RNAs: A novel type of biomarker and genetic tools in cancer. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18350. – reference: Li X, Yang L, Chen LL. The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 2018. https://doi.org/10.1016/j.molcel.2018.06.034. – reference: Ju H, Zhao Q, Wang F, Lan P, Wang Z, Zuo Z, et al. A circRNA signature predicts postoperative recurrence in stage II/III colon cancer. EMBO Mol Med. 2019;11. https://doi.org/10.15252/emmm.201810168. – reference: Kopczynski CC, Muskavitch MAT. Introns excised from the Delta primary transcript are localized near sites of Delta transcription. J Cell Biol. 1992;119. https://doi.org/10.1083/jcb.119.3.503. – reference: Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 2018;7. https://doi.org/10.1002/cam4.1514. – reference: Fang L, Du WW, Awan FM, Dong J, Yang BB. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis. Cancer Lett. 2019;459. https://doi.org/10.1016/j.canlet.2019.05.036. – reference: Zhang T, Xu J, Shen H, Dong W, Ni Y, Du J. Tumor-stroma ratio is an independent predictor for survival in NSCLC. Int J Clin Exp Pathol. 2015;8. – reference: Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, et al. Circular intronic long noncoding RNAs. Mol Cell. 2013. https://doi.org/10.1016/j.molcel.2013.08.017. – reference: Mi Z, Zhongqiang C, Caiyun J, Yanan L, Jianhua W, Liang L. Circular RNA detection methods: a minireview. Talanta. 2022;238. https://doi.org/10.1016/J.TALANTA.2021.123066. – reference: Koh HR, Xing L, Kleiman L, Myong S. Repetitive RNA unwinding by RNA helicase A facilitates RNA annealing. Nucleic Acids Res. 2014;42. https://doi.org/10.1093/nar/gku523. – reference: ZengZZhaoYChenQYZhuSNiuYYeZHypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysisOncogene2021405505171:CAS:528:DC%2BB3MXhs1WntLzP3429484510.1038/s41388-021-01960-w – reference: Westholm JO, Miura P, Olson S, Shenker S, Joseph B, Sanfilippo P, et al. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. Cell Rep. 2014. https://doi.org/10.1016/j.celrep.2014.10.062. – reference: Cortés-López M, Gruner MR, Cooper DA, Gruner HN, Voda AI, van der Linden AM, et al. Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics. 2018. https://doi.org/10.1186/s12864-017-4386-y. – reference: Dou Y, Cha DJ, Franklin JL, Higginbotham JN, Jeppesen DK, Weaver AM, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep. 2016;6. https://doi.org/10.1038/srep37982. – reference: Dunn SJ, Martello G, Yordanov B, Emmott S, Smith AG. Defining an essential transcription factor program for naïve pluripotency. Science. 2014;344. https://doi.org/10.1126/science.1248882. – reference: Hansen TB. Signal and noise in circRNA translation. Methods. 2021;196. https://doi.org/10.1016/j.ymeth.2021.02.007. – reference: Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44. https://doi.org/10.1093/nar/gkw027. – reference: Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ 2017;24. https://doi.org/10.1038/cdd.2016.133. – reference: FeiTChenYXiaoTLiWCatoLZhangPGenome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicingProc Natl Acad Sci USA2017114E5207E5215.1:CAS:528:DC%2BC2sXpvFCmtr0%3D28611215549522510.1073/pnas.1617467114 – reference: Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 2017;8. https://doi.org/10.1038/ncomms14741. – reference: DaiXChenCYangQXueJChenXSunBExosomal circRNA_100284 from arsenite-transformed cells, via microRNA-217 regulation of EZH2, is involved in the malignant transformation of human hepatic cells by accelerating the cell cycle and promoting cell proliferationCell Death Dis2018911410.1038/s41419-018-0485-1 – reference: BarbagalloDCaponnettoABarbagalloCBattagliaRMirabellaFBrexDThe GAUGAA Motif Is Responsible for the Binding between circSMARCA5 and SRSF1 and Related Downstream Effects on Glioblastoma Multiforme Cell Migration and Angiogenic PotentialInt J Mol Sci202122116.10.3390/ijms22041678 – reference: Moldovan LI, Hansen TB, Venø MT, Okholm TLH, Andersen TL, Hager H, et al. High-throughput RNA sequencing from paired lesional- and non-lesional skin reveals major alterations in the psoriasis circRNAome. BMC Med Genomics. 2019;12. https://doi.org/10.1186/s12920-019-0616-2. – reference: Cheng Z, Yu C, Cui S, Wang H, Jin H, Wang C, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun. 2019;10. https://doi.org/10.1038/S41467-019-11162-4. – reference: Cocquerelle C, Mascrez B, Hétuin D, Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993. https://doi.org/10.1096/fasebj.7.1.7678559. – reference: Vincent HA, Deutscher MP. Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem. 2006;281. https://doi.org/10.1074/jbc.M606744200. – reference: Stella M, Falzone L, Caponnetto A, Gattuso G, Barbagallo C, Battaglia R, et al. Serum extracellular vesicle-derived circhipk3 and circsmarca5 are two novel diagnostic biomarkers for glioblastoma multiforme. Pharmaceuticals. 2021;14. https://doi.org/10.3390/ph14070618. – reference: Venø MT, Hansen TB, Venø ST, Clausen BH, Grebing M, Finsen B, et al. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol. 2015. https://doi.org/10.1186/s13059-015-0801-3. – reference: Hong X, Liu N, Liang Y, He Q, Yang X, Lei Y, et al. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01149-x. – reference: di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, et al. Modulation of circRNA Metabolism by m6A Modification. Cell Rep. 2020;31. https://doi.org/10.1016/j.celrep.2020.107641. – reference: Houseley JM, Garcia-Casado Z, Pascual M, Paricio N, O’Dell KMC, Monckton DG, et al. Noncanonical RNAs from transcripts of the Drosophila muscleblind gene. J Heredity. 2006. https://doi.org/10.1093/jhered/esj037. – reference: Li S, Ma Y, Tan Y, Ma X, Zhao M, Chen B, et al. Profiling and functional analysis of circular RNAs in acute promyelocytic leukemia and their dynamic regulation during all-trans retinoic acid treatment. Cell Death Dis. 2018;9. https://doi.org/10.1038/S41419-018-0699-2. – reference: Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 1979. https://doi.org/10.1038/280339a0. – reference: Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37. https://doi.org/10.1038/s41388-018-0369-y. – reference: Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013. https://doi.org/10.1038/nature11928. – reference: Panda AC. Circular RNAs act as miRNA sponges. In: Advances in experimental medicine and biology; 2018. https://doi.org/10.1007/978-981-13-1426-1_6. – reference: Lu W-Y. Cell Cycle Roles of the circular RNA circ-Foxo3 in breast cancer progression. 2017. https://doi.org/10.1080/15384101.2017.1278935. – reference: Jakobsen T, Dahl M, Dimopoulos K, Grønbæk K, Kjems J, Kristensen LS. Genome-wide circular rna expression patterns reflect resistance to immunomodulatory drugs in multiple myeloma cells. Cancers. 2021;13. https://doi.org/10.3390/cancers13030365. – reference: ShangJChenWMWangZHWeiTNChenZZWuWBCircPAN3 mediates drug resistance in acute myeloid leukemia through the miR-153-5p/miR-183-5p-XIAP axisExp Hematol2019704254.e31:CAS:528:DC%2BC1cXitlalsbjF3039590810.1016/j.exphem.2018.10.011 – reference: Zaphiropoulos PG. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol. 1997. https://doi.org/10.1128/mcb.17.6.2985. – reference: Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell Death Dis. 2019;10. https://doi.org/10.1038/S41419-018-1048-1. – reference: Abdelmohsen K, Panda AC, Munk R, Grammatikakis I, Dudekula DB, De S, et al. Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 2017;14. https://doi.org/10.1080/15476286.2017.1279788. – reference: Wu D-M, Wen X, Han X-R, Wang S, Wang Y-J, Shen M, et al. Role of circular RNA DLEU2 in human acute myeloid leukemia. Mol Cell Biol. 2018;38. https://doi.org/10.1128/MCB.00259-18. – reference: Glažar P, Papavasileiou P, Rajewsky N. CircBase: A database for circular RNAs. RNA. 2014;20. https://doi.org/10.1261/rna.043687.113. – reference: Mecozzi N, Nenci A, Vera O, Bok I, Falzone A, DeNicola GM, et al. Genetic tools for the stable overexpression of circular RNAs. RNA Biol. 2022;19. https://doi.org/10.1080/15476286.2022.2043041. – reference: Salzman J, Chen RE, Olsen MN, Wang PL, Brown PO. Cell-Type Specific Features of Circular RNA Expression. PLoS Genet. 2013. https://doi.org/10.1371/journal.pgen.1003777. – reference: Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature. 2011. https://doi.org/10.1038/nature10442. – reference: Olesen MTJ, Kristensen LS. Circular RNAs as microRNA sponges: evidence and controversies. Essays Biochem. 2021;65. https://doi.org/10.1042/EBC20200060. – reference: Dodbele S, Mutlu N, Wilusz JE. Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep. 2021;22. https://doi.org/10.15252/embr.202052072. – reference: Liu B, Tian Y, Chen M, Shen H, Xia J, Nan J, et al. CircUBAP2 Promotes MMP9-Mediated Oncogenic Effect via Sponging miR-194-3p in Hepatocellular Carcinoma. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.675043. – reference: Dong R, Ma XK, Chen LL, Yang L. Increased complexity of circRNA expression during species evolution. RNA Biol 2017;14. https://doi.org/10.1080/15476286.2016.1269999. – reference: Chen DF, Zhang LJ, Tan K, Jing Q. Application of droplet digital PCR in quantitative detection of the cell-free circulating circRNAs. Biotechnol Biotechnol Equip. 2018;32. https://doi.org/10.1080/13102818.2017.1398596. – reference: Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, et al. The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform. 2021;22. https://doi.org/10.1093/bib/bbaa001. – reference: XiaoHShiJExosomal circular RNA_400068 promotes the development of renal cell carcinoma via the miR-210-5p/SOCS1 axisMol Med Rep20202248101:CAS:528:DC%2BB3cXisVyqsr3O33173957764690710.3892/mmr.2020.11541 – reference: Zhang H, Wang G, Ding C, Liu P, Wang R, Ding W, et al. Increased circular RNA UBAP2 acts as a sponge of miR-143 to promote osteosarcoma progression. Oncotarget. 2017;8. https://doi.org/10.18632/oncotarget.18671. – reference: Li XF, Lytton J. A circularized sodium-calcium exchanger exon 2 transcript. J Biol Chem. 1999. https://doi.org/10.1074/jbc.274.12.8153. – reference: KochLCRISPR–Cas13 targets circRNAsNat Rev Genet2020226868 – reference: Li T, Shao Y, Fu L, Xie Y, Zhu L, Sun W, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med. 2018;96. https://doi.org/10.1007/s00109-017-1600-y. – reference: Xu X, Zhang J, Tian Y, Gao Y, Dong X, Chen W, et al. CircRNA inhibits DNA damage repair by interacting with host gene. Mol Cancer. 2020;19. https://doi.org/10.1186/s12943-020-01246-x. – reference: Liang D, Wilusz JE. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 2014;28. https://doi.org/10.1101/gad.251926.114. – reference: Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015;22. https://doi.org/10.1038/nsmb.2959. – reference: Gujam FJA, Edwards J, Mohammed ZMA, Going JJ, McMillan DC. The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer. 2014;111. https://doi.org/10.1038/bjc.2014.279. – reference: Barrett SP, Wang PL, Salzman J. Circular RNA biogenesis can proceed through an exon-containing lariat precursor. Elife. 2015. https://doi.org/10.7554/eLife.07540. – reference: XiaXLiXLiFWuXZhangMZhouHA novel tumor suppressor protein encoded by circular AKT3 RNA inhibits glioblastoma tumorigenicity by competing with active phosphoinositide-dependent Kinase-1Mol Cancer201918116. – reference: Ding L, Zhao Y, Dang S, Wang Y, Li X, Yu X, et al. Circular RNA circ-DONSON facilitates gastric cancer growth and invasion via NURF complex dependent activation of transcription factor SOX4. https://doi.org/10.1186/s12943-019-1006-2. – reference: Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK. Viroids are single stranded covalently closed circular RNA molecules existing as highly base paired rod like structures. Proc Natl Acad Sci USA. 1976. https://doi.org/10.1073/pnas.73.11.3852. – reference: GersteinMBRozowskyJYanKKWangDChengCBrownJBComparative analysis of the transcriptome across distant speciesNature201451244581:CAS:528:DC%2BC2cXhsVers7bK25164755415573710.1038/nature13424 – reference: PanYLouJWangHAnNChenHZhangQCircBA9.3 supports the survival of leukaemic cells by up-regulating c-ABL1 or BCR-ABL1 protein levelsBlood Cells Mol Dis20187338441:CAS:528:DC%2BC1cXhslahtb3E3022429810.1016/j.bcmd.2018.09.002 – reference: Starke S, Jost I, Rossbach O, Schneider T, Schreiner S, Hung LH, et al. Exon circularization requires canonical splice signals. Cell Rep. 2015. https://doi.org/10.1016/j.celrep.2014.12.002. – reference: Jiang T, Xia Y, Lv J, Li B, Li Y, Wang S, et al. A novel protein encoded by circMAPK1 inhibits progression of gastric cancer by suppressing activation of MAPK signaling. Mol Cancer. 2021;20. https://doi.org/10.1186/s12943-021-01358-y. – reference: Zhang PF, Pei X, Li KS, Jin LN, Wang F, Wu J, et al. Circular RNA circFGFR1 promotes progression and anti-PD-1 resistance by sponging miR-381-3p in non-small cell lung cancer cells. Mol Cancer. 2019;18. https://doi.org/10.1186/s12943-019-1111-2. – volume: 22 start-page: 4810 year: 2020 ident: 2780_CR43 publication-title: Mol Med Rep doi: 10.3892/mmr.2020.11541 – ident: 2780_CR225 doi: 10.1038/S41467-019-11162-4 – ident: 2780_CR47 doi: 10.1261/rna.048272.114 – ident: 2780_CR125 doi: 10.1016/j.ymeth.2021.02.007 – ident: 2780_CR95 doi: 10.1016/j.gpb.2018.08.001 – ident: 2780_CR165 doi: 10.1038/s41576-019-0158-7 – ident: 2780_CR115 doi: 10.1093/nar/gkw027 – ident: 2780_CR186 doi: 10.1016/j.bbrc.2018.10.026 – ident: 2780_CR7 doi: 10.1016/0092-8674(81)90142-2 – volume: 26 start-page: 2758 year: 2019 ident: 2780_CR228 publication-title: Cell Death Differ doi: 10.1038/s41418-019-0337-2 – ident: 2780_CR143 doi: 10.1038/nrg.2016.114 – ident: 2780_CR162 doi: 10.1038/s41374-018-0108-6 – ident: 2780_CR217 doi: 10.1038/S41419-018-1048-1 – ident: 2780_CR188 doi: 10.15252/emmm.201810168 – ident: 2780_CR184 doi: 10.1002/jcla.23045 – ident: 2780_CR34 doi: 10.1016/j.molcel.2015.03.027 – volume: 21 start-page: 2575 year: 2022 ident: 2780_CR227 publication-title: Cell Cycle doi: 10.1080/15384101.2022.2105087 – ident: 2780_CR69 doi: 10.1038/ncomms14741 – ident: 2780_CR233 doi: 10.1186/s12943-018-0935-5 – ident: 2780_CR206 doi: 10.1038/S41392-021-00569-5 – volume: 28 start-page: 1287 year: 2020 ident: 2780_CR230 publication-title: Mol Ther doi: 10.1016/j.ymthe.2020.03.002 – ident: 2780_CR15 doi: 10.1093/jhered/esj037 – volume: 495 start-page: 384 year: 2013 ident: 2780_CR99 publication-title: Nature doi: 10.1038/nature11993 – ident: 2780_CR117 doi: 10.1038/cdd.2016.133 – ident: 2780_CR236 doi: 10.1186/S12943-019-1015-1 – volume: 40 start-page: 5505 year: 2021 ident: 2780_CR201 publication-title: Oncogene doi: 10.1038/s41388-021-01960-w – ident: 2780_CR35 doi: 10.1038/nn.3975 – ident: 2780_CR128 doi: 10.1186/s12943-019-1010-6 – ident: 2780_CR71 doi: 10.1002/advs.202001701 – volume: 23 start-page: 10886 year: 2019 ident: 2780_CR241 publication-title: Eur Rev Med Pharmacol Sci – volume: 11 start-page: 1 year: 2020 ident: 2780_CR149 publication-title: Cell Death Dis doi: 10.1038/s41419-019-2182-0 – volume: 19 start-page: 1 year: 2020 ident: 2780_CR219 publication-title: Mol Cancer doi: 10.1186/s12943-020-01213-6 – ident: 2780_CR196 doi: 10.1016/j.cca.2017.10.011 – ident: 2780_CR23 doi: 10.7554/eLife.07540 – ident: 2780_CR103 doi: 10.18632/oncotarget.21748 – ident: 2780_CR57 doi: 10.1080/15476286.2016.1271524 – ident: 2780_CR138 doi: 10.1074/jbc.M606744200 – ident: 2780_CR148 doi: 10.1186/S13046-019-1487-2 – ident: 2780_CR20 doi: 10.1371/journal.pone.0030733 – volume: 22 start-page: 483 year: 2021 ident: 2780_CR234 publication-title: Mol Ther Oncolytics doi: 10.1016/j.omto.2021.07.010 – ident: 2780_CR183 doi: 10.1186/s12943-017-0719-3 – ident: 2780_CR88 doi: 10.1016/j.celrep.2017.08.027 – ident: 2780_CR136 doi: 10.1093/NAR/GKV1458 – ident: 2780_CR94 doi: 10.1186/s13059-020-02018-y – ident: 2780_CR33 doi: 10.1038/srep38907 – ident: 2780_CR237 doi: 10.1042/BSR20190363 – volume: 73 start-page: 38 year: 2018 ident: 2780_CR250 publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2018.09.002 – ident: 2780_CR169 doi: 10.1038/s41590-018-0297-6 – ident: 2780_CR18 doi: 10.1038/nature11928 – ident: 2780_CR51 doi: 10.1016/j.stem.2016.06.020 – volume: 10 start-page: 57 year: 2009 ident: 2780_CR133 publication-title: Nat Rev Genet doi: 10.1038/nrg2484 – volume: 45 start-page: 2840 year: 2020 ident: 2780_CR207 publication-title: Neurochem Res doi: 10.1007/s11064-020-03132-w – ident: 2780_CR209 doi: 10.1186/S12943-020-01184-8 – ident: 2780_CR53 doi: 10.3390/cancers13030365 – ident: 2780_CR107 – ident: 2780_CR245 doi: 10.1128/MCB.00259-18 – ident: 2780_CR152 doi: 10.1007/s00109-017-1600-y – ident: 2780_CR179 doi: 10.1093/annonc/mds246 – ident: 2780_CR171 doi: 10.1111/jcmm.16541 – volume: 19 year: 2020 ident: 2780_CR205 publication-title: Mol Cancer doi: 10.1186/s12943-020-01222-5 – ident: 2780_CR81 doi: 10.1016/j.cell.2018.12.021 – ident: 2780_CR176 doi: 10.1002/cam4.1514 – ident: 2780_CR105 doi: 10.1186/s13045-017-0422-2 – ident: 2780_CR224 doi: 10.1155/2022/4541918 – ident: 2780_CR251 doi: 10.1186/S13046-018-0822-3 – ident: 2780_CR97 doi: 10.1126/science.1210944 – ident: 2780_CR85 doi: 10.1186/s12943-018-0887-9 – ident: 2780_CR78 doi: 10.1093/nar/20.20.5345 – volume: 7 start-page: 80967 year: 2016 ident: 2780_CR191 publication-title: Oncotarget doi: 10.18632/oncotarget.13134 – ident: 2780_CR214 doi: 10.1038/s41392-020-00375-5 – ident: 2780_CR45 doi: 10.1038/srep08057 – ident: 2780_CR61 doi: 10.1016/j.celrep.2014.12.019 – ident: 2780_CR121 doi: 10.1016/J.BIOPHA.2021.112127 – ident: 2780_CR58 doi: 10.1038/nbt.2890 – volume: 22 start-page: 124 year: 2020 ident: 2780_CR231 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2020.08.015 – ident: 2780_CR130 doi: 10.1038/cr.2017.31 – ident: 2780_CR193 doi: 10.1186/s12943-021-01388-6 – ident: 2780_CR41 doi: 10.1186/s12943-019-1041-z – ident: 2780_CR158 doi: 10.1186/s13059-021-02263-9 – ident: 2780_CR140 doi: 10.1093/bib/bby006 – ident: 2780_CR197 doi: 10.3748/wjg.v23.i47.8345 – volume: 1724 start-page: 77 year: 2018 ident: 2780_CR146 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-7562-4_7 – ident: 2780_CR123 doi: 10.26508/lsa.201900398 – ident: 2780_CR91 doi: 10.1016/j.celrep.2021.109439 – ident: 2780_CR221 doi: 10.1038/S41592-022-01487-2 – volume: 32 start-page: 923 year: 2013 ident: 2780_CR111 publication-title: EMBO J doi: 10.1038/emboj.2013.53 – ident: 2780_CR195 doi: 10.3390/ph14070618 – ident: 2780_CR223 doi: 10.1042/EBC20200060 – ident: 2780_CR66 doi: 10.1080/15476286.2016.1269999 – ident: 2780_CR55 doi: 10.1016/j.ccell.2019.12.007 – volume: 18 year: 2019 ident: 2780_CR192 publication-title: Mol Cancer doi: 10.1186/s12943-019-1061-8 – ident: 2780_CR13 doi: 10.1093/hmg/8.3.493 – ident: 2780_CR187 doi: 10.3389/fcell.2021.675043 – ident: 2780_CR211 doi: 10.1016/j.canlet.2019.05.036 – ident: 2780_CR4 doi: 10.1038/323558a0 – ident: 2780_CR24 doi: 10.1093/nar/24.7.1260 – ident: 2780_CR77 doi: 10.1261/rna.045781.114 – ident: 2780_CR220 doi: 10.1038/nrg.2016.49 – ident: 2780_CR87 doi: 10.3389/fcell.2021.709299 – ident: 2780_CR93 doi: 10.1016/j.celrep.2019.02.078 – ident: 2780_CR200 doi: 10.1038/S41598-019-47189-2 – ident: 2780_CR48 doi: 10.1101/gad.270421.115 – ident: 2780_CR145 doi: 10.1007/978-1-4939-6703-2_11 – ident: 2780_CR247 doi: 10.1038/S41419-018-0699-2 – ident: 2780_CR122 doi: 10.1038/s41467-022-31327-y – volume: 9 start-page: 1 year: 2018 ident: 2780_CR42 publication-title: Cell Death Dis doi: 10.1038/s41419-018-0485-1 – ident: 2780_CR246 doi: 10.4274/TJH.GALENOS.2023.2022.0435 – ident: 2780_CR28 doi: 10.1016/j.celrep.2016.03.058 – ident: 2780_CR73 doi: 10.1371/journal.pbio.0020391 – ident: 2780_CR29 doi: 10.1093/nar/gkv1367 – volume: 8 start-page: S106 year: 2019 ident: 2780_CR239 publication-title: Transl Cancer Res doi: 10.21037/tcr.2018.11.13 – ident: 2780_CR150 doi: 10.1016/J.TALANTA.2021.123066 – ident: 2780_CR222 doi: 10.1016/j.molcel.2014.03.045 – volume: 22 start-page: 1 year: 2021 ident: 2780_CR243 publication-title: Int J Mol Sci doi: 10.3390/ijms22041678 – ident: 2780_CR72 doi: 10.1093/nar/gku523 – ident: 2780_CR112 doi: 10.1038/ng.2434 – ident: 2780_CR166 doi: 10.1038/s41580-020-0243-y – ident: 2780_CR199 doi: 10.3389/FONC.2022.985470 – ident: 2780_CR118 doi: 10.1038/s41467-020-20527-z – ident: 2780_CR98 doi: 10.1186/s13059-018-1594-y – ident: 2780_CR116 doi: 10.1080/15476286.2017.1279788 – ident: 2780_CR1 doi: 10.1016/0092-8674(76)90223-3 – volume: 6 start-page: 1 year: 2010 ident: 2780_CR16 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1001233 – volume: 43 start-page: 339 year: 2021 ident: 2780_CR202 publication-title: Biotechnol Lett doi: 10.1007/s10529-020-03036-3 – ident: 2780_CR40 doi: 10.1038/cr.2015.82 – ident: 2780_CR161 doi: 10.1038/s41467-021-24975-z – ident: 2780_CR46 doi: 10.1016/j.molcel.2018.06.034 – volume: 70 start-page: 42 year: 2019 ident: 2780_CR244 publication-title: Exp Hematol doi: 10.1016/j.exphem.2018.10.011 – volume: 114 start-page: E5207 year: 2017 ident: 2780_CR70 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1617467114 – ident: 2780_CR218 doi: 10.1186/S12943-020-01222-5 – ident: 2780_CR142 doi: 10.1371/journal.pcbi.1005420 – ident: 2780_CR17 doi: 10.1038/emboj.2011.359 – ident: 2780_CR198 doi: 10.1186/s12943-020-01149-x – ident: 2780_CR109 doi: 10.1016/j.molcel.2021.11.032 – volume: 18 start-page: 1 year: 2019 ident: 2780_CR215 publication-title: Mol Cancer – ident: 2780_CR59 doi: 10.1101/gad.314856.118 – ident: 2780_CR32 doi: 10.1186/s12864-017-4304-3 – ident: 2780_CR132 doi: 10.3390/ncrna6040041 – ident: 2780_CR62 doi: 10.1101/gad.251926.114 – volume: 24 start-page: 5704 year: 2018 ident: 2780_CR242 publication-title: Med Sci Monit doi: 10.12659/MSM.910180 – ident: 2780_CR101 doi: 10.1007/978-981-13-1426-1_6 – ident: 2780_CR60 doi: 10.1016/j.cell.2014.09.001 – ident: 2780_CR174 doi: 10.18632/oncotarget.18350 – ident: 2780_CR44 doi: 10.1186/s12920-019-0616-2 – ident: 2780_CR6 doi: 10.1016/0092-8674(82)90414-7 – ident: 2780_CR90 doi: 10.1016/j.celrep.2020.107641 – ident: 2780_CR253 doi: 10.1093/nar/gkx297 – ident: 2780_CR181 doi: 10.1038/bjc.2014.279 – volume: 16 start-page: 1 year: 2015 ident: 2780_CR80 publication-title: Genome Biol doi: 10.1186/s13059-014-0571-3 – ident: 2780_CR119 doi: 10.1038/cdd.2017.86 – ident: 2780_CR9 doi: 10.1016/0092-8674(93)90279-Y – ident: 2780_CR38 doi: 10.1371/journal.pone.0148407 – ident: 2780_CR167 doi: 10.18632/oncotarget.8589 – ident: 2780_CR102 doi: 10.1371/journal.pone.0158347 – ident: 2780_CR157 doi: 10.1038/s41592-020-01011-4 – ident: 2780_CR177 doi: 10.1111/cas.14645 – ident: 2780_CR27 doi: 10.1016/j.molcel.2014.08.019 – volume: 121 start-page: 3516 year: 2020 ident: 2780_CR108 publication-title: J Cell Biochem doi: 10.1002/jcb.29631 – ident: 2780_CR83 doi: 10.1038/s41422-018-0033-7 – ident: 2780_CR124 doi: 10.1016/j.molcel.2017.02.021 – ident: 2780_CR63 – ident: 2780_CR182 doi: 10.1111/cas.13901 – ident: 2780_CR84 doi: 10.1016/j.cell.2016.03.020 – ident: 2780_CR49 doi: 10.1016/j.molcel.2017.10.034 – ident: 2780_CR52 doi: 10.1038/nature10442 – ident: 2780_CR129 doi: 10.1038/s41556-021-00639-4 – ident: 2780_CR170 doi: 10.1111/exd.14227 – ident: 2780_CR180 – ident: 2780_CR2 doi: 10.1073/pnas.73.11.3852 – ident: 2780_CR68 doi: 10.1038/nsmb.2959 – ident: 2780_CR12 doi: 10.1128/mcb.17.6.2985 – volume: 19 start-page: 1 year: 2020 ident: 2780_CR212 publication-title: Mol Cancer doi: 10.1186/s12943-019-1085-0 – ident: 2780_CR79 doi: 10.1083/jcb.119.3.503 – ident: 2780_CR151 doi: 10.1080/13102818.2017.1398596 – ident: 2780_CR86 doi: 10.1016/j.molcel.2019.07.016 – ident: 2780_CR229 doi: 10.1080/15384101.2017.1278935 – volume: 512 start-page: 445 year: 2014 ident: 2780_CR134 publication-title: Nature doi: 10.1038/nature13424 – volume: 141 start-page: 975 year: 2021 ident: 2780_CR190 publication-title: Acta Neuropathol doi: 10.1007/s00401-021-02306-2 – ident: 2780_CR144 doi: 10.1093/bib/bbaa001 – ident: 2780_CR19 doi: 10.1096/fasebj.7.1.7678559 – ident: 2780_CR104 doi: 10.1186/s13059-017-1368-y – ident: 2780_CR126 doi: 10.1038/s41388-017-0019-9 – ident: 2780_CR31 doi: 10.1186/s12864-017-4386-y – ident: 2780_CR21 doi: 10.1261/rna.035667.112 – ident: 2780_CR22 doi: 10.1038/nrg3662 – ident: 2780_CR74 doi: 10.1038/nbt996 – ident: 2780_CR3 doi: 10.1038/280339a0 – ident: 2780_CR11 doi: 10.1073/pnas.93.13.6536 – ident: 2780_CR160 doi: 10.1080/15476286.2022.2043041 – ident: 2780_CR194 doi: 10.1002/ijc.32647 – ident: 2780_CR82 doi: 10.7554/eLife.09214 – ident: 2780_CR248 doi: 10.1186/S12943-021-01395-7 – volume: 10 start-page: 1 year: 2019 ident: 2780_CR232 publication-title: Cell Death Dis 2019 10:3 – ident: 2780_CR92 doi: 10.1261/rna.043687.113 – ident: 2780_CR25 doi: 10.1016/j.celrep.2014.12.002 – ident: 2780_CR75 doi: 10.4049/jimmunol.1302813 – ident: 2780_CR26 doi: 10.1101/gr.202895.115 – ident: 2780_CR36 doi: 10.1186/s13059-015-0801-3 – ident: 2780_CR54 doi: 10.18632/oncotarget.25673 – ident: 2780_CR235 doi: 10.1186/s12943-019-1006-2 – ident: 2780_CR204 doi: 10.1186/S12943-021-01475-8 – ident: 2780_CR210 doi: 10.1038/s41388-018-0369-y – ident: 2780_CR110 doi: 10.1038/S41419-020-03237-8 – ident: 2780_CR127 doi: 10.1093/jnci/djx166 – ident: 2780_CR178 doi: 10.1373/clinchem.2014.230433 – volume: 31 start-page: 387 year: 2021 ident: 2780_CR189 publication-title: Brain Pathol doi: 10.1111/bpa.12922 – ident: 2780_CR106 doi: 10.1038/ncomms11215 – ident: 2780_CR163 doi: 10.1038/s41375-021-01311-4 – volume: 432 start-page: 237 year: 2018 ident: 2780_CR252 publication-title: Cancer Lett doi: 10.1016/j.canlet.2018.04.035 – ident: 2780_CR64 doi: 10.1016/0378-1119(95)00639-7 – ident: 2780_CR175 doi: 10.1186/s12943-017-0663-2 – ident: 2780_CR203 doi: 10.1186/s12943-019-1111-2 – volume: 27 start-page: 1638 year: 2019 ident: 2780_CR216 publication-title: Mol Ther doi: 10.1016/j.ymthe.2019.05.011 – ident: 2780_CR226 doi: 10.1186/S13046-020-01555-5 – ident: 2780_CR156 doi: 10.1038/nature24049 – ident: 2780_CR249 doi: 10.1016/J.LFS.2020.118506 – ident: 2780_CR56 doi: 10.1016/j.molcel.2013.08.017 – ident: 2780_CR114 doi: 10.1186/s12943-020-01253-y – ident: 2780_CR67 doi: 10.1016/j.cell.2015.02.014 – volume: 22 start-page: 68 year: 2020 ident: 2780_CR155 publication-title: Nat Rev Genet – ident: 2780_CR37 doi: 10.1038/srep37982 – ident: 2780_CR168 doi: 10.1016/j.immuni.2018.03.016 – volume: 26 start-page: 1346 year: 2019 ident: 2780_CR208 publication-title: Cell Death Differ doi: 10.1038/s41418-018-0220-6 – ident: 2780_CR173 doi: 10.1186/s13045-018-0643-z – ident: 2780_CR153 doi: 10.1016/j.aca.2019.12.027 – ident: 2780_CR89 doi: 10.1038/s41467-019-12651-2 – ident: 2780_CR30 doi: 10.1016/j.celrep.2014.10.062 – ident: 2780_CR5 doi: 10.1038/301578a0 – ident: 2780_CR141 doi: 10.1186/s13073-019-0614-1 – ident: 2780_CR172 doi: 10.1126/science.1248882 – ident: 2780_CR137 doi: 10.1371/journal.pgen.1003777 – volume: 46 start-page: 1606 year: 2018 ident: 2780_CR147 publication-title: Cell Physiol Biochem doi: 10.1159/000489208 – ident: 2780_CR185 doi: 10.1002/jcla.23272 – volume: 2348 start-page: 371 year: 2021 ident: 2780_CR139 publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-1581-2_23 – ident: 2780_CR65 doi: 10.1080/2159256X.2015.1045682 – ident: 2780_CR164 doi: 10.15252/embr.202052072 – ident: 2780_CR238 doi: 10.1186/s12943-021-01358-y – ident: 2780_CR96 doi: 10.1186/s12943-020-01246-x – ident: 2780_CR76 doi: 10.1016/j.molcel.2017.05.023 – ident: 2780_CR213 doi: 10.1016/j.omtn.2018.08.008 – ident: 2780_CR8 doi: 10.1016/0092-8674(91)90244-S – volume: 66 start-page: 22 year: 2017 ident: 2780_CR120 publication-title: Mol Cell doi: 10.1016/j.molcel.2017.02.017 – ident: 2780_CR131 doi: 10.1038/s41467-019-10246-5 – ident: 2780_CR240 doi: 10.3389/FNMOL.2018.00225 – ident: 2780_CR14 doi: 10.1074/jbc.274.12.8153 – ident: 2780_CR39 doi: 10.1080/20013078.2018.1424473 – ident: 2780_CR113 doi: 10.1038/ncomms12429 – ident: 2780_CR10 doi: 10.1002/j.1460-2075.1992.tb05148.x – ident: 2780_CR154 doi: 10.1016/j.talanta.2020.121021 – ident: 2780_CR100 doi: 10.1038/nrg.2016.20 – ident: 2780_CR159 doi: 10.18632/oncotarget.18671 – ident: 2780_CR50 doi: 10.1080/15476286.2017.1409931 – volume: 30 start-page: 99 year: 2011 ident: 2780_CR135 publication-title: Nat Biotechnol doi: 10.1038/nbt.2024 |
| SSID | ssj0007902 |
| Score | 2.7007852 |
| SecondaryResourceType | review_article |
| Snippet | To date, thousands of highly abundant and conserved single-stranded RNA molecules shaped into ring structures (circRNAs) have been identified. CircRNAs are... |
| SourceID | pubmedcentral proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2783 |
| SubjectTerms | 45/47 45/77 631/67/68 692/53/2421 Apoptosis Biosynthesis Cancer Cell Biology Cell division Circular RNA DNA methylation Gene expression Human Genetics Internal Medicine Medicine Medicine & Public Health Oncology Post-transcription Review Review Article Tumorigenesis |
| Title | Going circular: history, present, and future of circRNAs in cancer |
| URI | https://link.springer.com/article/10.1038/s41388-023-02780-w https://www.proquest.com/docview/2865140559 https://www.proquest.com/docview/2852629973 https://pubmed.ncbi.nlm.nih.gov/PMC10504067 |
| Volume | 42 |
| WOSCitedRecordID | wos001049135100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1476-5594 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: M7P dateStart: 20210101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1476-5594 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1476-5594 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1476-5594 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: 8C1 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1476-5594 dateEnd: 20241206 omitProxy: false ssIdentifier: ssj0007902 issn: 0950-9232 databaseCode: M2O dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCbWdq_LHtmGee0CDdhtEWpLdmztUrRBu12aBcUG5GZYD2MBBjuL2xX996MeTpAC7aUXAYZk60GKpEXqI8BnewNNVFJQzVNJUxFXtGLKUKZiaQox1ir2ySby6bSYz8UsHLh1Iayyl4lOUOtW2TPyQ3uDEn8G0AA-Wv6lNmuU9a6GFBo7sJewOLUbs5hsQjxyH3OIVkRM0ZBh4dJMzIvDDoU38ghqLOvFLGJ6va2YNtbm7VjJWw5Tp4fOXj50Bq_gRbBAybFnmdfwyDQDeOJzUt4M4NmkTwE3gKfnwfP-Bk6-tTgcohYrF7j6lXig4psRWfoLTCNSNZp4iBLS1q7lxfS4I4uGKMtaq7fw6-z05-Q7DfkXqEozZrPUZ1Ilsak1Wm2Gx1IkUhicAMuUqE1uLOo4V0zWKU-zqkKZi_IzE0ktWcZVwt_BbtM25j0QrVILCSqLvFYpak2pq8SkGj-gBedZHUHSL36pAji5zZHxp3ROcl6UnmAlEqx0BCuvI_iyfmfpoTnubX3QU6UM27QrNySJ4NO6GhfZek2qxrRXtk3Gxqi0cx5BscUL614tRPd2TbP47aC60XpFKTnOIxj1bLPp_e7Bfrh_sPvwnDnOFTTJDmD3cnVlPsJj9e9y0a2GsJPPc1cWQ7cfhrB3cjqdXeDTOfthy3z2HzoNEJc |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4a4zJeuHRDBAYYCZ6otcROmngSQmMwNm2rEBpS30x8iaiEktJsVP1T_MYdx0mrTmJve-DZjq-fz_kcnwvAG-eBJnIlqOGxorEIc5ozbSnTobKZGBgd-mQT6XCYjUbi6xr87XxhnFllJxMbQW0q7f6R7zgPSrwMIAH-MPlNXdYo97rapdDwsDi28xle2er3R59wf98ydvD5bP-QtlkFqI4T5nKvJ0pHoS0MchHLQyUiJSw2zBItCptaF0uba6aKmMdJnqMkQamQiKhQLOE64tjuLbiNcjx1JmTpaHHBC1Nv44isJaRInFjrpBPybKdGZYGYRA3pXk2zkM5WFeGS3V61zbzyQNvovYOH_9uKPYIHLcMme_5IPIY1W_bgrs-5Oe_Bxn6X4q4H905by4JN-PilwukTPZ42hrm7xAdinvfJxDto9UleGuJDsJCqaGp-G-7VZFwS7Y7OdAu-38i8nsB6WZX2KRCjYxfyVGVpoWNkBcrkkY0NNmAE50kRQNRtttRt8HWXA-SXbIwAeCY9QCQCRDYAkbMA3i2-mfjQI9fW3u5QIFsxVMslBAJ4vSjGRXavQnlpqwtXJ2EDJCUpDyBbwd6iVxeCfLWkHP9sQpEjO0ctMEgD6HcwXfb-78E-u36wr2Dj8Oz0RJ4cDY-fw33WnBpBo2Qb1s-nF_YF3NF_zsf19GVz_gj8uGn4XgIWNmZH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD4aGwxeuBQmAgOMBE_UamInTYyE0G6FaRBVE0h7M7HjaJVQUpqNqn-NX8dxnLTqJPa2B57j2I79nXM-x-cC8MZGoIlMCZrzUNFQ-BnNmDaUaV-ZRAxz7btiE3GaJmdnYrwBf7pYGOtW2enERlHnlbb_yAc2ghIPA0iAB0XrFjE-HH2c_qK2gpS9ae3KaTiInJjFHI9v9YfjQ9zrt4yNjr4dfKZthQGqw4jZOuyR0oFvihx5ieG-EoESBgdhkRaFiY3Nq801U0XIwyjLUKughohEUCgWcR1w7PcWbMVIMlC6tvaP0vHp0g7EzuMROYxPkUaxNmTH58mgRtOBCEV7ae9QE5_O183iiute9dS8cl3bWMHRg_95_R7C_ZZ7kz0nLI9gw5Q9uOOqcS56cPegK37Xg-2vrc_BY9j_VOFSED2ZNS6774lL0bzok6kL3eqTrMyJS85CqqJpeZru1WRSEm2FavYEvt_Id-3AZlmV5imQXIc2GapK4kKHyBdUngUmzLGDXHAeFR4E3cZL3aZlt9VBfsrGPYAn0oFFIlhkAxY59-Dd8p2pS0pybevdDhGyVVC1XMHBg9fLx7jI9r4oK011adtEbIh0JeYeJGs4XI5qk5OvPykn502ScuTtaB-GsQf9DrKr0f892WfXT_YVbCNq5Zfj9OQ53GONAAkaRLuweTG7NC_gtv59MalnL1thJPDjpvH7F-ehcGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Going+circular%3A+history%2C+present%2C+and+future+of+circRNAs+in+cancer&rft.jtitle=Oncogene&rft.au=Pisignano%2C+Giuseppina&rft.au=Michael%2C+David+C.&rft.au=Visal%2C+Tanvi+H.&rft.au=Pirlog%2C+Radu&rft.date=2023-09-15&rft.pub=Nature+Publishing+Group+UK&rft.issn=0950-9232&rft.eissn=1476-5594&rft.volume=42&rft.issue=38&rft.spage=2783&rft.epage=2800&rft_id=info:doi/10.1038%2Fs41388-023-02780-w&rft_id=info%3Apmid%2F37587333&rft.externalDocID=PMC10504067 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-9232&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-9232&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-9232&client=summon |