Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward

Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and populat...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology Vol. 31; no. 20; pp. 5132 - 5164
Main Authors: Yao, Meng, Zhang, Shan, Lu, Qi, Chen, Xiaoyu, Zhang, Si‐Yu, Kong, Yueqiao, Zhao, Jindong
Format: Journal Article
Language:English
Published: England Blackwell Publishing Ltd 01.10.2022
Subjects:
ISSN:0962-1083, 1365-294X, 1365-294X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
AbstractList Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.
Author Yao, Meng
Lu, Qi
Kong, Yueqiao
Zhao, Jindong
Chen, Xiaoyu
Zhang, Si‐Yu
Zhang, Shan
Author_xml – sequence: 1
  givenname: Meng
  orcidid: 0000-0002-8906-1461
  surname: Yao
  fullname: Yao, Meng
  email: yaom@pku.edu.cn
  organization: Peking University
– sequence: 2
  givenname: Shan
  surname: Zhang
  fullname: Zhang, Shan
  organization: Peking University
– sequence: 3
  givenname: Qi
  surname: Lu
  fullname: Lu, Qi
  organization: Peking University
– sequence: 4
  givenname: Xiaoyu
  surname: Chen
  fullname: Chen, Xiaoyu
  organization: Peking University
– sequence: 5
  givenname: Si‐Yu
  surname: Zhang
  fullname: Zhang, Si‐Yu
  organization: Peking University
– sequence: 6
  givenname: Yueqiao
  surname: Kong
  fullname: Kong, Yueqiao
  organization: Peking University
– sequence: 7
  givenname: Jindong
  surname: Zhao
  fullname: Zhao, Jindong
  organization: Peking University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35972241$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhq2KqizQQ_9AFakXKhHwd-Le0LK0lWi5tFJvkdeeLEaJvbUTVnvqX8dhgQNSW0uWxzPPvCP7PUB7PnhA6B3BpySvsx7MKZFSqFdoRpgUJVX81x6aYSVpSXDN9tFBSrcYE0aFeIP2mVAVpZzM0J9Ll26cXxVtiEWb4wL8nYvB9-AH3RUX388_FQsTurByJt_1et3lYHDBp5Oih-Em2OeiyUlnIT6V0xjvYDupW0huNaW0t8VGb9M0b6OjPUKvW90lePt4HqKfl4sf8y_l1fXnr_Pzq9JwQVVJAEtKmKorwbVUdEksNoRqxjGpKci2ZtOurLSGGWskcKJNy5XCS8ENY4foeKe7juH3CGloepcMdJ32EMbU0JoQVVMiqv-jFaaqklzgjH54gd6GMfr8kExRhimvOM_U-0dqXPZgm3V0vY7b5smFDHzcASaGlCK0zwjBzeRwkx1uHhzO7NkL1rjh4cOHqF33r46N62D7d-nm22K-67gH0va2uQ
CitedBy_id crossref_primary_10_1002_edn3_467
crossref_primary_10_1002_lom3_10634
crossref_primary_10_1002_edn3_70137
crossref_primary_10_1002_edn3_70017
crossref_primary_10_1007_s44211_023_00382_w
crossref_primary_10_1371_journal_pone_0322148
crossref_primary_10_18307_2025_0402
crossref_primary_10_1002_ece3_70627
crossref_primary_10_1002_edn3_70015
crossref_primary_10_1002_edn3_70013
crossref_primary_10_18307_2025_0403
crossref_primary_10_1002_edn3_70131
crossref_primary_10_18307_2025_0405
crossref_primary_10_1002_ece3_10681
crossref_primary_10_1007_s11802_025_5893_0
crossref_primary_10_1111_ddi_70053
crossref_primary_10_1007_s00114_024_01904_w
crossref_primary_10_1016_j_jenvman_2025_124531
crossref_primary_10_1002_edn3_476
crossref_primary_10_1002_edn3_596
crossref_primary_10_1016_j_ecolind_2025_113469
crossref_primary_10_1111_brv_70059
crossref_primary_10_1016_j_ecolind_2024_112384
crossref_primary_10_1016_j_ecss_2024_108824
crossref_primary_10_1016_j_envint_2024_109175
crossref_primary_10_1016_j_scitotenv_2024_178125
crossref_primary_10_3390_d17010035
crossref_primary_10_1002_ece3_71279
crossref_primary_10_1111_1755_0998_13931
crossref_primary_10_1002_edn3_70141
crossref_primary_10_1111_1755_0998_13934
crossref_primary_10_1016_j_scitotenv_2023_162322
crossref_primary_10_3390_fishes9030086
crossref_primary_10_3390_d15030322
crossref_primary_10_1007_s11427_023_2493_5
crossref_primary_10_1016_j_ecolind_2025_113459
crossref_primary_10_3390_fishes9100396
crossref_primary_10_1111_2041_210X_70102
crossref_primary_10_1016_j_jenvman_2023_117971
crossref_primary_10_1093_molbev_msad035
crossref_primary_10_1016_j_marenvres_2025_107439
crossref_primary_10_1051_kmae_2024011
crossref_primary_10_1016_j_jcz_2025_09_003
crossref_primary_10_3389_fmars_2023_1268399
crossref_primary_10_1002_edn3_70156
crossref_primary_10_1016_j_ecss_2025_109411
crossref_primary_10_1360_SSV_2025_0085
crossref_primary_10_3389_fsufs_2023_1166131
crossref_primary_10_1139_cjfas_2023_0053
crossref_primary_10_1007_s10661_024_12788_8
crossref_primary_10_1016_j_jtherbio_2025_104120
crossref_primary_10_1111_mec_16815
crossref_primary_10_3389_fenvs_2023_1057653
crossref_primary_10_3390_w16050631
crossref_primary_10_3390_d16010028
crossref_primary_10_1016_j_indic_2025_100831
crossref_primary_10_1007_s10530_024_03306_5
crossref_primary_10_1016_j_ecolind_2024_112807
crossref_primary_10_1002_edn3_520
crossref_primary_10_1002_edn3_486
crossref_primary_10_1007_s10661_023_11539_5
crossref_primary_10_3897_mbmg_8_104655
crossref_primary_10_1002_ece3_11214
crossref_primary_10_1016_j_ancene_2025_100481
crossref_primary_10_1002_edn3_422
crossref_primary_10_1002_edn3_70052
crossref_primary_10_1007_s10142_023_01269_9
crossref_primary_10_1111_fwb_70019
crossref_primary_10_1002_aqc_4111
crossref_primary_10_1007_s10651_024_00632_8
crossref_primary_10_1186_s13717_023_00463_8
crossref_primary_10_3390_w15020308
crossref_primary_10_1007_s10531_024_02994_8
crossref_primary_10_1016_j_ecolind_2023_111356
crossref_primary_10_7717_peerj_18778
crossref_primary_10_1007_s10201_023_00740_7
crossref_primary_10_3389_fenvs_2023_1106862
crossref_primary_10_1002_aqc_4220
crossref_primary_10_1002_edn3_70068
crossref_primary_10_1016_j_scitotenv_2025_179021
crossref_primary_10_1007_s11356_024_35025_8
crossref_primary_10_1093_tafafs_vnaf036
crossref_primary_10_1016_j_tim_2024_07_003
crossref_primary_10_1016_j_ecolind_2025_113651
crossref_primary_10_1016_j_jenvman_2023_117217
crossref_primary_10_1016_j_scitotenv_2024_173885
crossref_primary_10_1016_j_tree_2024_10_007
crossref_primary_10_1080_02705060_2025_2541689
crossref_primary_10_1111_eva_13699
crossref_primary_10_1002_ece3_70645
crossref_primary_10_1007_s00343_024_3148_3
crossref_primary_10_1016_j_gecco_2025_e03800
crossref_primary_10_3390_fishes10040165
crossref_primary_10_1016_j_gecco_2025_e03642
crossref_primary_10_1111_mec_17031
crossref_primary_10_1016_j_marpolbul_2024_117422
crossref_primary_10_1038_s41598_024_80907_z
crossref_primary_10_1093_icesjms_fsae152
crossref_primary_10_1038_s41598_025_98750_1
crossref_primary_10_1111_1755_0998_14082
crossref_primary_10_1016_j_jembe_2025_152093
crossref_primary_10_1002_edn3_70008
crossref_primary_10_1111_mec_17784
crossref_primary_10_1111_jfb_15895
crossref_primary_10_1002_edn3_70001
crossref_primary_10_1016_j_envres_2025_121238
crossref_primary_10_3390_toxics11110903
crossref_primary_10_3390_fishes10040175
crossref_primary_10_1016_j_fsigen_2024_103087
crossref_primary_10_1186_s12862_024_02261_y
crossref_primary_10_1016_j_mex_2024_103020
Cites_doi 10.1016/j.gloenvcha.2011.01.003
10.1186/1471-2164-11-434
10.1098/rsbl.2008.0118
10.1016/j.ecolind.2021.107605
10.1111/mec.15692
10.1098/rspb.2019.1409
10.1111/1755-0998.12598
10.1111/mec.15742
10.1038/s42003-017-0005-3
10.3897/mbmg.4.56959
10.1111/jfb.14176
10.1016/j.biocon.2014.11.040
10.1111/1755‐0998.13627
10.1101/gr.162172.113
10.1111/cobi.13183
10.1021/acs.est.6b03114
10.1111/1755-0998.12460
10.1139/cjfas-2017-0114
10.1111/mec.15060
10.3389/fevo.2020.00276
10.1111/2041-210X.12595
10.1111/mec.16364
10.1111/j.1365-294X.2011.05403.x
10.1016/0006-3207(92)91201-3
10.1111/1365-2664.12306
10.1016/j.fishres.2017.09.013
10.1111/mec.13660
10.1371/journal.pone.0022746
10.1126/sciadv.aap9661
10.1111/1755-0998.13107
10.1038/s41467-019-14105-1
10.1038/s41598-021-93859-5
10.1016/j.cosust.2011.12.005
10.1371/journal.pone.0178124
10.1007/s00227-019-3555-8
10.1073/pnas.1017621108
10.1007/s11357-013-9548-5
10.1111/j.1365-294X.2012.05542.x
10.1016/j.tree.2014.04.003
10.1111/mec.15797
10.1002/edn3.121
10.1016/j.scitotenv.2020.142096
10.1371/journal.pone.0149786
10.1111/1755-0998.13356
10.1111/1755-0998.12338
10.1111/1755-0998.12285
10.1111/mec.13428
10.1111/2041-210X.12206
10.1111/fwb.13094
10.1371/journal.pone.0056584
10.1002/edn3.7
10.1111/mec.15472
10.1016/j.scitotenv.2019.04.247
10.3389/fmars.2019.00373
10.1111/mec.15507
10.1029/2006RG000210
10.1111/mec.15530
10.1126/sciadv.abk0097
10.1111/jfb.14852
10.1146/annurev-marine-041421-082251
10.1111/1755-0998.12486
10.1002/edn3.44
10.1080/02755947.2017.1342721
10.1016/j.biocon.2018.01.030
10.1002/edn3.141
10.1111/1365-2664.12598
10.1016/j.scitotenv.2018.05.002
10.1038/s41598-019-42641-9
10.1038/s42003-021-01760-8
10.1371/journal.pone.0203012
10.1016/j.tig.2018.05.008
10.1111/j.1365-294X.2012.05470.x
10.1016/j.jembe.2018.09.004
10.1139/gen-2015-0229
10.1016/j.biocon.2014.11.038
10.1002/edn3.169
10.1111/1755-0998.13315
10.1002/edn3.185
10.1071/WR19246
10.1371/journal.pone.0195529
10.1038/s41559-016-0004
10.1038/srep40368
10.1007/s00374-008-0345-8
10.1016/j.biocon.2014.11.017
10.1016/j.biocon.2014.11.023
10.1016/j.scitotenv.2020.142622
10.1126/science.1203672
10.1111/jfb.14400
10.1111/1755-0998.12433
10.1021/acs.est.5b05672
10.1021/acs.est.0c01863
10.1111/j.1365-2664.2005.01126.x
10.1038/hdy.2016.62
10.1021/acs.est.8b02293
10.1111/1755-0998.12987
10.1111/1755-0998.13123
10.1126/science.aas9852
10.1002/edn3.191
10.7717/peerj.3044
10.1007/s12562-020-01409-1
10.1111/jfb.13294
10.1021/acs.est.8b01071
10.1016/j.cub.2021.08.034
10.1371/journal.pone.0218823
10.1021/es404734p
10.1111/jfb.14218
10.1002/edn3.132
10.1016/j.gecco.2019.e00547
10.1002/edn3.38
10.1002/edn3.173
10.1128/MCB.00970-14
10.1111/mec.14350
10.1007/s12562-020-01461-x
10.1111/j.1755-0998.2009.02795.x
10.1111/mec.14920
10.3389/fmars.2021.640527
10.1016/j.scitotenv.2019.134704
10.1126/science.1084114
10.1016/j.tree.2021.03.001
10.1371/journal.pone.0088786
10.1093/oso/9780198767220.001.0001
10.1111/mec.15543
10.1111/1755-0998.13200
10.3389/fmars.2021.668822
10.1002/edn3.74
10.1111/j.1755-263X.2010.00158.x
10.1139/cjfas-2012-0478
10.3389/fmars.2020.604878
10.1371/journal.pone.0157366
10.1126/science.1177215
10.1093/nar/gkaa1023
10.1002/edn3.232
10.1111/1755-0998.13568
10.1073/pnas.1813843115
10.1111/1755-0998.13543
10.1038/s41598-017-14978-6
10.1002/eap.2036
10.1111/2041-210X.13276
10.1021/acs.est.9b00409
10.1002/ece3.5426
10.1111/1755-0998.13375
10.7717/peerj.9606
10.1126/science.1127609
10.1111/jfb.14383
10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
10.1111/cobi.13802
10.1111/1755-0998.13544
10.1073/pnas.2014929118
10.1002/ece3.7658
10.1126/science.aam9317
10.1016/j.tree.2017.03.001
10.1002/ece3.4387
10.1371/journal.pone.0103767
10.1016/j.ecolind.2015.11.022
10.1080/00028487.2016.1243578
10.1016/j.biocon.2015.12.023
10.1111/1755-0998.12900
10.1071/MF09068
10.3390/genes10110858
10.1111/2041-210X.13485
10.1111/1755-0998.13367
10.1038/s41598-020-70206-8
10.1007/s10641-015-0405-5
10.1038/s41598-021-82205-4
10.1126/science.1141758
10.1111/mec.15811
10.1016/j.scitotenv.2021.149175
10.1016/j.tree.2006.02.002
10.1111/mec.13549
10.1016/j.biocon.2014.11.025
10.1371/journal.pone.0222830
10.1139/cjfas-2016-0306
10.1371/journal.pone.0086175
10.1016/j.biocon.2014.11.020
10.1111/j.1461-0248.2008.01179.x
10.1038/s41598-021-98926-5
10.1641/B580507
10.1111/1755-0998.12436
10.1111/2041-210X.13201
10.1002/ece3.4169
10.1038/s41598-017-05223-1
10.3389/fmars.2020.605148
10.1016/j.copbio.2016.11.022
10.1016/j.cub.2019.04.031
10.1111/1755-0998.13440
10.1080/03632415.2017.1276329
10.1002/ece3.6014
10.1126/science.abd3369
10.1111/1755-0998.13111
10.1111/1755-0998.13105
10.1371/journal.pone.0023398
10.1007/s11356-014-3466-7
10.1016/j.scitotenv.2019.135314
10.1016/j.ecolind.2021.107796
10.1111/fwb.12846
10.1111/1755-0998.13502
10.1002/ece3.3346
10.1002/edn3.87
10.1111/2041-210X.12849
10.1111/j.1095-8649.2002.tb01773.x
10.1002/aqc.3208
10.1111/1755‐0998.13655
10.1126/science.aav3409
10.1002/ece3.4802
10.1371/journal.pone.0215505
10.1021/acs.est.8b01822
10.1016/j.ecolind.2021.107698
10.1038/s42003-018-0192-6
10.1111/j.1365-294X.2012.05519.x
10.1021/acs.est.2c02506
10.1111/1755-0998.12961
10.1371/journal.pone.0035868
10.3389/fevo.2020.609973
10.1111/jfb.14403
10.1002/edn3.257
10.1371/journal.pone.0176608
10.1111/mec.15382
10.1016/j.tree.2018.09.003
10.1002/ece3.4777
10.1111/1755-0998.12159
10.1111/mec.13481
10.1002/edn3.49
10.1111/mec.16202
10.1016/j.margen.2017.11.003
10.1002/edn3.5
10.1016/j.biocon.2014.11.029
10.1002/fee.1490
10.1371/journal.pone.0191720
10.1371/journal.pone.0176343
10.1126/science.1255641
10.1111/1755-0998.12685
10.1111/eva.12882
10.1111/fwb.13920
10.1111/ddi.13142
10.1371/journal.pone.0041732
10.1080/15592294.2018.1529504
10.1111/1755-0998.13450
10.1111/1755-0998.13165
10.1016/j.scitotenv.2021.146891
10.1111/faf.12286
10.1002/edn3.24
10.1111/j.1471-8286.2007.01678.x
10.1098/rspb.2020.0248
10.1371/journal.pone.0253104
10.1002/edn3.253
10.1007/s00227-017-3141-x
10.1002/aqc.2617
10.3390/genes10030192
10.1046/j.1523-1739.1995.09030686.x
10.1371/journal.pone.0112611
10.1111/2041-210X.12890
10.1111/1755-0998.12508
10.1111/1365-2664.13352
10.1371/journal.pone.0114639
10.1002/edn3.75
10.1038/s41598-019-39399-5
10.1111/1755-0998.12257
10.1016/j.envint.2019.105307
10.1038/s41467-020-17337-8
10.1111/1755-0998.12907
10.1139/gen-2016-0100
10.1016/j.biocon.2016.03.010
10.1371/journal.pone.0119071
10.1016/j.tree.2008.07.005
10.1007/s13280-020-01318-8
10.1021/acs.est.1c07638
10.1111/2041-210X.12709
10.1002/edn3.21
10.1016/j.cosust.2010.09.001
10.1038/s41467-021-21655-w
10.1038/s41598-017-12501-5
10.1038/s41598-021-83318-6
10.1093/molbev/msx156
10.3390/genes11030296
10.1111/1755-0998.13247
10.1371/journal.pone.0210357
10.1111/mec.14776
10.1017/S1367943002002299
10.1038/s42003-019-0696-8
10.1007/s10592-015-0775-4
10.1111/j.1442-9993.1995.tb00523.x
10.1038/s41598-019-48546-x
10.1016/j.soilbio.2016.02.003
10.1139/cjfas-2020-0182
10.1111/1755-0998.13451
10.1016/bs.aecr.2018.01.001
10.1111/1755-0998.12522
10.1002/ece3.4653
10.1371/journal.pone.0165252
10.1007/s00027-017-0546-z
10.1111/jfb.13333
10.1038/s41598-018-28424-8
10.1038/nmeth.4240
10.1111/mec.15661
10.1016/j.ecoinf.2019.101033
10.1093/molbev/msy074
10.1007/s12562-018-1282-6
10.1111/faf.12553
10.1016/j.watres.2018.03.003
10.1111/1755-0998.13354
10.1038/nature11018
10.1111/mec.15623
10.1016/j.scitotenv.2021.148054
10.1002/eap.2389
10.1126/science.1229931
10.1016/j.biocon.2014.11.019
10.1371/journal.pone.0169431
10.1146/annurev-ecolsys-110617-062306
10.1002/ece3.6279
10.1111/brv.12480
10.1002/fee.2073
10.1577/1548-8446-33.8.372
10.1111/geb.12096
10.1111/1755-0998.13430
10.1111/mec.15765
10.1111/mec.15644
10.1071/MF08254
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
Copyright © 2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: Copyright © 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.16659
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE
Entomology Abstracts
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 5164
ExternalDocumentID 35972241
10_1111_mec_16659
MEC16659
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: the National Science and Technology Basic Resources Survey Program of China
  funderid: 2019FY101700
– fundername: National Natural Science Foundation of China
  funderid: 32100395
– fundername: the Second Tibetan Plateau Scientific Expedition and Research Program
  funderid: 2019QZKK0304; 2019QZKK0503
– fundername: the Special Project for Social Development of Yunnan Province
  funderid: 202103AC100001
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4529-1e0621398754a692b1d0c12a340182e6f836f837d6dc3cdc6e41acf4990b54c33
IEDL.DBID DRFUL
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848186500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:27:26 EDT 2025
Tue Aug 05 10:03:54 EDT 2025
Mon Nov 10 02:55:58 EST 2025
Wed Feb 19 02:26:11 EST 2025
Tue Nov 18 21:44:05 EST 2025
Sat Nov 29 05:23:54 EST 2025
Wed Jan 22 16:23:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords fish conservation
aquatic ecosystem
biodiversity surveillance
fisheries management
DNA metabarcoding
eRNA
Language English
License 2022 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4529-1e0621398754a692b1d0c12a340182e6f836f837d6dc3cdc6e41acf4990b54c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8906-1461
PMID 35972241
PQID 2723024744
PQPubID 31465
PageCount 33
ParticipantIDs proquest_miscellaneous_2811982157
proquest_miscellaneous_2702976450
proquest_journals_2723024744
pubmed_primary_35972241
crossref_primary_10_1111_mec_16659
crossref_citationtrail_10_1111_mec_16659
wiley_primary_10_1111_mec_16659_MEC16659
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2022
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2020; 20
2019; 10
2019; 14
2019; 17
2019; 19
2013; 70
2020; 13
2008; 33
2020; 287
2020; 11
2020; 10
2019; 166
2016; 36
2019; 286
1995; 20
2017; 74
2021; 78
2021; 797
2017; 79
2019; 28
2008; 23
2019; 29
2021; 790
2017; 164
2010; 2
2012; 21
2017; 62
2021; 49
2018; 220
2017; 60
2019; 33
2009; 60
2008; 58
1981; 6
2021; 782
2021; 50
2011; 4
2016; 17
2011; 6
2016; 16
2020; 702
2016; 11
2020; 704
2016; 7
2018; 359
2022; 4
2013; 339
2020; 30
2002; 61
2022; 8
2018; 115
2008; 46
2017; 146
2016; 26
2016; 25
2020; 29
2017; 42
2015; 183
2019; 53
2021; 126
2021; 125
2021; 128
2019; 56
2017; 45
2020; 55
2008; 4
2020; 54
2017; 356
2010; 61
2020; 8
2020; 7
2020; 4
2014; 5
2020; 2
2017; 37
2017; 32
2017; 34
2021; 118
2019; 69
2019; 510
2020; 47
2016; 117
2020; 135
2014; 9
2014; 51
2009; 325
2015; 2
2021; 8
2021; 7
2021; 4
2021; 3
2017; 26
2020; 86
2015; 98
2009
2018; 63
2011; 332
2021; 98
2011; 108
2021; 99
2017; 15
2022
2019; 85
2017; 14
2021
2017; 17
2017; 12
2018
2018; 52
2003; 300
1992; 61
2018; 58
2010; 11
2010; 10
2012; 486
2019; 94
2014; 24
2014; 29
2022; 22
2013; 8
2014; 23
2018; 49
2018; 9
2018; 8
2018; 2
2018; 4
2020; 97
2018; 1
2006; 21
2014; 14
2007; 7
2022; 31
2019; 678
2018; 34
2018; 33
2018; 37
2018; 35
2019; 9
2019; 6
2019; 2
2019; 1
2002; 5
2014; 48
2016; 96
2018; 197
2018; 19
2018; 18
2007; 317
2006; 43
2005; 126
2022; 14
2014; 36
2021; 371
2018; 637
2018; 13
2017; 5
2009; 45
2021; 27
2017; 7
2017; 8
2021; 21
2017; 1
2021; 22
2015; 347
2022; 67
2021; 30
2019; 364
2021; 36
2021; 35
2021; 31
2018; 138
2021; 755
2021; 754
2011; 21
2016; 197
2016; 194
2015; 15
2015; 10
2016; 53
2016; 50
2008; 11
2006; 313
2016; 59
2021; 16
2017; 91
2017; 90
2021; 12
2021; 11
2015; 22
2022; 56
2016; 62
2012; 7
2012; 4
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_280_1
e_1_2_14_50_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_288_1
e_1_2_14_239_1
e_1_2_14_58_1
e_1_2_14_216_1
e_1_2_14_182_1
e_1_2_14_242_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_144_1
e_1_2_14_314_1
e_1_2_14_167_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_62_1
e_1_2_14_24_1
e_1_2_14_204_1
e_1_2_14_227_1
e_1_2_14_276_1
e_1_2_14_299_1
e_1_2_14_47_1
e_1_2_14_230_1
e_1_2_14_253_1
e_1_2_14_193_1
e_1_2_14_170_1
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_302_1
e_1_2_14_155_1
e_1_2_14_325_1
e_1_2_14_178_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_301_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_264_1
e_1_2_14_215_1
e_1_2_14_238_1
e_1_2_14_287_1
e_1_2_14_241_1
e_1_2_14_181_1
e_1_2_14_120_1
e_1_2_14_143_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_313_1
e_1_2_14_166_1
e_1_2_14_189_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_312_1
e_1_2_14_290_1
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_275_1
e_1_2_14_203_1
e_1_2_14_249_1
e_1_2_14_298_1
e_1_2_14_69_1
e_1_2_14_226_1
e_1_2_14_252_1
e_1_2_14_192_1
e_1_2_14_131_1
e_1_2_14_154_1
e_1_2_14_309_1
e_1_2_14_324_1
e_1_2_14_177_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_282_1
e_1_2_14_218_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_267_1
e_1_2_14_37_1
e_1_2_14_221_1
e_1_2_14_244_1
e_1_2_14_161_1
e_1_2_14_184_1
e_1_2_14_123_1
e_1_2_14_169_1
e_1_2_14_105_1
e_1_2_14_146_1
e_1_2_14_316_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_270_1
e_1_2_14_293_1
e_1_2_14_229_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_278_1
e_1_2_14_26_1
e_1_2_14_232_1
e_1_2_14_255_1
e_1_2_14_172_1
e_1_2_14_304_1
e_1_2_14_195_1
e_1_2_14_117_1
e_1_2_14_134_1
e_1_2_14_157_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_281_1
e_1_2_14_13_1
e_1_2_14_266_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_217_1
e_1_2_14_289_1
e_1_2_14_243_1
e_1_2_14_160_1
e_1_2_14_183_1
e_1_2_14_220_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_145_1
e_1_2_14_168_1
e_1_2_14_106_1
e_1_2_14_315_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_292_1
e_1_2_14_228_1
e_1_2_14_277_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_205_1
e_1_2_14_254_1
e_1_2_14_171_1
e_1_2_14_194_1
e_1_2_14_231_1
e_1_2_14_303_1
e_1_2_14_118_1
e_1_2_14_133_1
e_1_2_14_156_1
e_1_2_14_179_1
e_1_2_14_114_1
e_1_2_14_137_1
e_1_2_14_321_1
e_1_2_14_31_1
e_1_2_14_92_1
e_1_2_14_261_1
e_1_2_14_284_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_200_1
e_1_2_14_223_1
e_1_2_14_246_1
e_1_2_14_140_1
e_1_2_14_186_1
e_1_2_14_318_1
e_1_2_14_163_1
e_1_2_14_125_1
e_1_2_14_103_1
e_1_2_14_148_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_81_1
e_1_2_14_208_1
e_1_2_14_272_1
e_1_2_14_295_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_89_1
e_1_2_14_211_1
e_1_2_14_234_1
e_1_2_14_257_1
e_1_2_14_269_1
e_1_2_14_151_1
e_1_2_14_197_1
e_1_2_14_174_1
e_1_2_14_115_1
e_1_2_14_136_1
e_1_2_14_306_1
e_1_2_14_320_1
e_1_2_14_159_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
Pavan‐Kymar A. (e_1_2_14_206_1) 2015; 2
e_1_2_14_260_1
e_1_2_14_219_1
e_1_2_14_283_1
e_1_2_14_15_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_268_1
e_1_2_14_245_1
e_1_2_14_222_1
e_1_2_14_317_1
e_1_2_14_162_1
e_1_2_14_185_1
e_1_2_14_124_1
e_1_2_14_147_1
e_1_2_14_104_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
e_1_2_14_271_1
e_1_2_14_207_1
e_1_2_14_294_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_279_1
e_1_2_14_210_1
e_1_2_14_256_1
e_1_2_14_233_1
e_1_2_14_150_1
e_1_2_14_305_1
e_1_2_14_173_1
e_1_2_14_196_1
e_1_2_14_116_1
e_1_2_14_135_1
e_1_2_14_158_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_139_1
e_1_2_14_323_1
e_1_2_14_300_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_263_1
e_1_2_14_286_1
e_1_2_14_33_1
e_1_2_14_214_1
e_1_2_14_79_1
e_1_2_14_237_1
Taberlet P. (e_1_2_14_265_1) 2018
e_1_2_14_202_1
e_1_2_14_180_1
e_1_2_14_240_1
e_1_2_14_165_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_142_1
e_1_2_14_188_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_311_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_274_1
e_1_2_14_297_1
e_1_2_14_22_1
e_1_2_14_225_1
e_1_2_14_248_1
e_1_2_14_19_1
e_1_2_14_213_1
e_1_2_14_251_1
e_1_2_14_191_1
e_1_2_14_130_1
e_1_2_14_176_1
e_1_2_14_153_1
e_1_2_14_308_1
e_1_2_14_199_1
e_1_2_14_113_1
e_1_2_14_138_1
e_1_2_14_322_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_262_1
e_1_2_14_32_1
e_1_2_14_55_1
Sommer R. S. (e_1_2_14_258_1) 2019; 69
e_1_2_14_285_1
e_1_2_14_17_1
e_1_2_14_78_1
e_1_2_14_236_1
e_1_2_14_259_1
e_1_2_14_224_1
e_1_2_14_29_1
e_1_2_14_201_1
e_1_2_14_141_1
e_1_2_14_164_1
e_1_2_14_187_1
e_1_2_14_319_1
e_1_2_14_9_1
e_1_2_14_126_1
e_1_2_14_149_1
Ushio M. (e_1_2_14_291_1) 2018; 2
e_1_2_14_102_1
e_1_2_14_310_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_273_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_209_1
e_1_2_14_296_1
e_1_2_14_247_1
e_1_2_14_190_1
e_1_2_14_18_1
e_1_2_14_235_1
e_1_2_14_212_1
e_1_2_14_250_1
Bonar S. A. (e_1_2_14_38_1) 2009
e_1_2_14_152_1
e_1_2_14_175_1
e_1_2_14_198_1
e_1_2_14_307_1
References_xml – volume: 15
  start-page: 543
  year: 2015
  end-page: 556
  article-title: Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data
  publication-title: Molecular Ecology Resources
– volume: 146
  start-page: 99
  year: 2017
  end-page: 111
  article-title: Efficacy of environmental DNA to detect and quantify Brook trout populations in headwater streams of the Adirondack Mountains, New York
  publication-title: Transactions of the American Fisheries Society
– volume: 21
  start-page: 1697
  year: 2021
  end-page: 1704
  article-title: eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA sequences exploiting Nextflow and singularity
  publication-title: Molecular Ecology Resources
– volume: 702
  start-page: 134704
  year: 2020
  article-title: eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River estuary compared to bottom trawling
  publication-title: Science of the Total Environment
– volume: 3
  start-page: 1113
  year: 2021
  end-page: 1127
  article-title: Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems
  publication-title: Environmental DNA
– volume: 21
  start-page: 1931
  year: 2012
  end-page: 1950
  article-title: Who is eating what: Diet assessment using next generation sequencing
  publication-title: Molecular Ecology
– volume: 30
  start-page: 3068
  year: 2021
  end-page: 3082
  article-title: The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling
  publication-title: Molecular Ecology
– volume: 19
  start-page: 751
  year: 2018
  end-page: 768
  article-title: The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries
  publication-title: Fish and Fisheries
– volume: 1
  start-page: 4
  year: 2017
  article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA
  publication-title: Nature Ecology & Evolution
– volume: 1
  start-page: 185
  year: 2018
  article-title: Persisitence of environmental DNA in marine systems
  publication-title: Communications Biology
– volume: 49
  start-page: 209
  year: 2018
  end-page: 230
  article-title: Uses and misuses of environmental DNA in biodiversity science and conservation
  publication-title: Annual Review of Ecology Evolution and Systematics
– volume: 53
  start-page: 6616
  year: 2019
  end-page: 6631
  article-title: New high‐tech flexible networks for the monitoring of deep‐sea ecosystems
  publication-title: Environmental Science & Technology
– volume: 61
  start-page: 236
  year: 2010
  end-page: 252
  article-title: Observational methods used in marine spatial monitoring of fishes and associated habitats: A review
  publication-title: Marine and Freshwater Research
– volume: 16
  start-page: 123
  year: 2016
  end-page: 137
  article-title: Molecular prey identification in central European piscivores
  publication-title: Molecular Ecology Resources
– volume: 29
  start-page: 1069
  year: 2020
  end-page: 1086
  article-title: eDNA metabarcoding survey reveals fine‐scale coral reef community variation across a remote, tropical Island ecosystem
  publication-title: Molecular Ecology
– volume: 20
  start-page: 457
  year: 2020
  end-page: 467
  article-title: Environmental DNA facilitates accurate, inexpensive, and multiyear population estimates of millions of anadromous fish
  publication-title: Molecular Ecology Resources
– volume: 790
  start-page: 148054
  year: 2021
  article-title: Impacts of large and small barriers on fish assemblage composition assessed using environmental DNA metabarcoding
  publication-title: Science of the Total Environment
– volume: 51
  start-page: 1450
  year: 2014
  end-page: 1459
  article-title: The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 6.1
  year: 2022
  end-page: 6.25
  article-title: Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities
  publication-title: Annual Review of Marine Sciences
– volume: 29
  start-page: 4882
  year: 2020
  end-page: 4897
  article-title: Pan‐regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding autonomous reef monitoring structures
  publication-title: Molecular Ecology
– volume: 25
  start-page: 1423
  year: 2016
  end-page: 1428
  article-title: From barcodes to genomes: Extending the concept of DNA barcoding
  publication-title: Molecular Ecology
– volume: 9
  year: 2014
  article-title: Transport distance of invertebrate environmental DNA in a natural river
  publication-title: PLoS One
– volume: 18
  start-page: 940
  year: 2018
  end-page: 952
  article-title: Towards robust and repeatable sampling methods in eDNA‐based studies
  publication-title: Molecular Ecology Resources
– volume: 29
  start-page: R395
  year: 2019
  end-page: R402
  article-title: Sponges as natural environmental DNA samplers
  publication-title: Current Biology
– volume: 24
  start-page: 604
  year: 2014
  end-page: 615
  article-title: Epigenetic modification and inheritance in sexual reversal of fish
  publication-title: Genome Research
– volume: 22
  start-page: 1262
  year: 2022
  end-page: 1273
  article-title: Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance
  publication-title: Molecular Ecology Resources
– volume: 78
  start-page: 422
  year: 2021
  end-page: 432
  article-title: It's complicated … environmental DNA as a predictor of trout and char abundance in streams
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 125
  start-page: 107605
  year: 2021
  article-title: Assessment of sea lamprey ( ) diet using DNA metabarcoding of feces
  publication-title: Ecological Indicators
– volume: 28
  start-page: 407
  year: 2019
  end-page: 419
  article-title: The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative
  publication-title: Molecular Ecology
– volume: 12
  start-page: 1701
  year: 2021
  article-title: Threats of global warming to the world's freshwater fishes
  publication-title: Nature Communications
– volume: 115
  start-page: 11724
  year: 2018
  end-page: 11729
  article-title: Estimating species distribution and abundance in river networks using environmental DNA
  publication-title: Proceedings of the National Academy of Sciences of The United States of America
– volume: 36
  start-page: 662
  year: 2016
  end-page: 667
  article-title: The overlooked fact: Fundamental need for spike‐in control for virtually all genome‐wide analyses
  publication-title: Molecular and Cellular Biology
– volume: 61
  start-page: 1
  year: 1992
  end-page: 10
  article-title: Conservation evaluation and phylogenetic diversity
  publication-title: Biological Conservation
– volume: 16
  start-page: 673
  year: 2016
  end-page: 685
  article-title: Statistical approaches to account for false‐positive errors in environmental DNA samples
  publication-title: Molecular Ecology Resources
– volume: 339
  start-page: 277
  year: 2013
  end-page: 278
  article-title: Essential biodiversity variables
  publication-title: Science
– volume: 58
  start-page: 403
  year: 2008
  end-page: 414
  article-title: Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation
  publication-title: Bioscience
– volume: 126
  start-page: 107698
  year: 2021
  article-title: Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats
  publication-title: Ecological Indicators
– volume: 220
  start-page: 1
  year: 2018
  end-page: 11
  article-title: Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales
  publication-title: Biological Conservation
– volume: 8
  start-page: 646
  year: 2017
  end-page: 655
  article-title: An environmental DNA‐based method for monitoring spawning activity: A case study, using the endangered Macquarie perch ( )
  publication-title: Methods in Ecology and Evolution
– volume: 62
  start-page: 147
  year: 2016
  end-page: 153
  article-title: The use of environmental DNA of fishes as an efficient method of determining habitat connectivity
  publication-title: Ecological Indicators
– volume: 11
  start-page: 3585
  year: 2020
  article-title: Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems
  publication-title: Nature Communications
– volume: 8
  start-page: 640527
  year: 2021
  article-title: Fieldable environmental DNA sequencing to assess jellyfish biodiversity in nearshore waters of the Florida keys, United States
  publication-title: Frontiers in Marine Science
– volume: 70
  start-page: 522
  year: 2013
  end-page: 526
  article-title: Detection of Asian carp DNA as part of a Great Lakes basin‐wide surveillance program
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 54
  start-page: 11961
  year: 2020
  end-page: 11970
  article-title: Design and validation of passive environmental DNA samplers using granular activated carbon and montmorillonite clay
  publication-title: Environmental Science & Technology
– volume: 28
  start-page: 420
  year: 2019
  end-page: 430
  article-title: How quantitative is metabarcoding: A meta‐analytical approach
  publication-title: Molecular Ecology
– volume: 3
  start-page: 492
  year: 2021
  end-page: 514
  article-title: Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes
  publication-title: Environmental DNA
– volume: 9
  start-page: 8736
  year: 2019
  end-page: 8748
  article-title: Local parasite pressures and host genotype modulate epigenetic diversity in a mixed‐mating fish
  publication-title: Ecology and Evolution
– volume: 14
  year: 2019
  article-title: Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods
  publication-title: PLoS One
– volume: 36
  start-page: 103
  year: 2014
  end-page: 115
  article-title: Decrease in cytosine methylation at CpG Island shores and increase in DNA fragmentation during zebrafish aging
  publication-title: Age
– volume: 16
  start-page: 415
  year: 2016
  end-page: 422
  article-title: A novel environmental DNA approach to quantify the cryptic invasion of non‐native genotypes
  publication-title: Molecular Ecology Resources
– volume: 371
  start-page: 835
  year: 2021
  end-page: 838
  article-title: Human impacts on global freshwater fish biodiversity
  publication-title: Science
– volume: 13
  year: 2018
  article-title: Shedding light on eDNA: Neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA‐based detection of aquatic organisms
  publication-title: PLoS One
– volume: 21
  start-page: 1056
  year: 2021
  end-page: 1067
  article-title: Elucidating shark diets with DNA metabarcoding from cloacal swabs
  publication-title: Molecular Ecology Resources
– volume: 85
  start-page: 327
  year: 2019
  end-page: 337
  article-title: Dispersion and degradation of environmental DNA from caged fish in a marine environment
  publication-title: Fisheries Science
– volume: 34
  start-page: 666
  year: 2018
  end-page: 681
  article-title: The third revolution in sequencing technology
  publication-title: Trends in Genetics
– volume: 8
  start-page: 668822
  year: 2021
  article-title: Forensics meets ecology—Environmental DNA offers new capabilities for marine ecosystem and fisheries research
  publication-title: Frontiers in Marine Science
– volume: 21
  start-page: 453
  year: 2011
  end-page: 463
  article-title: Poverty, sustainability and human wellbeing: A social wellbeing approach to the global fisheries crisis
  publication-title: Global Environmental Change
– volume: 53
  start-page: 1148
  year: 2016
  end-page: 1157
  article-title: Quantifying relative fish abundance with eDNA: A promising tool for fisheries management
  publication-title: Journal of Applied Ecology
– volume: 7
  year: 2012
  article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples
  publication-title: PLoS One
– volume: 5
  start-page: 676
  year: 2014
  end-page: 684
  article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA
  publication-title: Methods in Ecology and Evolution
– volume: 58
  start-page: 63
  year: 2018
  end-page: 99
– volume: 7
  start-page: 355
  year: 2007
  end-page: 364
  article-title: BOLD: The barcode of life data system
  publication-title: Molecular Ecology Notes
– volume: 6
  year: 2011
  article-title: Persistence of environmental DNA in freshwater ecosystems
  publication-title: PLoS One
– volume: 25
  start-page: 929
  year: 2016
  end-page: 942
  article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding
  publication-title: Molecular Ecology
– volume: 79
  start-page: 783
  year: 2017
  end-page: 801
  article-title: Functional ecology of fish: Current approaches and future challenges
  publication-title: Aquatic Sciences
– volume: 22
  start-page: 1274
  year: 2022
  end-page: 1283
  article-title: Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach
  publication-title: Molecular Ecology Resources
– volume: 183
  start-page: 19
  year: 2015
  end-page: 28
  article-title: Using eDNA to develop a national citizen science‐based monitoring programme for the great crested newt ( )
  publication-title: Biological Conservation
– volume: 14
  year: 2019
  article-title: The effect of bivalve filtration on eDNA‐based detection of aquatic organisms
  publication-title: PLoS One
– volume: 19
  start-page: 597
  year: 2019
  end-page: 608
  article-title: Environmental DNA for the enumeration and management of Pacific salmon
  publication-title: Molecular Ecology Resources
– volume: 20
  start-page: 242
  year: 2020
  end-page: 255
  article-title: Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes
  publication-title: Molecular Ecology Resources
– volume: 10
  start-page: 1128
  year: 2019
  end-page: 1135
  article-title: A rapid environmental DNA method for detecting white sharks in the open ocean
  publication-title: Methods in Ecology and Evolution
– volume: 3
  start-page: 14
  year: 2021
  end-page: 21
  article-title: Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates
  publication-title: Environmental DNA
– volume: 7
  start-page: 8515
  year: 2017
  end-page: 8522
  article-title: Distinct seasonal migration patterns of Japanese native and non‐native genotypes of common carp estimated by environmental DNA
  publication-title: Ecology and Evolution
– volume: 62
  start-page: 30
  year: 2017
  end-page: 39
  article-title: Environmental DNA analysis for estimating the abundance and biomass of stream fish
  publication-title: Freshwater Biology
– volume: 118
  year: 2021
  article-title: Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide‐rich springs
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 183
  start-page: 85
  year: 2015
  end-page: 92
  article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms
  publication-title: Biological Conservation
– volume: 5
  start-page: 245
  year: 2002
  end-page: 249
  article-title: Declines in the numbers of amateur and professional taxonomists: Implications for conservation
  publication-title: Animal Conservation
– volume: 317
  start-page: 111
  year: 2007
  end-page: 114
  article-title: Ancient biomolecules from deep ice cores reveal a forested southern Greenland
  publication-title: Science
– volume: 3
  start-page: 699
  year: 2021
  end-page: 705
  article-title: Making environmental DNA (eDNA) biodiversity records globally accessible
  publication-title: Environmental DNA
– volume: 9
  year: 2014
  article-title: The release rate of environmental DNA from juvenile and adult fish
  publication-title: PLoS One
– year: 2022
  article-title: Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions
  publication-title: Molecular Ecology Resources
– volume: 126
  start-page: 131
  year: 2005
  end-page: 140
  article-title: Genetics and extinction
  publication-title: Biological Conservation
– volume: 11
  start-page: 14439
  year: 2021
  article-title: Environmental DNA reveals the fine‐grained and hierarchical spatial structure of kelp forest fish communities
  publication-title: Scientific Reports
– volume: 7
  start-page: 5065
  year: 2017
  article-title: Controls on eDNA movement in streams: Transport, retention, and resuspension
  publication-title: Scientific Reports
– volume: 46
  year: 2008
  article-title: Stratification of lakes
  publication-title: Reviews of Geophysics
– volume: 30
  start-page: 685
  year: 2021
  end-page: 697
  article-title: Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples
  publication-title: Molecular Ecology
– volume: 1
  start-page: 238
  year: 2019
  end-page: 250
  article-title: Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding
  publication-title: Environmental DNA
– volume: 16
  start-page: 604
  year: 2016
  end-page: 607
  article-title: How to limit false positives in environmental DNA and metabarcoding?
  publication-title: Molecular Ecology Resources
– volume: 61
  start-page: 229
  year: 2002
  end-page: 250
  article-title: Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future
  publication-title: Journal of Fish Biology
– volume: 59
  start-page: 603
  year: 2016
  end-page: 628
  article-title: The use of DNA barcodes in food web construction—Terrestrial and aquatic ecologists unite!
  publication-title: Genome
– volume: 20
  start-page: 1323
  year: 2020
  end-page: 1332
  article-title: Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis
  publication-title: Molecular Ecology Resources
– volume: 26
  start-page: 5872
  year: 2017
  end-page: 5895
  article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities
  publication-title: Molecular Ecology
– volume: 22
  start-page: 822
  year: 2021
  end-page: 833
  article-title: Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs
  publication-title: Fish and Fisheries
– year: 2009
– volume: 4
  start-page: 271
  year: 2022
  end-page: 283
  article-title: Linking the state of environmental DNA to its application for biomonitoring and stock assessment: Targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes
  publication-title: Environmental DNA
– volume: 16
  year: 2021
  article-title: eDNA captures depth partitioning in a kelp forest ecosystem
  publication-title: PLoS One
– volume: 98
  start-page: 354
  year: 2021
  end-page: 366
  article-title: The future of fish‐based ecological assessment of European rivers: From traditional EU water framework directive compliant methods to eDNA metabarcoding‐based approaches
  publication-title: Journal of Fish Biology
– volume: 12
  year: 2017
  article-title: Application of stochastic labeling with random‐sequence barcodes for simultaneous quantification and sequencing of environmental 16S rRNA genes
  publication-title: PLoS One
– volume: 11
  start-page: 1609
  year: 2020
  end-page: 1625
  article-title: A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish
  publication-title: Methods in Ecology and Evolution
– volume: 1
  start-page: 5
  year: 2019
  end-page: 13
  article-title: Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature
  publication-title: Environmental DNA
– volume: 13
  start-page: 988
  year: 2018
  end-page: 1011
  article-title: Dynamic epimarks in sex‐related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination
  publication-title: Epigenetics
– volume: 286
  start-page: 20191409
  year: 2019
  article-title: Predicting the fate of eDNA in the environment and implications for studying biodiversity
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 98
  start-page: 341
  year: 2021
  end-page: 353
  article-title: Can we manage fisheries with the inherent uncertainty from eDNA
  publication-title: Journal of Fish Biology
– year: 2021
– volume: 332
  start-page: 1079
  year: 2011
  end-page: 1082
  article-title: Early warnings of regime shifts: A whole‐ecosystem experiment
  publication-title: Science
– volume: 13
  start-page: 245
  year: 2020
  end-page: 262
  article-title: Population‐level inferences from environmental DNA‐current status and future perspectives
  publication-title: Evolutionary Applications
– volume: 21
  start-page: 30
  year: 2021
  end-page: 43
  article-title: The quest for absolute abundance: The use of internal standards for DNA‐based community ecology
  publication-title: Molecular Ecology Resources
– volume: 30
  start-page: 2937
  year: 2021
  end-page: 2958
  article-title: Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap
  publication-title: Molecular Ecology
– volume: 33
  start-page: 372
  year: 2008
  end-page: 407
  article-title: Conservation status of imperiled north American freshwater and diadromous fishes
  publication-title: Fisheries
– volume: 2
  start-page: 422
  year: 2010
  end-page: 430
  article-title: Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function
  publication-title: Current Opinion in Environmental Sustainability
– volume: 10
  start-page: 96
  year: 2010
  end-page: 108
  article-title: A PCR‐based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces
  publication-title: Molecular Ecology Resources
– volume: 30
  start-page: 3057
  year: 2021
  end-page: 3067
  article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling
  publication-title: Molecular Ecology
– volume: 69
  start-page: 83
  year: 2019
  end-page: 92
  article-title: Preliminary results on the molecular study of fish‐eating by 'trawling Myotis' bat species in Europe
  publication-title: Vertebrate Zoology
– volume: 20
  start-page: 29
  year: 2020
  end-page: 39
  article-title: A practical guide to sample preservation and pre‐PCR processing of aquatic environmental DNA
  publication-title: Molecular Ecology Resources
– volume: 108
  start-page: 9026
  year: 2011
  end-page: 9031
  article-title: Counting individual DNA molecules by the stochastic attachment of diverse labels
  publication-title: Proceedings of National Academy of Sciences of The United States of America
– volume: 74
  start-page: 2030
  year: 2017
  end-page: 2034
  article-title: At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 4
  start-page: 139
  year: 2012
  end-page: 146
  article-title: Building a global observing system for biodiversity
  publication-title: Current Opinion in Environmental Sustainability
– volume: 164
  start-page: 112
  year: 2017
  article-title: Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: A case study of devil ray at seamounts
  publication-title: Marine Biology
– volume: 11
  start-page: 254
  year: 2020
  article-title: Environmental DNA reveals seasonal shifts and potential interactions in a marine community
  publication-title: Nature Communications
– volume: 48
  start-page: 1819
  year: 2014
  end-page: 1827
  article-title: Environmental conditions influence eDNA persistence in aquatic systems
  publication-title: Environmental Science & Technology
– volume: 1
  start-page: 99
  year: 2019
  end-page: 108
  article-title: The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection
  publication-title: Environmental DNA
– volume: 22
  start-page: 56
  year: 2022
  end-page: 65
  article-title: Individual haplotyping of whale sharks from seawater environmental DNA
  publication-title: Molecular Ecology Resources
– volume: 97
  start-page: 444
  year: 2020
  end-page: 452
  article-title: Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long‐term electrofishing survey
  publication-title: Journal of Fish Biology
– volume: 11
  start-page: 434
  year: 2010
  article-title: An approach for the evaluation of DNA barcodes
  publication-title: BMC Genomics
– volume: 43
  start-page: 70
  year: 2006
  end-page: 80
  article-title: Assessing river biotic condition at a continental scale: A European approach using functional metrics and fish assemblages
  publication-title: Journal of Applied Ecology
– volume: 35
  start-page: 1944
  year: 2021
  end-page: 1956
  article-title: Use of environmental DNA in assessment of fish functional and phylogenetic diversity
  publication-title: Conservation Biology
– volume: 11
  year: 2016
  article-title: Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system
  publication-title: PLoS One
– volume: 9
  year: 2014
  article-title: Using environmental DNA to census marine fishes in a large mesocosm
  publication-title: PLoS One
– volume: 11
  start-page: 8281
  year: 2021
  end-page: 8294
  article-title: Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks
  publication-title: Ecology and Evolution
– volume: 9
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Assessing environmental DNA detection in controlled lentic systems
  publication-title: PLoS One
– volume: 9
  start-page: 12133
  year: 2019
  article-title: Understanding PCR processes to draw meaningful conclusions from environmental DNA studies
  publication-title: Scientific Reports
– volume: 55
  start-page: 101033
  year: 2020
  article-title: Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies
  publication-title: Ecological Informatics
– volume: 30
  start-page: 3097
  year: 2021
  end-page: 3110
  article-title: Monitoring of spatiotemporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA
  publication-title: Molecular Ecology
– volume: 3
  start-page: 837
  year: 2021
  end-page: 849
  article-title: eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems
  publication-title: Environmental DNA
– volume: 9
  start-page: 3085
  year: 2019
  article-title: Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers
  publication-title: Scientific Reports
– volume: 1
  start-page: 4
  year: 2018
  article-title: Acidity promotes degradation of multi‐species environmental DNA in lotic mesocosms
  publication-title: Communications Biology
– volume: 21
  start-page: 2324
  year: 2021
  end-page: 2332
  article-title: Nonlethal age estimation of three threatened fish species using DNA methylation: Australian lungfish, Murray cod and Mary River cod
  publication-title: Molecular Ecology Resources
– volume: 30
  year: 2020
  article-title: From metabarcoding to metaphylogeography: Separating the wheat from the chaff
  publication-title: Ecological Applications
– volume: 90
  start-page: 2214
  year: 2017
  end-page: 2219
  article-title: Application of DNA metabarcoding on faeces to identify European catfish diet
  publication-title: Journal of Fish Biology
– volume: 7
  year: 2012
  article-title: Estimation of fish biomass using environmental DNA
  publication-title: PLoS One
– volume: 45
  start-page: 43
  year: 2017
  end-page: 50
  article-title: Molecular‐biological sensing in aquatic environments: Recent developments and emerging capabilities
  publication-title: Current Opinion in Biotechnology
– volume: 14
  year: 2019
  article-title: Using eDNA to biomonitor the fish community in a tropical oligotrophic lake
  publication-title: PLoS One
– volume: 183
  start-page: 4
  year: 2015
  end-page: 18
  article-title: Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity
  publication-title: Biological Conservation
– volume: 30
  start-page: 3111
  year: 2021
  end-page: 3126
  article-title: Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams
  publication-title: Molecular Ecology
– volume: 30
  start-page: 3127
  year: 2021
  end-page: 3139
  article-title: Environmental DNA effectively captures functional diversity of coastal fish communities
  publication-title: Molecular Ecology
– volume: 42
  start-page: 90
  year: 2017
  end-page: 99
  article-title: Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing
  publication-title: Fisheries
– volume: 8
  year: 2013
  article-title: Using environmental DNA to estimate the distribution of an invasive fish species in ponds
  publication-title: PLoS One
– volume: 135
  start-page: 105307
  year: 2020
  article-title: Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals
  publication-title: Environment International
– volume: 9
  start-page: 553
  year: 2019
  end-page: 567
  article-title: Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey L
  publication-title: Ecology and Evolution
– volume: 197
  start-page: 60
  year: 2018
  end-page: 66
  article-title: Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool
  publication-title: Fisheries Research
– volume: 7
  start-page: 40368
  year: 2017
  article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea
  publication-title: Scientific Reports
– volume: 21
  start-page: 1789
  year: 2012
  end-page: 1793
  article-title: Environmental DNA
  publication-title: Molecular Ecology
– volume: 86
  start-page: 465
  year: 2020
  end-page: 471
  article-title: The effect of temperature on environmental DNA degradation of Japanese eel
  publication-title: Fisheries Science
– volume: 56
  start-page: 10798
  year: 2022
  end-page: 10807
  article-title: A comparative evaluation of common materials as passive samplers of environmental DNA
  publication-title: Environmental Science and Technology
– volume: 60
  start-page: 358
  year: 2017
  end-page: 374
  article-title: The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA
  publication-title: Genome
– volume: 67
  start-page: 1333
  year: 2022
  end-page: 1343
  article-title: Meta‐analyses of environmental DNA downstream transport and deposition in relation to hydrogeography in riverine environments
  publication-title: Freshwater Biology.
– volume: 29
  start-page: 358
  year: 2014
  end-page: 367
  article-title: Environmental DNA for wildlife biology and biodiversity monitoring
  publication-title: Trends in Ecology & Evolution
– volume: 183
  start-page: 77
  year: 2015
  end-page: 84
  article-title: Quantification of eDNA shedding rates from invasive bighead carp and silver carp
  publication-title: Biological Conservation
– volume: 486
  start-page: 52
  year: 2012
  end-page: 58
  article-title: Approaching a state shift in Earth's biosphere
  publication-title: Nature
– volume: 347
  start-page: 247
  year: 2015
  end-page: 254
  article-title: Marine defaunation: Animal loss in the global ocean
  publication-title: Science
– volume: 94
  start-page: 849
  year: 2019
  end-page: 873
  article-title: Emerging threats and persistent conservation challenges for freshwater biodiversity
  publication-title: Biological Reviews
– volume: 52
  start-page: 8530
  year: 2018
  end-page: 8537
  article-title: Water flow and biofilm cover influence environmental DNA detection in recirculating streams
  publication-title: Environmental Science & Technology
– volume: 63
  start-page: 569
  year: 2018
  end-page: 580
  article-title: Comparing local‐ and regional‐scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods
  publication-title: Freshwater Biology
– volume: 166
  start-page: 106
  year: 2019
  article-title: Metabarcoding analysis of the Pacific harbor seal diet in Mexico
  publication-title: Marine Biology
– year: 2022
  article-title: Systematic review and meta‐analysis: Water type and temperature affect environmental DNA decay
  publication-title: Molecular Ecology Resources
– volume: 21
  start-page: 2045
  year: 2012
  end-page: 2050
  article-title: Towards next‐generation biodiversity assessment using DNA metabarcoding
  publication-title: Molecular Ecology
– volume: 4
  year: 2020
  article-title: Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds
  publication-title: Metabarcoding and Metagenomics
– volume: 1
  start-page: 368
  year: 2019
  end-page: 394
  article-title: Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears
  publication-title: Environmental DNA
– volume: 17
  start-page: 523
  year: 2017
  end-page: 532
  article-title: Residual eDNA detection sensitivity assessed by quantitative real‐time PCR in a river ecosystem
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 535
  year: 2018
  end-page: 543
  article-title: Estimating species colonization dates using DNA in lake sediment
  publication-title: Methods in Ecology and Evolution
– volume: 16
  start-page: 1401
  year: 2016
  end-page: 1414
  article-title: Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions
  publication-title: Molecular Ecology Resources
– volume: 31
  start-page: 1820
  year: 2022
  end-page: 1835
  article-title: Meta‐analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment
  publication-title: Molecular Ecology
– volume: 7
  start-page: 605148
  year: 2020
  article-title: More than expected from old sponge samples: A natural sampler DNA metabarcoding assessment of marine fish diversity in Nha Trang Bay (Vietnam)
  publication-title: Frontiers in Marine Science
– volume: 49
  start-page: D92
  year: 2021
  end-page: D96
  article-title: GenBank
  publication-title: Nucleic Acids Research
– volume: 7
  start-page: 1299
  year: 2016
  end-page: 1307
  article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species
  publication-title: Methods in Ecology and Evolution
– volume: 9
  start-page: 1135
  year: 2019
  end-page: 1146
  article-title: Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution
  publication-title: Ecology and Evolution
– volume: 45
  start-page: 219
  year: 2009
  end-page: 235
  article-title: Extracellular DNA in soil and sediment: Fate and ecological relevance
  publication-title: Biology and Fertility of Soils
– volume: 14
  start-page: 109
  year: 2014
  end-page: 116
  article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian
  publication-title: Molecular Ecology Resources
– volume: 50
  start-page: 10456
  year: 2016
  end-page: 10464
  article-title: Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish
  publication-title: Environmental Science & Technology
– volume: 8
  start-page: 276
  year: 2020
  article-title: Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness
  publication-title: Frontiers in Ecology and Evolution
– volume: 6
  year: 2011
  article-title: Molecular detection of vertebrates in stream water: A demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders
  publication-title: PLoS One
– volume: 60
  start-page: 607
  year: 2009
  end-page: 609
  article-title: DNA evidence of whale sharks ( ) feeding on red crab ( ) larvae at Christmas Island, Australia
  publication-title: Marine and Freshwater Research
– volume: 31
  year: 2021
  article-title: Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining
  publication-title: Ecological Applications
– volume: 25
  start-page: 527
  year: 2016
  end-page: 541
  article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA
  publication-title: Molecular Ecology
– volume: 12
  year: 2017
  article-title: Application of environmental DNA to detect an endangered marine skate species in the wild
  publication-title: PLoS One
– volume: 56
  start-page: 5322
  year: 2022
  end-page: 5333
  article-title: The multiple states of environmental DNA and what is known about their persistence in aquatic environments
  publication-title: Environmental Science and Technology
– volume: 4
  start-page: 222
  year: 2022
  end-page: 238
  article-title: Environmental DNA in a global biodiversity hotspot: Lessons from coral reef fish diversity across the Indonesian archipelago
  publication-title: Environmental DNA
– volume: 21
  start-page: 2039
  year: 2012
  end-page: 2044
  article-title: Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing
  publication-title: Molecular Ecology
– volume: 20
  start-page: 65
  year: 1995
  end-page: 80
  article-title: The use of fish in ecological assessments
  publication-title: Australian Journal of Ecology
– volume: 3
  start-page: 8
  year: 2021
  end-page: 13
  article-title: An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols
  publication-title: Environmental DNA
– volume: 98
  start-page: 367
  year: 2021
  end-page: 382
  article-title: Fish as predators and prey: DNA‐based assessment of their role in food webs
  publication-title: Journal of Fish Biology
– volume: 21
  start-page: 1422
  year: 2021
  end-page: 1433
  article-title: Improving the reliability of eDNA data interpretation
  publication-title: Molecular Ecology Resources
– volume: 50
  start-page: 1859
  year: 2016
  end-page: 1867
  article-title: Effects of temperature and trophic state on degradation of environmental DNA in lake water
  publication-title: Environmental Science & Technology
– volume: 2
  start-page: 99
  year: 2020
  end-page: 111
  article-title: Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal
  publication-title: Environmental DNA
– volume: 13
  year: 2018
  article-title: Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby ( )
  publication-title: PLoS One
– volume: 12
  year: 2017
  article-title: Water temperature‐dependent degradation of environmental DNA and its relation to bacterial abundance
  publication-title: PLoS One
– volume: 11
  start-page: 609
  year: 2008
  end-page: 623
  article-title: Ecological consequences of genetic diversity
  publication-title: Ecology Letters
– volume: 8
  year: 2020
  article-title: The diet of otters ( ) on the Agri river system, one of the most important presence sites in Italy: A molecular approach
  publication-title: PeerJ
– volume: 32
  start-page: 477
  year: 2017
  end-page: 487
  article-title: Next‐generation global biomonitoring: Large‐scale, automated reconstruction of ecological networks
  publication-title: Trends in Ecology & Evolution
– volume: 11
  start-page: 4372
  year: 2021
  article-title: Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique
  publication-title: Scientific Reports
– volume: 47
  start-page: 509
  year: 2020
  end-page: 522
  article-title: Species in the faeces: DNA metabarcoding as a method to determine the diet of the endangered yellow‐eyed penguin
  publication-title: Wildlife Research
– volume: 30
  start-page: 3083
  year: 2021
  end-page: 3096
  article-title: Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes
  publication-title: Molecular Ecology
– volume: 7
  start-page: 604878
  year: 2021
  article-title: DNA methylation dynamics in Atlantic salmon ( ) challenged with high temperature and moderate hypoxia
  publication-title: Frontiers in Marine Science
– volume: 8
  start-page: 6714
  issue: 13
  year: 2018
  end-page: 6727
  article-title: Attracting common carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management
  publication-title: Ecology and Evolution
– volume: 138
  start-page: 192
  year: 2018
  end-page: 205
  article-title: Implementation options for DNA‐based identification into ecological status assessment under the European water framework directive
  publication-title: Water Research
– volume: 2
  start-page: 42
  year: 2020
  end-page: 52
  article-title: Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water
  publication-title: Environmental DNA
– volume: 52
  start-page: 6408
  year: 2018
  end-page: 6416
  article-title: Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA
  publication-title: Environmental Science & Technology
– volume: 21
  start-page: 2565
  year: 2021
  end-page: 2579
  article-title: Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 16262
  year: 2015
  end-page: 16276
  article-title: Zebrafish as a model to study the role of DNA methylation in environmental toxicology
  publication-title: Environmental Science and Pollution Research
– volume: 5
  year: 2017
  article-title: Spatial distribution of environmental DNA in a nearshore marine habitat
  publication-title: PeerJ
– volume: 678
  start-page: 499
  year: 2019
  end-page: 524
  article-title: DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap‐analysis and recommendations for future work
  publication-title: Science of the Total Environment
– volume: 50
  start-page: 85
  year: 2021
  end-page: 94
  article-title: Scientists' warning to humanity on the freshwater biodiversity crisis
  publication-title: Ambio
– volume: 10
  start-page: 13272
  year: 2020
  article-title: Remote, autonomous real‐time monitoring of environmental DNA from commercial fish
  publication-title: Scientific Reports
– volume: 74
  start-page: 1362
  year: 2017
  end-page: 1374
  article-title: Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering
  publication-title: Canadian Journal of Fisheries and Aquatic Sciences
– volume: 10
  start-page: 1985
  year: 2019
  end-page: 2001
  article-title: Non‐specific amplification compromises environmental DNA metabarcoding with COI
  publication-title: Methods in Ecology and Evolution
– volume: 34
  start-page: 2203
  year: 2017
  end-page: 2213
  article-title: Genome‐wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions
  publication-title: Molecular Biology and Evolution
– volume: 29
  start-page: 1996
  year: 2019
  end-page: 2009
  article-title: Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation
  publication-title: Aquatic Conservation‐Marine and Freshwater Ecosystems
– volume: 52
  start-page: 10562
  year: 2018
  end-page: 10570
  article-title: Simulating the advection and degradation of the environmental DNA of common carp along a river
  publication-title: Environmental Science & Technology
– volume: 86
  start-page: 939
  year: 2020
  end-page: 970
  article-title: MiFish metabarcoding: A high‐throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples
  publication-title: Fisheries Science
– volume: 183
  start-page: 1
  year: 2015
  end-page: 3
  article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
  publication-title: Biological Conservation
– volume: 8
  start-page: 10361
  year: 2018
  article-title: Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation
  publication-title: Scientific Reports
– volume: 37
  start-page: 1010
  year: 2017
  end-page: 1027
  article-title: Comparison of American fisheries society (AFS) standard fish sampling techniques and environmental DNA for characterizing fish communities in a large reservoir
  publication-title: North American Journal of Fisheries Management
– volume: 7
  start-page: 12240
  year: 2017
  article-title: Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment
  publication-title: Scientific Reports
– volume: 98
  start-page: 415
  year: 2021
  end-page: 425
  article-title: At Palmyra atoll, the fish‐community environmental DNA signal changes across habitats but not with tides
  publication-title: Journal of Fish Biology
– volume: 29
  start-page: 2521
  year: 2020
  end-page: 2534
  article-title: Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification
  publication-title: Molecular Ecology
– volume: 313
  start-page: 58
  year: 2006
  end-page: 61
  article-title: Global biodiversity conservation priorities
  publication-title: Science
– volume: 17
  start-page: e25
  year: 2017
  end-page: e33
  article-title: Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA
  publication-title: Molecular Ecology Resources
– volume: 1
  start-page: 26
  year: 2019
  end-page: 39
  article-title: Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake
  publication-title: Environmental DNA
– volume: 21
  start-page: 178
  year: 2006
  end-page: 185
  article-title: Rebuilding community ecology from functional traits
  publication-title: Trends in Ecology & Evolution
– volume: 2
  year: 2018
  article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing
  publication-title: Metabarcoding and Metagenomics
– volume: 117
  start-page: 268
  year: 2016
  end-page: 278
  article-title: Making sense of the relationships between ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon ( )
  publication-title: Heredity
– volume: 4
  start-page: 236
  year: 2021
  article-title: Passive eDNA collection enhances aquatic biodiversity analysis
  publication-title: Communications Biology
– volume: 27
  start-page: 1880
  year: 2021
  end-page: 1892
  article-title: GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding
  publication-title: Diversity and Distributions
– volume: 31
  start-page: 4817
  year: 2021
  end-page: 4823
  article-title: Disentangling tropicalization and deborealization in marine ecosystems under climate change
  publication-title: Current Biology
– volume: 20
  start-page: 387
  year: 2020
  end-page: 397
  article-title: A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass
  publication-title: Molecular Ecology Resources
– volume: 30
  start-page: 1120
  year: 2021
  end-page: 1135
  article-title: Connecting high‐throughput biodiversity inventories: Opportunities for a site‐based genomic framework for global integration and synthesis
  publication-title: Molecular Ecology
– volume: 4
  year: 2018
  article-title: Environmental DNA illuminates the dark diversity of sharks
  publication-title: Science Advances
– volume: 20
  start-page: 1248
  year: 2020
  end-page: 1258
  article-title: Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population
  publication-title: Molecular Ecology Resources
– volume: 183
  start-page: 93
  year: 2015
  end-page: 102
  article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water
  publication-title: Biological Conservation
– volume: 183
  start-page: 29
  year: 2015
  end-page: 37
  article-title: Characterizing the distribution of an endangered salmonid using environmental DNA analysis
  publication-title: Biological Conservation
– volume: 3
  start-page: 43
  year: 2021
  end-page: 54
  article-title: A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA
  publication-title: Environmental DNA
– volume: 197
  start-page: 131
  year: 2016
  end-page: 138
  article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system
  publication-title: Biological Conservation
– volume: 21
  start-page: 1558
  year: 2021
  end-page: 1574
  article-title: Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot
  publication-title: Molecular Ecology Resources
– volume: 11
  start-page: 296
  year: 2020
  article-title: Standards for methods utilizing environmental DNA for detection of fish species
  publication-title: Genes
– volume: 754
  start-page: 142096
  year: 2021
  article-title: Space‐time dynamics in monitoring neotropical fish communities using eDNA metabarcoding
  publication-title: Science of the Total Environment
– volume: 28
  start-page: 1857
  year: 2019
  end-page: 1862
  article-title: DNA metabarcoding‐need for robust experimental designs to draw sound ecological conclusions
  publication-title: Molecular Ecology
– volume: 12
  year: 2017
  article-title: Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding
  publication-title: PLoS One
– volume: 359
  start-page: 986
  year: 2018
  end-page: 987
  article-title: Seeking resilience in marine ecosystems
  publication-title: Science
– volume: 287
  start-page: 20200248
  year: 2020
  article-title: Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 755
  start-page: 142622
  year: 2021
  article-title: Methodology of fish eDNA and its applications in ecology and environment
  publication-title: Science of the Total Environment
– volume: 6
  start-page: 373
  year: 2019
  article-title: In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle
  publication-title: Frontiers in Marine Science
– volume: 19
  start-page: 1278
  year: 2019
  end-page: 1291
  article-title: DNA barcoding the ichthyofauna of the Yangtze River: Insights from the molecular inventory of a mega‐diverse temperate fauna
  publication-title: Molecular Ecology Resources
– volume: 17
  start-page: 313
  year: 2019
  end-page: 318
  article-title: Environmental DNA in lake sediment reveals biogeography of native genetic diversity
  publication-title: Frontiers in Ecology and the Environment
– volume: 11
  start-page: 19477
  year: 2021
  article-title: Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey
  publication-title: Scientific Reports
– volume: 797
  start-page: 149175
  year: 2021
  article-title: The particle size distribution of environmental DNA varies with species and degradation
  publication-title: Science of the Total Environment
– volume: 194
  start-page: 209
  year: 2016
  end-page: 216
  article-title: Understanding environmental DNA detection probabilities: A case study using a stream‐dwelling char
  publication-title: Biological Conservation
– year: 2018
– volume: 128
  start-page: 107796
  year: 2021
  article-title: Fish environmental RNA enables precise ecological surveys with high positive predictivity
  publication-title: Ecological Indicators
– volume: 7
  start-page: 14860
  year: 2017
  article-title: Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities
  publication-title: Scientific Reports
– volume: 8
  year: 2022
  article-title: Environmental DNA captures native and non‐native fish community variations across the lentic and lotic systems of a megacity
  publication-title: Science Advances
– volume: 510
  start-page: 31
  year: 2019
  end-page: 45
  article-title: Species‐specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea
  publication-title: Journal of Experimental Marine Biology and Ecology
– volume: 14
  year: 2019
  article-title: Invasion genetics of the silver carp across North America: Differentiation of fronts, introgression, and eDNA metabarcode detection
  publication-title: PLoS One
– volume: 96
  start-page: 145
  year: 2016
  end-page: 151
  article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing
  publication-title: Soil Biology and Biochemistry
– volume: 637
  start-page: 1295
  year: 2018
  end-page: 1310
  article-title: The future of biotic indices in the ecogenomic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems
  publication-title: Science of the Total Environment
– volume: 4
  start-page: 150
  year: 2011
  end-page: 157
  article-title: "sight‐unseen" detection of rare aquatic species using environmental DNA
  publication-title: Conservation Letters
– volume: 2
  start-page: 461
  year: 2019
  article-title: Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters
  publication-title: Communications Biology
– volume: 19
  start-page: 27
  year: 2019
  end-page: 46
  article-title: Unlocking biodiversity and conservation studies in high‐diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes
  publication-title: Molecular Ecology Resources
– volume: 15
  start-page: 266
  year: 2017
  end-page: 274
  article-title: Freshwater biomonitoring in the information age
  publication-title: Frontiers in Ecology and the Environment
– volume: 2
  start-page: 493
  year: 2020
  end-page: 504
  article-title: Maximizing fish detection with eDNA metabarcoding
  publication-title: Environmental DNA
– volume: 10
  start-page: 858
  year: 2019
  article-title: Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: Current uses and future directions
  publication-title: Genes
– volume: 183
  start-page: 46
  year: 2015
  end-page: 52
  article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples
  publication-title: Biological Conservation
– volume: 14
  year: 2019
  article-title: Nonlinear relationship between silver carp density and their eDNA concentration in a large river
  publication-title: PLoS One
– volume: 21
  start-page: 2546
  year: 2021
  end-page: 2564
  article-title: Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem
  publication-title: Molecular Ecology Resources
– volume: 9
  start-page: 134
  year: 2018
  end-page: 147
  article-title: Scrutinizing key steps for reliable metabarcoding of environmental samples
  publication-title: Methods in Ecology and Evolution
– volume: 11
  start-page: 2769
  year: 2021
  article-title: Environmental (e)RNA advances the reliability of eDNA by predicting its age
  publication-title: Scientific Reports
– volume: 14
  start-page: 347
  year: 2017
  end-page: 348
  article-title: Nanopore sequencing meets epigenetics
  publication-title: Nature Methods
– volume: 26
  start-page: 1107
  year: 2016
  end-page: 1119
  article-title: Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar ( )
  publication-title: Aquatic Conservation‐Marine and Freshwater Ecosystems
– volume: 98
  start-page: 1889
  year: 2015
  end-page: 1893
  article-title: Environmental DNA as an effective tool for detection of imperiled fishes
  publication-title: Environmental Biology of Fishes
– volume: 35
  start-page: 1553
  year: 2018
  end-page: 1555
  article-title: MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding
  publication-title: Molecular Biology and Evolution
– volume: 56
  start-page: 1232
  year: 2019
  end-page: 1244
  article-title: Ground‐truthing of a fish‐based environmental DNA metabarcoding method for assessing the quality of lakes
  publication-title: Journal of Applied Ecology
– volume: 14
  start-page: 1210
  year: 2014
  end-page: 1221
  article-title: Spatial heterogeneity in the Mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes
  publication-title: Molecular Ecology Resources
– volume: 36
  start-page: 7
  year: 2021
  end-page: 609
  article-title: Environmental RNA: A revolution in ecological resolution
  publication-title: Trends in Ecology & Evolution
– volume: 10
  start-page: 192
  year: 2019
  article-title: Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool?
  publication-title: Genes
– volume: 16
  start-page: 29
  year: 2016
  end-page: 41
  article-title: Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding
  publication-title: Molecular Ecology Resources
– volume: 6
  start-page: 21
  year: 1981
  end-page: 27
  article-title: Assessment of biotic integrity using fish communities
  publication-title: Fisheries
– volume: 10
  start-page: 5354
  year: 2020
  end-page: 5367
  article-title: Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs
  publication-title: Ecology and Evolution
– volume: 23
  start-page: 40
  year: 2014
  end-page: 51
  article-title: Global patterns of freshwater species diversity, threat and endemism
  publication-title: Global Ecology and Biogeography
– volume: 325
  start-page: 1215
  year: 2009
  end-page: 1216
  article-title: Threats to freshwater fish
  publication-title: Science
– volume: 10
  year: 2015
  article-title: Of paleo‐genes and perch: What if an “alien” is actually a native?
  publication-title: PLoS One
– volume: 23
  start-page: 619
  year: 2008
  end-page: 630
  article-title: Phylogenetic analysis of community assembly and structure over space and time
  publication-title: Trends in Ecology & Evolution
– volume: 2
  start-page: 505
  year: 2020
  end-page: 518
  article-title: Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA
  publication-title: Environmental DNA
– volume: 782
  start-page: 146891
  year: 2021
  article-title: Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring
  publication-title: Science of the Total Environment
– volume: 8
  start-page: 8697
  year: 2018
  end-page: 8712
  article-title: Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray‐Darling basin (Australia)
  publication-title: Ecology and Evolution
– volume: 22
  start-page: 841
  year: 2022
  end-page: 861
  article-title: Coming of age for COI metabarcoding of whole organism community DNA: Towards bioinformatic harmonisation
  publication-title: Molecular Ecology Resources
– volume: 364
  start-page: 1192
  year: 2019
  end-page: 1195
  article-title: The small world of global marine fisheries: The cross‐boundary consequences of larval dispersal
  publication-title: Science
– volume: 704
  start-page: 135314
  year: 2020
  article-title: Release and degradation of environmental DNA and RNA in a marine system
  publication-title: Science of the Total Environment
– volume: 10
  start-page: 1602
  year: 2020
  end-page: 1612
  article-title: Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems
  publication-title: Ecology and Evolution
– volume: 91
  start-page: 144
  year: 2017
  end-page: 174
  article-title: Comparison of nine different methods to assess fish communities in lentic flood‐plain habitats
  publication-title: Journal of Fish Biology
– volume: 11
  year: 2016
  article-title: Environmental DNA as a 'snapshot' of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, sea of Japan
  publication-title: PLoS One
– volume: 9
  start-page: 6074
  year: 2019
  article-title: Release of eDNA by different life history stages and during spawning activities of laboratory‐reared Japanese eels for interpretation of oceanic survey data
  publication-title: Scientific Reports
– volume: 37
  start-page: 148
  year: 2018
  end-page: 160
  article-title: Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic peninsula
  publication-title: Marine Genomics
– volume: 8
  start-page: 609973
  year: 2020
  article-title: The elephant in the lab (and field): Contamination in aquatic environmental DNA studies
  publication-title: Frontiers in Ecology and Evolution
– volume: 8
  start-page: 11964
  year: 2018
  end-page: 11974
  article-title: Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers
  publication-title: Ecology and Evolution
– volume: 4
  start-page: 9
  year: 2022
  end-page: 33
  article-title: Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys
  publication-title: Environmental DNA
– volume: 33
  start-page: 196
  year: 2019
  end-page: 205
  article-title: Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity
  publication-title: Conservation Biology
– volume: 99
  start-page: 1446
  year: 2021
  end-page: 1454
  article-title: Meta‐fish‐lib: A generalised, dynamic DNA reference library pipeline for metabarcoding of fishes
  publication-title: Journal of Fish Biology
– volume: 30
  start-page: 4970
  year: 2021
  end-page: 4990
  article-title: Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding
  publication-title: Molecular Ecology
– volume: 11
  year: 2016
  article-title: Environmental DNA from seawater samples correlate with trawl catches of subarctic, Deepwater fishes
  publication-title: PLoS One
– volume: 33
  start-page: 945
  year: 2018
  end-page: 957
  article-title: Environmental DNA time series in ecology
  publication-title: Trends in Ecology & Evolution
– volume: 9
  year: 2014
  article-title: The relationship between the distribution of common carp and their environmental DNA in a small lake
  publication-title: PLoS One
– volume: 22
  start-page: 1440
  year: 2022
  end-page: 1453
  article-title: Fish eDNA metabarcoding from aquatic biofilm samples: Methodological aspects
  publication-title: Molecular Ecology Resources
– volume: 300
  start-page: 791
  year: 2003
  end-page: 795
  article-title: Diverse plant and animal genetic records from Holocene and Pleistocene sediments
  publication-title: Science
– volume: 30
  start-page: 6531
  year: 2021
  end-page: 6550
  article-title: Integrating physiology and environmental dynamics to operationalize environmental DNA (eDNA) as a means to monitor freshwater macro‐organism abundance
  publication-title: Molecular Ecology
– volume: 356
  start-page: 270
  year: 2017
  end-page: 275
  article-title: Biodiversity losses and conservation responses in the Anthropocene
  publication-title: Science
– volume: 15
  start-page: 216
  year: 2015
  end-page: 227
  article-title: Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams
  publication-title: Molecular Ecology Resources
– volume: 2
  start-page: 111
  year: 2015
  article-title: DNA Metabarcoding: A new approach forrapid biodiversity assessment
  publication-title: Journal of Cell Science & Molecular Biology
– volume: 21
  start-page: 1490
  year: 2021
  end-page: 1503
  article-title: Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta‐analyses
  publication-title: Molecular Ecology Resources
– volume: 25
  start-page: 3101
  year: 2016
  end-page: 3119
  article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods
  publication-title: Molecular Ecology
– volume: 17
  year: 2019
  article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA
  publication-title: Global Ecology and Conservation
– volume: 17
  start-page: 1
  year: 2016
  end-page: 17
  article-title: The ecology of environmental DNA and implications for conservation genetics
  publication-title: Conservation Genetics
– volume: 3
  start-page: 55
  year: 2021
  end-page: 69
  article-title: Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation
  publication-title: Environmental DNA
– volume: 4
  start-page: 423
  year: 2008
  end-page: 425
  article-title: Species detection using environmental DNA from water samples
  publication-title: Biology Letters
– ident: e_1_2_14_69_1
  doi: 10.1016/j.gloenvcha.2011.01.003
– ident: e_1_2_14_93_1
  doi: 10.1186/1471-2164-11-434
– ident: e_1_2_14_94_1
  doi: 10.1098/rsbl.2008.0118
– ident: e_1_2_14_138_1
  doi: 10.1016/j.ecolind.2021.107605
– ident: e_1_2_14_208_1
  doi: 10.1111/mec.15692
– ident: e_1_2_14_116_1
  doi: 10.1098/rspb.2019.1409
– ident: e_1_2_14_18_1
  doi: 10.1111/1755-0998.12598
– ident: e_1_2_14_44_1
  doi: 10.1111/mec.15742
– ident: e_1_2_14_244_1
  doi: 10.1038/s42003-017-0005-3
– ident: e_1_2_14_78_1
  doi: 10.3897/mbmg.4.56959
– ident: e_1_2_14_219_1
  doi: 10.1111/jfb.14176
– ident: e_1_2_14_108_1
  doi: 10.1016/j.biocon.2014.11.040
– ident: e_1_2_14_159_1
  doi: 10.1111/1755‐0998.13627
– ident: e_1_2_14_245_1
  doi: 10.1101/gr.162172.113
– ident: e_1_2_14_261_1
  doi: 10.1111/cobi.13183
– ident: e_1_2_14_234_1
  doi: 10.1021/acs.est.6b03114
– ident: e_1_2_14_288_1
  doi: 10.1111/1755-0998.12460
– ident: e_1_2_14_150_1
  doi: 10.1139/cjfas-2017-0114
– ident: e_1_2_14_324_1
  doi: 10.1111/mec.15060
– ident: e_1_2_14_183_1
  doi: 10.3389/fevo.2020.00276
– ident: e_1_2_14_109_1
  doi: 10.1111/2041-210X.12595
– ident: e_1_2_14_144_1
  doi: 10.1111/mec.16364
– ident: e_1_2_14_216_1
  doi: 10.1111/j.1365-294X.2011.05403.x
– ident: e_1_2_14_91_1
  doi: 10.1016/0006-3207(92)91201-3
– ident: e_1_2_14_224_1
  doi: 10.1111/1365-2664.12306
– ident: e_1_2_14_87_1
  doi: 10.1016/j.fishres.2017.09.013
– ident: e_1_2_14_112_1
  doi: 10.1111/mec.13660
– ident: e_1_2_14_107_1
  doi: 10.1371/journal.pone.0022746
– ident: e_1_2_14_40_1
  doi: 10.1126/sciadv.aap9661
– ident: e_1_2_14_154_1
  doi: 10.1111/1755-0998.13107
– ident: e_1_2_14_80_1
  doi: 10.1038/s41467-019-14105-1
– ident: e_1_2_14_161_1
  doi: 10.1038/s41598-021-93859-5
– ident: e_1_2_14_241_1
  doi: 10.1016/j.cosust.2011.12.005
– ident: e_1_2_14_302_1
  doi: 10.1371/journal.pone.0178124
– ident: e_1_2_14_42_1
  doi: 10.1007/s00227-019-3555-8
– ident: e_1_2_14_100_1
  doi: 10.1073/pnas.1017621108
– ident: e_1_2_14_248_1
  doi: 10.1007/s11357-013-9548-5
– ident: e_1_2_14_266_1
  doi: 10.1111/j.1365-294X.2012.05542.x
– ident: e_1_2_14_36_1
  doi: 10.1016/j.tree.2014.04.003
– ident: e_1_2_14_15_1
  doi: 10.1111/mec.15797
– ident: e_1_2_14_188_1
  doi: 10.1002/edn3.121
– ident: e_1_2_14_231_1
  doi: 10.1016/j.scitotenv.2020.142096
– ident: e_1_2_14_312_1
  doi: 10.1371/journal.pone.0149786
– ident: e_1_2_14_193_1
  doi: 10.1111/1755-0998.13356
– ident: e_1_2_14_95_1
  doi: 10.1111/1755-0998.12338
– ident: e_1_2_14_125_1
  doi: 10.1111/1755-0998.12285
– ident: e_1_2_14_294_1
  doi: 10.1111/mec.13428
– ident: e_1_2_14_284_1
  doi: 10.1111/2041-210X.12206
– ident: e_1_2_14_198_1
  doi: 10.1111/fwb.13094
– ident: e_1_2_14_268_1
  doi: 10.1371/journal.pone.0056584
– ident: e_1_2_14_316_1
  doi: 10.1002/edn3.7
– ident: e_1_2_14_66_1
  doi: 10.1111/mec.15472
– ident: e_1_2_14_300_1
  doi: 10.1016/j.scitotenv.2019.04.247
– ident: e_1_2_14_310_1
  doi: 10.3389/fmars.2019.00373
– ident: e_1_2_14_37_1
  doi: 10.1111/mec.15507
– ident: e_1_2_14_34_1
  doi: 10.1029/2006RG000210
– ident: e_1_2_14_102_1
  doi: 10.1111/mec.15530
– ident: e_1_2_14_321_1
  doi: 10.1126/sciadv.abk0097
– ident: e_1_2_14_63_1
  doi: 10.1111/jfb.14852
– ident: e_1_2_14_189_1
  doi: 10.1146/annurev-marine-041421-082251
– ident: e_1_2_14_158_1
  doi: 10.1111/1755-0998.12486
– ident: e_1_2_14_279_1
  doi: 10.1002/edn3.44
– ident: e_1_2_14_210_1
  doi: 10.1080/02755947.2017.1342721
– ident: e_1_2_14_275_1
  doi: 10.1016/j.biocon.2018.01.030
– ident: e_1_2_14_14_1
  doi: 10.1002/edn3.141
– ident: e_1_2_14_155_1
  doi: 10.1111/1365-2664.12598
– ident: e_1_2_14_11_1
– ident: e_1_2_14_207_1
  doi: 10.1016/j.scitotenv.2018.05.002
– ident: e_1_2_14_270_1
  doi: 10.1038/s41598-019-42641-9
– ident: e_1_2_14_31_1
  doi: 10.1038/s42003-021-01760-8
– ident: e_1_2_14_262_1
  doi: 10.1371/journal.pone.0203012
– ident: e_1_2_14_295_1
  doi: 10.1016/j.tig.2018.05.008
– ident: e_1_2_14_267_1
  doi: 10.1111/j.1365-294X.2012.05470.x
– ident: e_1_2_14_152_1
  doi: 10.1016/j.jembe.2018.09.004
– ident: e_1_2_14_227_1
  doi: 10.1139/gen-2015-0229
– ident: e_1_2_14_263_1
  doi: 10.1016/j.biocon.2014.11.038
– ident: e_1_2_14_283_1
  doi: 10.1002/edn3.169
– ident: e_1_2_14_296_1
  doi: 10.1111/1755-0998.13315
– ident: e_1_2_14_228_1
  doi: 10.1002/edn3.185
– ident: e_1_2_14_318_1
  doi: 10.1071/WR19246
– ident: e_1_2_14_169_1
  doi: 10.1371/journal.pone.0195529
– ident: e_1_2_14_255_1
  doi: 10.1038/s41559-016-0004
– ident: e_1_2_14_311_1
  doi: 10.1038/srep40368
– ident: e_1_2_14_211_1
  doi: 10.1007/s00374-008-0345-8
– ident: e_1_2_14_285_1
  doi: 10.1016/j.biocon.2014.11.017
– ident: e_1_2_14_253_1
  doi: 10.1016/j.biocon.2014.11.023
– ident: e_1_2_14_299_1
  doi: 10.1016/j.scitotenv.2020.142622
– ident: e_1_2_14_52_1
  doi: 10.1126/science.1203672
– ident: e_1_2_14_276_1
  doi: 10.1111/jfb.14400
– ident: e_1_2_14_89_1
  doi: 10.1111/1755-0998.12433
– ident: e_1_2_14_85_1
  doi: 10.1021/acs.est.5b05672
– ident: e_1_2_14_149_1
  doi: 10.1021/acs.est.0c01863
– ident: e_1_2_14_217_1
  doi: 10.1111/j.1365-2664.2005.01126.x
– ident: e_1_2_14_92_1
  doi: 10.1038/hdy.2016.62
– ident: e_1_2_14_201_1
  doi: 10.1021/acs.est.8b02293
– ident: e_1_2_14_165_1
  doi: 10.1111/1755-0998.12987
– ident: e_1_2_14_214_1
  doi: 10.1111/1755-0998.13123
– ident: e_1_2_14_74_1
  doi: 10.1126/science.aas9852
– ident: e_1_2_14_124_1
  doi: 10.1002/edn3.191
– ident: e_1_2_14_203_1
  doi: 10.7717/peerj.3044
– ident: e_1_2_14_143_1
  doi: 10.1007/s12562-020-01409-1
– ident: e_1_2_14_111_1
  doi: 10.1111/jfb.13294
– ident: e_1_2_14_47_1
  doi: 10.1021/acs.est.8b01071
– ident: e_1_2_14_185_1
  doi: 10.1016/j.cub.2021.08.034
– ident: e_1_2_14_68_1
  doi: 10.1371/journal.pone.0218823
– ident: e_1_2_14_23_1
  doi: 10.1021/es404734p
– ident: e_1_2_14_128_1
  doi: 10.1111/jfb.14218
– ident: e_1_2_14_204_1
  doi: 10.1002/edn3.132
– volume: 69
  start-page: 83
  year: 2019
  ident: e_1_2_14_258_1
  article-title: Preliminary results on the molecular study of fish‐eating by 'trawling Myotis' bat species in Europe
  publication-title: Vertebrate Zoology
– ident: e_1_2_14_229_1
  doi: 10.1016/j.gecco.2019.e00547
– ident: e_1_2_14_233_1
  doi: 10.1002/edn3.38
– ident: e_1_2_14_29_1
  doi: 10.1002/edn3.173
– ident: e_1_2_14_56_1
  doi: 10.1128/MCB.00970-14
– ident: e_1_2_14_76_1
  doi: 10.1111/mec.14350
– ident: e_1_2_14_190_1
  doi: 10.1007/s12562-020-01461-x
– ident: e_1_2_14_67_1
  doi: 10.1111/j.1755-0998.2009.02795.x
– ident: e_1_2_14_160_1
  doi: 10.1111/mec.14920
– ident: e_1_2_14_8_1
  doi: 10.3389/fmars.2021.640527
– ident: e_1_2_14_325_1
  doi: 10.1016/j.scitotenv.2019.134704
– ident: e_1_2_14_307_1
  doi: 10.1126/science.1084114
– ident: e_1_2_14_315_1
  doi: 10.1016/j.tree.2021.03.001
– ident: e_1_2_14_75_1
  doi: 10.1371/journal.pone.0088786
– volume-title: Environmental DNA‐for biodiversity research and monitoring
  year: 2018
  ident: e_1_2_14_265_1
  doi: 10.1093/oso/9780198767220.001.0001
– ident: e_1_2_14_317_1
  doi: 10.1111/mec.15543
– ident: e_1_2_14_280_1
  doi: 10.1111/1755-0998.13200
– ident: e_1_2_14_239_1
  doi: 10.3389/fmars.2021.668822
– ident: e_1_2_14_30_1
  doi: 10.1002/edn3.74
– ident: e_1_2_14_130_1
  doi: 10.1111/j.1755-263X.2010.00158.x
– ident: e_1_2_14_129_1
  doi: 10.1139/cjfas-2012-0478
– ident: e_1_2_14_26_1
  doi: 10.3389/fmars.2020.604878
– ident: e_1_2_14_59_1
  doi: 10.1371/journal.pone.0157366
– ident: e_1_2_14_170_1
  doi: 10.1126/science.1177215
– ident: e_1_2_14_238_1
  doi: 10.1093/nar/gkaa1023
– ident: e_1_2_14_215_1
  doi: 10.1002/edn3.232
– ident: e_1_2_14_226_1
  doi: 10.1111/1755-0998.13568
– ident: e_1_2_14_53_1
  doi: 10.1073/pnas.1813843115
– ident: e_1_2_14_55_1
  doi: 10.1111/1755-0998.13543
– ident: e_1_2_14_235_1
  doi: 10.1038/s41598-017-14978-6
– ident: e_1_2_14_287_1
  doi: 10.1002/eap.2036
– ident: e_1_2_14_62_1
  doi: 10.1111/2041-210X.13276
– ident: e_1_2_14_5_1
  doi: 10.1021/acs.est.9b00409
– ident: e_1_2_14_28_1
  doi: 10.1002/ece3.5426
– ident: e_1_2_14_293_1
  doi: 10.1111/1755-0998.13375
– ident: e_1_2_14_45_1
  doi: 10.7717/peerj.9606
– ident: e_1_2_14_43_1
  doi: 10.1126/science.1127609
– ident: e_1_2_14_110_1
  doi: 10.1111/jfb.14383
– ident: e_1_2_14_142_1
  doi: 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2
– ident: e_1_2_14_172_1
  doi: 10.1111/cobi.13802
– ident: e_1_2_14_51_1
  doi: 10.1111/1755-0998.13544
– ident: e_1_2_14_146_1
  doi: 10.1073/pnas.2014929118
– ident: e_1_2_14_252_1
  doi: 10.1002/ece3.7658
– ident: e_1_2_14_137_1
  doi: 10.1126/science.aam9317
– ident: e_1_2_14_35_1
  doi: 10.1016/j.tree.2017.03.001
– ident: e_1_2_14_49_1
  doi: 10.1002/ece3.4387
– ident: e_1_2_14_194_1
  doi: 10.1371/journal.pone.0103767
– ident: e_1_2_14_313_1
  doi: 10.1016/j.ecolind.2015.11.022
– ident: e_1_2_14_19_1
  doi: 10.1080/00028487.2016.1243578
– ident: e_1_2_14_305_1
  doi: 10.1016/j.biocon.2015.12.023
– ident: e_1_2_14_58_1
  doi: 10.1111/1755-0998.12900
– ident: e_1_2_14_197_1
  doi: 10.1071/MF09068
– ident: e_1_2_14_153_1
  doi: 10.3390/genes10110858
– ident: e_1_2_14_320_1
  doi: 10.1111/2041-210X.13485
– volume: 2
  start-page: e23297
  year: 2018
  ident: e_1_2_14_291_1
  article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing
  publication-title: Metabarcoding and Metagenomics
– ident: e_1_2_14_46_1
  doi: 10.1111/1755-0998.13367
– ident: e_1_2_14_114_1
  doi: 10.1038/s41598-020-70206-8
– ident: e_1_2_14_126_1
  doi: 10.1007/s10641-015-0405-5
– ident: e_1_2_14_174_1
  doi: 10.1038/s41598-021-82205-4
– ident: e_1_2_14_306_1
  doi: 10.1126/science.1141758
– ident: e_1_2_14_309_1
– ident: e_1_2_14_301_1
  doi: 10.1111/mec.15811
– ident: e_1_2_14_323_1
  doi: 10.1016/j.scitotenv.2021.149175
– ident: e_1_2_14_184_1
  doi: 10.1016/j.tree.2006.02.002
– ident: e_1_2_14_60_1
  doi: 10.1111/mec.13549
– ident: e_1_2_14_162_1
  doi: 10.1016/j.biocon.2014.11.025
– ident: e_1_2_14_99_1
  doi: 10.1371/journal.pone.0222830
– ident: e_1_2_14_88_1
  doi: 10.1139/cjfas-2016-0306
– ident: e_1_2_14_147_1
  doi: 10.1371/journal.pone.0086175
– ident: e_1_2_14_151_1
  doi: 10.1016/j.biocon.2014.11.020
– ident: e_1_2_14_123_1
  doi: 10.1111/j.1461-0248.2008.01179.x
– ident: e_1_2_14_236_1
  doi: 10.1038/s41598-021-98926-5
– ident: e_1_2_14_2_1
  doi: 10.1641/B580507
– ident: e_1_2_14_271_1
  doi: 10.1111/1755-0998.12436
– ident: e_1_2_14_277_1
  doi: 10.1111/2041-210X.13201
– ident: e_1_2_14_105_1
  doi: 10.1002/ece3.4169
– ident: e_1_2_14_249_1
  doi: 10.1038/s41598-017-05223-1
– ident: e_1_2_14_286_1
  doi: 10.3389/fmars.2020.605148
– ident: e_1_2_14_186_1
  doi: 10.1016/j.copbio.2016.11.022
– ident: e_1_2_14_171_1
  doi: 10.1016/j.cub.2019.04.031
– ident: e_1_2_14_180_1
  doi: 10.1111/1755-0998.13440
– ident: e_1_2_14_90_1
  doi: 10.1080/03632415.2017.1276329
– ident: e_1_2_14_25_1
  doi: 10.1002/ece3.6014
– ident: e_1_2_14_264_1
  doi: 10.1126/science.abd3369
– ident: e_1_2_14_9_1
  doi: 10.1111/1755-0998.13111
– ident: e_1_2_14_319_1
  doi: 10.1111/1755-0998.13105
– ident: e_1_2_14_77_1
  doi: 10.1371/journal.pone.0023398
– ident: e_1_2_14_141_1
  doi: 10.1007/s11356-014-3466-7
– ident: e_1_2_14_308_1
  doi: 10.1016/j.scitotenv.2019.135314
– ident: e_1_2_14_191_1
  doi: 10.1016/j.ecolind.2021.107796
– ident: e_1_2_14_81_1
  doi: 10.1111/fwb.12846
– ident: e_1_2_14_71_1
  doi: 10.1111/1755-0998.13502
– ident: e_1_2_14_289_1
  doi: 10.1002/ece3.3346
– ident: e_1_2_14_222_1
  doi: 10.1002/edn3.87
– ident: e_1_2_14_6_1
  doi: 10.1111/2041-210X.12849
– ident: e_1_2_14_304_1
  doi: 10.1111/j.1095-8649.2002.tb01773.x
– ident: e_1_2_14_27_1
  doi: 10.1002/aqc.3208
– ident: e_1_2_14_140_1
  doi: 10.1111/1755‐0998.13655
– ident: e_1_2_14_221_1
  doi: 10.1126/science.aav3409
– ident: e_1_2_14_134_1
  doi: 10.1002/ece3.4802
– ident: e_1_2_14_292_1
  doi: 10.1371/journal.pone.0215505
– ident: e_1_2_14_250_1
  doi: 10.1021/acs.est.8b01822
– ident: e_1_2_14_33_1
  doi: 10.1016/j.ecolind.2021.107698
– ident: e_1_2_14_64_1
  doi: 10.1038/s42003-018-0192-6
– ident: e_1_2_14_17_1
  doi: 10.1111/j.1365-294X.2012.05519.x
– ident: e_1_2_14_57_1
  doi: 10.1021/acs.est.2c02506
– ident: e_1_2_14_247_1
  doi: 10.1111/1755-0998.12961
– ident: e_1_2_14_269_1
  doi: 10.1371/journal.pone.0035868
– ident: e_1_2_14_243_1
  doi: 10.3389/fevo.2020.609973
– ident: e_1_2_14_157_1
  doi: 10.1111/jfb.14403
– ident: e_1_2_14_177_1
  doi: 10.1002/edn3.257
– ident: e_1_2_14_282_1
  doi: 10.1371/journal.pone.0176608
– ident: e_1_2_14_303_1
  doi: 10.1111/mec.15382
– ident: e_1_2_14_20_1
  doi: 10.1016/j.tree.2018.09.003
– ident: e_1_2_14_41_1
  doi: 10.1002/ece3.4777
– ident: e_1_2_14_212_1
  doi: 10.1111/1755-0998.12159
– ident: e_1_2_14_220_1
  doi: 10.1111/mec.13481
– ident: e_1_2_14_131_1
  doi: 10.1002/edn3.49
– ident: e_1_2_14_314_1
  doi: 10.1111/mec.16202
– ident: e_1_2_14_70_1
  doi: 10.1016/j.margen.2017.11.003
– ident: e_1_2_14_163_1
  doi: 10.1002/edn3.5
– ident: e_1_2_14_32_1
  doi: 10.1016/j.biocon.2014.11.029
– ident: e_1_2_14_145_1
  doi: 10.1002/fee.1490
– ident: e_1_2_14_200_1
  doi: 10.1371/journal.pone.0191720
– ident: e_1_2_14_13_1
  doi: 10.1371/journal.pone.0176343
– ident: e_1_2_14_181_1
  doi: 10.1126/science.1255641
– ident: e_1_2_14_133_1
  doi: 10.1111/1755-0998.12685
– ident: e_1_2_14_290_1
– volume: 2
  start-page: 111
  year: 2015
  ident: e_1_2_14_206_1
  article-title: DNA Metabarcoding: A new approach forrapid biodiversity assessment
  publication-title: Journal of Cell Science & Molecular Biology
– ident: e_1_2_14_254_1
  doi: 10.1111/eva.12882
– ident: e_1_2_14_136_1
  doi: 10.1111/fwb.13920
– ident: e_1_2_14_173_1
  doi: 10.1111/ddi.13142
– ident: e_1_2_14_272_1
  doi: 10.1371/journal.pone.0041732
– ident: e_1_2_14_10_1
  doi: 10.1080/15592294.2018.1529504
– ident: e_1_2_14_106_1
  doi: 10.1111/1755-0998.13450
– ident: e_1_2_14_278_1
  doi: 10.1111/1755-0998.13165
– ident: e_1_2_14_297_1
  doi: 10.1016/j.scitotenv.2021.146891
– ident: e_1_2_14_113_1
  doi: 10.1111/faf.12286
– ident: e_1_2_14_167_1
  doi: 10.1002/edn3.24
– ident: e_1_2_14_223_1
  doi: 10.1111/j.1471-8286.2007.01678.x
– ident: e_1_2_14_139_1
  doi: 10.1098/rspb.2020.0248
– ident: e_1_2_14_192_1
  doi: 10.1371/journal.pone.0253104
– ident: e_1_2_14_135_1
  doi: 10.1002/edn3.253
– ident: e_1_2_14_103_1
  doi: 10.1007/s00227-017-3141-x
– ident: e_1_2_14_39_1
  doi: 10.1002/aqc.2617
– ident: e_1_2_14_3_1
  doi: 10.3390/genes10030192
– ident: e_1_2_14_97_1
  doi: 10.1046/j.1523-1739.1995.09030686.x
– ident: e_1_2_14_84_1
  doi: 10.1371/journal.pone.0112611
– ident: e_1_2_14_205_1
  doi: 10.1111/2041-210X.12890
– ident: e_1_2_14_96_1
  doi: 10.1111/1755-0998.12508
– ident: e_1_2_14_166_1
  doi: 10.1111/1365-2664.13352
– ident: e_1_2_14_175_1
  doi: 10.1371/journal.pone.0114639
– ident: e_1_2_14_230_1
  doi: 10.1002/edn3.75
– ident: e_1_2_14_50_1
  doi: 10.1038/s41598-019-39399-5
– ident: e_1_2_14_104_1
  doi: 10.1111/1755-0998.12257
– ident: e_1_2_14_322_1
  doi: 10.1016/j.envint.2019.105307
– ident: e_1_2_14_54_1
  doi: 10.1038/s41467-020-17337-8
– ident: e_1_2_14_79_1
  doi: 10.1111/1755-0998.12907
– ident: e_1_2_14_98_1
  doi: 10.1139/gen-2016-0100
– ident: e_1_2_14_246_1
  doi: 10.1016/j.biocon.2016.03.010
– ident: e_1_2_14_259_1
  doi: 10.1371/journal.pone.0119071
– ident: e_1_2_14_86_1
  doi: 10.1016/j.tree.2008.07.005
– ident: e_1_2_14_7_1
  doi: 10.1007/s13280-020-01318-8
– ident: e_1_2_14_179_1
  doi: 10.1021/acs.est.1c07638
– ident: e_1_2_14_48_1
  doi: 10.1111/2041-210X.12709
– ident: e_1_2_14_281_1
  doi: 10.1002/edn3.21
– ident: e_1_2_14_82_1
  doi: 10.1016/j.cosust.2010.09.001
– ident: e_1_2_14_21_1
  doi: 10.1038/s41467-021-21655-w
– ident: e_1_2_14_260_1
  doi: 10.1038/s41598-017-12501-5
– ident: e_1_2_14_122_1
  doi: 10.1038/s41598-021-83318-6
– ident: e_1_2_14_16_1
  doi: 10.1093/molbev/msx156
– ident: e_1_2_14_251_1
  doi: 10.3390/genes11030296
– ident: e_1_2_14_117_1
  doi: 10.1111/1755-0998.13247
– ident: e_1_2_14_101_1
  doi: 10.1371/journal.pone.0210357
– ident: e_1_2_14_213_1
  doi: 10.1111/mec.14776
– ident: e_1_2_14_120_1
  doi: 10.1017/S1367943002002299
– ident: e_1_2_14_232_1
  doi: 10.1038/s42003-019-0696-8
– ident: e_1_2_14_22_1
  doi: 10.1007/s10592-015-0775-4
– ident: e_1_2_14_115_1
  doi: 10.1111/j.1442-9993.1995.tb00523.x
– ident: e_1_2_14_148_1
  doi: 10.1038/s41598-019-48546-x
– ident: e_1_2_14_257_1
  doi: 10.1016/j.soilbio.2016.02.003
– ident: e_1_2_14_242_1
  doi: 10.1139/cjfas-2020-0182
– ident: e_1_2_14_83_1
  doi: 10.1111/1755-0998.13451
– ident: e_1_2_14_164_1
  doi: 10.1016/bs.aecr.2018.01.001
– ident: e_1_2_14_156_1
  doi: 10.1111/1755-0998.12522
– ident: e_1_2_14_176_1
  doi: 10.1002/ece3.4653
– ident: e_1_2_14_273_1
  doi: 10.1371/journal.pone.0165252
– ident: e_1_2_14_298_1
  doi: 10.1007/s00027-017-0546-z
– ident: e_1_2_14_195_1
  doi: 10.1111/jfb.13333
– ident: e_1_2_14_218_1
  doi: 10.1038/s41598-018-28424-8
– ident: e_1_2_14_240_1
  doi: 10.1038/nmeth.4240
– ident: e_1_2_14_4_1
  doi: 10.1111/mec.15661
– ident: e_1_2_14_202_1
  doi: 10.1016/j.ecoinf.2019.101033
– ident: e_1_2_14_237_1
  doi: 10.1093/molbev/msy074
– ident: e_1_2_14_196_1
  doi: 10.1007/s12562-018-1282-6
– ident: e_1_2_14_73_1
  doi: 10.1111/faf.12553
– ident: e_1_2_14_119_1
  doi: 10.1016/j.watres.2018.03.003
– ident: e_1_2_14_132_1
  doi: 10.1111/1755-0998.13354
– ident: e_1_2_14_24_1
  doi: 10.1038/nature11018
– ident: e_1_2_14_168_1
  doi: 10.1111/mec.15623
– ident: e_1_2_14_65_1
  doi: 10.1016/j.scitotenv.2021.148054
– ident: e_1_2_14_256_1
  doi: 10.1002/eap.2389
– ident: e_1_2_14_209_1
  doi: 10.1126/science.1229931
– ident: e_1_2_14_274_1
  doi: 10.1016/j.biocon.2014.11.019
– volume-title: Standard methods for sampling north American freshwater fishes
  year: 2009
  ident: e_1_2_14_38_1
– ident: e_1_2_14_121_1
  doi: 10.1371/journal.pone.0169431
– ident: e_1_2_14_72_1
  doi: 10.1146/annurev-ecolsys-110617-062306
– ident: e_1_2_14_118_1
  doi: 10.1002/ece3.6279
– ident: e_1_2_14_225_1
  doi: 10.1111/brv.12480
– ident: e_1_2_14_199_1
  doi: 10.1002/fee.2073
– ident: e_1_2_14_127_1
  doi: 10.1577/1548-8446-33.8.372
– ident: e_1_2_14_61_1
  doi: 10.1111/geb.12096
– ident: e_1_2_14_178_1
  doi: 10.1111/1755-0998.13430
– ident: e_1_2_14_12_1
  doi: 10.1111/mec.15765
– ident: e_1_2_14_182_1
  doi: 10.1111/mec.15644
– ident: e_1_2_14_187_1
  doi: 10.1071/MF08254
SSID ssj0013255
Score 2.669471
SecondaryResourceType review_article
Snippet Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5132
SubjectTerms Animals
aquatic ecosystem
Aquatic environment
Aquatic habitats
Aquatic populations
Biodiversity
biodiversity conservation
biodiversity surveillance
Biomonitoring
Conservation
cost effectiveness
Deoxyribonucleic acid
DNA
DNA Barcoding, Taxonomic
DNA metabarcoding
DNA, Environmental - genetics
Ecosystem
Environmental DNA
environmental monitoring
Environmental Monitoring - methods
eRNA
Fish
Fish behavior
Fish conservation
Fish populations
Fisheries
Fisheries management
Fisheries research
Fishes - genetics
Fishing
freshwater
Freshwater fish
Genetics
Humans
Hunting
lentic systems
lotic systems
Marine ecosystems
Marine fish
Optimization
Population genetics
species abundance
Standardization
Sustainable ecosystems
Trends
Wildlife conservation
Title Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16659
https://www.ncbi.nlm.nih.gov/pubmed/35972241
https://www.proquest.com/docview/2723024744
https://www.proquest.com/docview/2702976450
https://www.proquest.com/docview/2811982157
Volume 31
WOSCitedRecordID wos000848186500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHUi8DMbHCIzKIB54IFPsuLbDnqatFQ-sQmiT-hbZjiMhQTo17VCf-Nd3dj7Uagwh8RDJii-JY9_Zv_Od7wDeG5pZXMlNzEqexFwVLNYuMXFWcqmVoVpTE5JNyOlUzWbZ1x046c7CNPEh-g03LxlhvvYCrk29IeQ_nT2mQoyyXdhjyLejAeydf5tcfdkwIoSkpwjSGc42Km0DC3lHnv7h7eXoDsbchqxhzZk8_q_WPoH9FmqS04Y3DmDHVU_hYZN8co2lcQhYvX4GvyfNRhRBAEtKLJON42_4hvPp6SfSUPshJZtG74-kyUHdV9o2A2hXXa8WN86fpSJFcBbBW7oqyC-9rv33vNPuc7iajC_PPsdtYobYejttTF0iGEJH1HW4FhkztEgsZTpFZU0xJ0qV-ksWorCpLaxwnGpbonKVmBG3afoCBtW8ci-BSCsyYVyCFIYLkyqG_GIzaRnqWvjOCD5045PbNmq5T57xI--0F-zZPPRsBO960usmVMefiI66Qc5baa1zJlERY1xyHsHbvhrlzBtPdOXmK0_j03wJPkr-QqMozRSCKBnBYcNAfUtS1Nw8XMIfCnxyfxPzi_FZKLz6d9LX8Ij5cxnBy_AIBsvFyr2BB_Zm-b1eDGFXztSwFY9badYReA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xFL20PNtteRjEgQNBseN1nKoXBLsCsawQAolbZDuOVKnNVrss1Z7464ydhxa1ICQOkax4kjj2jP2NZzwDsK9pYnAl1wHLeRhwmbFA2VAHSc5jJTVVimqfbCLu9-XdXXI1Az_qszBlfIhmw81Jhp-vnYC7DekpKf9tzREVop3MwjxHNkL-nj-97t72pqwIPusponSG042MqshCzpOnefj5evQPyHyOWf2i0_30vuYuw8cKbJLjkjtWYMYWq7BYpp-cYKnjQ1ZP1uCxW25FEYSwJMcymToAh2847R9_JyW1G1QybfY-JGUW6qbSVDlA6-rRePhg3Wkqknl3Ebylioz8VZOR-55z212H227n5uQsqFIzBMZZagNqQ8EQPKK2w5VImKZZaChTEaprklmRy8hdcSYyE5nMCMupMjmqV6FucxNFGzBXDAr7BUhsRCK0DZFCc6EjyZBjTBIbhtoWvrMFB_UApaaKW-7SZ_xKa_0Fezb1PduCvYb0Txms439Em_Uop5W8jlIWoyrGeMx5C3abapQ0Zz5RhR2MHY1L9CV4O3yFRlKaSIRRcQs-lxzUtCRC3c0BJvwhzygvNzG97Jz4wte3k-7A0tnNZS_tnfcvvsEH5k5peJ_DTZi7H47tFiyYh_ufo-F2JSVPUZIUgA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BAlUvbXm12wI1iAMHUsWO13GqXhC7UStghRBI3CLbcaRKNKB9VXvqX-_YeWhRS4XUQyQrniSOPWPPeMbzARxqmhhcyXXACh4GXOYsUDbUQVLwWElNlaLag03Ew6G8vU0ul-BLcxamyg_Rbrg5yfDztRNw-5AXC1L-w5pPVIhesgwr3IHIdGClf5XenC94ETzqKWrpDKcbGdWZhVwkT_vw4_XoDyXzsc7qF5309f819w28qpVNclJxxzos2XID1ir4yTmWBj5l9XwTfqXVVhRBFZYUWCYLB-DwDf3hyWdSUbtBJYtu72NSoVC3labGAG2qx9PRzLrTVCT34SJ4S5U5-anmY_c9F7a7BTfp4Pr0a1BDMwTGeWoDakPBUHlEa4crkTBN89BQpiI01ySzopCRu-Jc5CYyuRGWU2UKNK9C3eMmirahU96X9h2Q2IhEaBsiheZCR5Ihx5gkNgytLXxnF46aAcpMnbfcwWfcZY39gj2b-Z7twkFL-lAl6_gb0U4zylktr-OMxWiKMR5z3oX9tholzblPVGnvp47GAX0J3gv_QSMpTSSqUXEX3lYc1LYkQtvNKUz4Q55Rnm5idjE49YX3zyf9CC8u-2l2_m149gFeMndIw4cc7kBnMpraXVg1s8n38WivFpLfvnUT-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fishing+for+fish+environmental+DNA%3A+Ecological+applications%2C+methodological+considerations%2C+surveying+designs%2C+and+ways+forward&rft.jtitle=Molecular+ecology&rft.au=Yao%2C+Meng&rft.au=Zhang%2C+Shan&rft.au=Lu%2C+Qi&rft.au=Chen%2C+Xiaoyu&rft.date=2022-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=31&rft.issue=20&rft.spage=5132&rft.epage=5164&rft_id=info:doi/10.1111%2Fmec.16659&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon