Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward
Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and populat...
Saved in:
| Published in: | Molecular ecology Vol. 31; no. 20; pp. 5132 - 5164 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
England
Blackwell Publishing Ltd
01.10.2022
|
| Subjects: | |
| ISSN: | 0962-1083, 1365-294X, 1365-294X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries. |
|---|---|
| AbstractList | Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)‐based biomonitoring provides robust, efficient, and cost‐effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries. Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries.Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human livelihoods. Environmental DNA (eDNA)-based biomonitoring provides robust, efficient, and cost-effective assessment of species occurrences and population trends in diverse aquatic environments. Thus, it holds great potential for improving conventional surveillance frameworks to facilitate fish conservation and fisheries management. However, the many technical considerations and rapid developments underway in the eDNA arena can overwhelm researchers and practitioners new to the field. Here, we systematically analysed 416 fish eDNA studies to summarize research trends in terms of investigated targets, research aims, and study systems, and reviewed the applications, rationales, methodological considerations, and limitations of eDNA methods with an emphasis on fish and fisheries research. We highlighted how eDNA technology may advance our knowledge of fish behaviour, species distributions, population genetics, community structures, and ecological interactions. We also synthesized the current knowledge of several important methodological concerns, including the qualitative and quantitative power eDNA has to recover fish biodiversity and abundance, and the spatial and temporal representations of eDNA with respect to its sources. To facilitate ecological applications implementing fish eDNA techniques, recent literature was summarized to generate guidelines for effective sampling in lentic, lotic, and marine habitats. Finally, we identified current gaps and limitations, and pointed out newly emerging research avenues for fish eDNA. As methodological optimization and standardization improve, eDNA technology should revolutionize fish monitoring and promote biodiversity conservation and fisheries management that transcends geographic and temporal boundaries. |
| Author | Yao, Meng Lu, Qi Kong, Yueqiao Zhao, Jindong Chen, Xiaoyu Zhang, Si‐Yu Zhang, Shan |
| Author_xml | – sequence: 1 givenname: Meng orcidid: 0000-0002-8906-1461 surname: Yao fullname: Yao, Meng email: yaom@pku.edu.cn organization: Peking University – sequence: 2 givenname: Shan surname: Zhang fullname: Zhang, Shan organization: Peking University – sequence: 3 givenname: Qi surname: Lu fullname: Lu, Qi organization: Peking University – sequence: 4 givenname: Xiaoyu surname: Chen fullname: Chen, Xiaoyu organization: Peking University – sequence: 5 givenname: Si‐Yu surname: Zhang fullname: Zhang, Si‐Yu organization: Peking University – sequence: 6 givenname: Yueqiao surname: Kong fullname: Kong, Yueqiao organization: Peking University – sequence: 7 givenname: Jindong surname: Zhao fullname: Zhao, Jindong organization: Peking University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35972241$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1P3DAQhq2KqizQQ_9AFakXKhHwd-Le0LK0lWi5tFJvkdeeLEaJvbUTVnvqX8dhgQNSW0uWxzPPvCP7PUB7PnhA6B3BpySvsx7MKZFSqFdoRpgUJVX81x6aYSVpSXDN9tFBSrcYE0aFeIP2mVAVpZzM0J9Ll26cXxVtiEWb4wL8nYvB9-AH3RUX388_FQsTurByJt_1et3lYHDBp5Oih-Em2OeiyUlnIT6V0xjvYDupW0huNaW0t8VGb9M0b6OjPUKvW90lePt4HqKfl4sf8y_l1fXnr_Pzq9JwQVVJAEtKmKorwbVUdEksNoRqxjGpKci2ZtOurLSGGWskcKJNy5XCS8ENY4foeKe7juH3CGloepcMdJ32EMbU0JoQVVMiqv-jFaaqklzgjH54gd6GMfr8kExRhimvOM_U-0dqXPZgm3V0vY7b5smFDHzcASaGlCK0zwjBzeRwkx1uHhzO7NkL1rjh4cOHqF33r46N62D7d-nm22K-67gH0va2uQ |
| CitedBy_id | crossref_primary_10_1002_edn3_467 crossref_primary_10_1002_lom3_10634 crossref_primary_10_1002_edn3_70137 crossref_primary_10_1002_edn3_70017 crossref_primary_10_1007_s44211_023_00382_w crossref_primary_10_1371_journal_pone_0322148 crossref_primary_10_18307_2025_0402 crossref_primary_10_1002_ece3_70627 crossref_primary_10_1002_edn3_70015 crossref_primary_10_1002_edn3_70013 crossref_primary_10_18307_2025_0403 crossref_primary_10_1002_edn3_70131 crossref_primary_10_18307_2025_0405 crossref_primary_10_1002_ece3_10681 crossref_primary_10_1007_s11802_025_5893_0 crossref_primary_10_1111_ddi_70053 crossref_primary_10_1007_s00114_024_01904_w crossref_primary_10_1016_j_jenvman_2025_124531 crossref_primary_10_1002_edn3_476 crossref_primary_10_1002_edn3_596 crossref_primary_10_1016_j_ecolind_2025_113469 crossref_primary_10_1111_brv_70059 crossref_primary_10_1016_j_ecolind_2024_112384 crossref_primary_10_1016_j_ecss_2024_108824 crossref_primary_10_1016_j_envint_2024_109175 crossref_primary_10_1016_j_scitotenv_2024_178125 crossref_primary_10_3390_d17010035 crossref_primary_10_1002_ece3_71279 crossref_primary_10_1111_1755_0998_13931 crossref_primary_10_1002_edn3_70141 crossref_primary_10_1111_1755_0998_13934 crossref_primary_10_1016_j_scitotenv_2023_162322 crossref_primary_10_3390_fishes9030086 crossref_primary_10_3390_d15030322 crossref_primary_10_1007_s11427_023_2493_5 crossref_primary_10_1016_j_ecolind_2025_113459 crossref_primary_10_3390_fishes9100396 crossref_primary_10_1111_2041_210X_70102 crossref_primary_10_1016_j_jenvman_2023_117971 crossref_primary_10_1093_molbev_msad035 crossref_primary_10_1016_j_marenvres_2025_107439 crossref_primary_10_1051_kmae_2024011 crossref_primary_10_1016_j_jcz_2025_09_003 crossref_primary_10_3389_fmars_2023_1268399 crossref_primary_10_1002_edn3_70156 crossref_primary_10_1016_j_ecss_2025_109411 crossref_primary_10_1360_SSV_2025_0085 crossref_primary_10_3389_fsufs_2023_1166131 crossref_primary_10_1139_cjfas_2023_0053 crossref_primary_10_1007_s10661_024_12788_8 crossref_primary_10_1016_j_jtherbio_2025_104120 crossref_primary_10_1111_mec_16815 crossref_primary_10_3389_fenvs_2023_1057653 crossref_primary_10_3390_w16050631 crossref_primary_10_3390_d16010028 crossref_primary_10_1016_j_indic_2025_100831 crossref_primary_10_1007_s10530_024_03306_5 crossref_primary_10_1016_j_ecolind_2024_112807 crossref_primary_10_1002_edn3_520 crossref_primary_10_1002_edn3_486 crossref_primary_10_1007_s10661_023_11539_5 crossref_primary_10_3897_mbmg_8_104655 crossref_primary_10_1002_ece3_11214 crossref_primary_10_1016_j_ancene_2025_100481 crossref_primary_10_1002_edn3_422 crossref_primary_10_1002_edn3_70052 crossref_primary_10_1007_s10142_023_01269_9 crossref_primary_10_1111_fwb_70019 crossref_primary_10_1002_aqc_4111 crossref_primary_10_1007_s10651_024_00632_8 crossref_primary_10_1186_s13717_023_00463_8 crossref_primary_10_3390_w15020308 crossref_primary_10_1007_s10531_024_02994_8 crossref_primary_10_1016_j_ecolind_2023_111356 crossref_primary_10_7717_peerj_18778 crossref_primary_10_1007_s10201_023_00740_7 crossref_primary_10_3389_fenvs_2023_1106862 crossref_primary_10_1002_aqc_4220 crossref_primary_10_1002_edn3_70068 crossref_primary_10_1016_j_scitotenv_2025_179021 crossref_primary_10_1007_s11356_024_35025_8 crossref_primary_10_1093_tafafs_vnaf036 crossref_primary_10_1016_j_tim_2024_07_003 crossref_primary_10_1016_j_ecolind_2025_113651 crossref_primary_10_1016_j_jenvman_2023_117217 crossref_primary_10_1016_j_scitotenv_2024_173885 crossref_primary_10_1016_j_tree_2024_10_007 crossref_primary_10_1080_02705060_2025_2541689 crossref_primary_10_1111_eva_13699 crossref_primary_10_1002_ece3_70645 crossref_primary_10_1007_s00343_024_3148_3 crossref_primary_10_1016_j_gecco_2025_e03800 crossref_primary_10_3390_fishes10040165 crossref_primary_10_1016_j_gecco_2025_e03642 crossref_primary_10_1111_mec_17031 crossref_primary_10_1016_j_marpolbul_2024_117422 crossref_primary_10_1038_s41598_024_80907_z crossref_primary_10_1093_icesjms_fsae152 crossref_primary_10_1038_s41598_025_98750_1 crossref_primary_10_1111_1755_0998_14082 crossref_primary_10_1016_j_jembe_2025_152093 crossref_primary_10_1002_edn3_70008 crossref_primary_10_1111_mec_17784 crossref_primary_10_1111_jfb_15895 crossref_primary_10_1002_edn3_70001 crossref_primary_10_1016_j_envres_2025_121238 crossref_primary_10_3390_toxics11110903 crossref_primary_10_3390_fishes10040175 crossref_primary_10_1016_j_fsigen_2024_103087 crossref_primary_10_1186_s12862_024_02261_y crossref_primary_10_1016_j_mex_2024_103020 |
| Cites_doi | 10.1016/j.gloenvcha.2011.01.003 10.1186/1471-2164-11-434 10.1098/rsbl.2008.0118 10.1016/j.ecolind.2021.107605 10.1111/mec.15692 10.1098/rspb.2019.1409 10.1111/1755-0998.12598 10.1111/mec.15742 10.1038/s42003-017-0005-3 10.3897/mbmg.4.56959 10.1111/jfb.14176 10.1016/j.biocon.2014.11.040 10.1111/1755‐0998.13627 10.1101/gr.162172.113 10.1111/cobi.13183 10.1021/acs.est.6b03114 10.1111/1755-0998.12460 10.1139/cjfas-2017-0114 10.1111/mec.15060 10.3389/fevo.2020.00276 10.1111/2041-210X.12595 10.1111/mec.16364 10.1111/j.1365-294X.2011.05403.x 10.1016/0006-3207(92)91201-3 10.1111/1365-2664.12306 10.1016/j.fishres.2017.09.013 10.1111/mec.13660 10.1371/journal.pone.0022746 10.1126/sciadv.aap9661 10.1111/1755-0998.13107 10.1038/s41467-019-14105-1 10.1038/s41598-021-93859-5 10.1016/j.cosust.2011.12.005 10.1371/journal.pone.0178124 10.1007/s00227-019-3555-8 10.1073/pnas.1017621108 10.1007/s11357-013-9548-5 10.1111/j.1365-294X.2012.05542.x 10.1016/j.tree.2014.04.003 10.1111/mec.15797 10.1002/edn3.121 10.1016/j.scitotenv.2020.142096 10.1371/journal.pone.0149786 10.1111/1755-0998.13356 10.1111/1755-0998.12338 10.1111/1755-0998.12285 10.1111/mec.13428 10.1111/2041-210X.12206 10.1111/fwb.13094 10.1371/journal.pone.0056584 10.1002/edn3.7 10.1111/mec.15472 10.1016/j.scitotenv.2019.04.247 10.3389/fmars.2019.00373 10.1111/mec.15507 10.1029/2006RG000210 10.1111/mec.15530 10.1126/sciadv.abk0097 10.1111/jfb.14852 10.1146/annurev-marine-041421-082251 10.1111/1755-0998.12486 10.1002/edn3.44 10.1080/02755947.2017.1342721 10.1016/j.biocon.2018.01.030 10.1002/edn3.141 10.1111/1365-2664.12598 10.1016/j.scitotenv.2018.05.002 10.1038/s41598-019-42641-9 10.1038/s42003-021-01760-8 10.1371/journal.pone.0203012 10.1016/j.tig.2018.05.008 10.1111/j.1365-294X.2012.05470.x 10.1016/j.jembe.2018.09.004 10.1139/gen-2015-0229 10.1016/j.biocon.2014.11.038 10.1002/edn3.169 10.1111/1755-0998.13315 10.1002/edn3.185 10.1071/WR19246 10.1371/journal.pone.0195529 10.1038/s41559-016-0004 10.1038/srep40368 10.1007/s00374-008-0345-8 10.1016/j.biocon.2014.11.017 10.1016/j.biocon.2014.11.023 10.1016/j.scitotenv.2020.142622 10.1126/science.1203672 10.1111/jfb.14400 10.1111/1755-0998.12433 10.1021/acs.est.5b05672 10.1021/acs.est.0c01863 10.1111/j.1365-2664.2005.01126.x 10.1038/hdy.2016.62 10.1021/acs.est.8b02293 10.1111/1755-0998.12987 10.1111/1755-0998.13123 10.1126/science.aas9852 10.1002/edn3.191 10.7717/peerj.3044 10.1007/s12562-020-01409-1 10.1111/jfb.13294 10.1021/acs.est.8b01071 10.1016/j.cub.2021.08.034 10.1371/journal.pone.0218823 10.1021/es404734p 10.1111/jfb.14218 10.1002/edn3.132 10.1016/j.gecco.2019.e00547 10.1002/edn3.38 10.1002/edn3.173 10.1128/MCB.00970-14 10.1111/mec.14350 10.1007/s12562-020-01461-x 10.1111/j.1755-0998.2009.02795.x 10.1111/mec.14920 10.3389/fmars.2021.640527 10.1016/j.scitotenv.2019.134704 10.1126/science.1084114 10.1016/j.tree.2021.03.001 10.1371/journal.pone.0088786 10.1093/oso/9780198767220.001.0001 10.1111/mec.15543 10.1111/1755-0998.13200 10.3389/fmars.2021.668822 10.1002/edn3.74 10.1111/j.1755-263X.2010.00158.x 10.1139/cjfas-2012-0478 10.3389/fmars.2020.604878 10.1371/journal.pone.0157366 10.1126/science.1177215 10.1093/nar/gkaa1023 10.1002/edn3.232 10.1111/1755-0998.13568 10.1073/pnas.1813843115 10.1111/1755-0998.13543 10.1038/s41598-017-14978-6 10.1002/eap.2036 10.1111/2041-210X.13276 10.1021/acs.est.9b00409 10.1002/ece3.5426 10.1111/1755-0998.13375 10.7717/peerj.9606 10.1126/science.1127609 10.1111/jfb.14383 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2 10.1111/cobi.13802 10.1111/1755-0998.13544 10.1073/pnas.2014929118 10.1002/ece3.7658 10.1126/science.aam9317 10.1016/j.tree.2017.03.001 10.1002/ece3.4387 10.1371/journal.pone.0103767 10.1016/j.ecolind.2015.11.022 10.1080/00028487.2016.1243578 10.1016/j.biocon.2015.12.023 10.1111/1755-0998.12900 10.1071/MF09068 10.3390/genes10110858 10.1111/2041-210X.13485 10.1111/1755-0998.13367 10.1038/s41598-020-70206-8 10.1007/s10641-015-0405-5 10.1038/s41598-021-82205-4 10.1126/science.1141758 10.1111/mec.15811 10.1016/j.scitotenv.2021.149175 10.1016/j.tree.2006.02.002 10.1111/mec.13549 10.1016/j.biocon.2014.11.025 10.1371/journal.pone.0222830 10.1139/cjfas-2016-0306 10.1371/journal.pone.0086175 10.1016/j.biocon.2014.11.020 10.1111/j.1461-0248.2008.01179.x 10.1038/s41598-021-98926-5 10.1641/B580507 10.1111/1755-0998.12436 10.1111/2041-210X.13201 10.1002/ece3.4169 10.1038/s41598-017-05223-1 10.3389/fmars.2020.605148 10.1016/j.copbio.2016.11.022 10.1016/j.cub.2019.04.031 10.1111/1755-0998.13440 10.1080/03632415.2017.1276329 10.1002/ece3.6014 10.1126/science.abd3369 10.1111/1755-0998.13111 10.1111/1755-0998.13105 10.1371/journal.pone.0023398 10.1007/s11356-014-3466-7 10.1016/j.scitotenv.2019.135314 10.1016/j.ecolind.2021.107796 10.1111/fwb.12846 10.1111/1755-0998.13502 10.1002/ece3.3346 10.1002/edn3.87 10.1111/2041-210X.12849 10.1111/j.1095-8649.2002.tb01773.x 10.1002/aqc.3208 10.1111/1755‐0998.13655 10.1126/science.aav3409 10.1002/ece3.4802 10.1371/journal.pone.0215505 10.1021/acs.est.8b01822 10.1016/j.ecolind.2021.107698 10.1038/s42003-018-0192-6 10.1111/j.1365-294X.2012.05519.x 10.1021/acs.est.2c02506 10.1111/1755-0998.12961 10.1371/journal.pone.0035868 10.3389/fevo.2020.609973 10.1111/jfb.14403 10.1002/edn3.257 10.1371/journal.pone.0176608 10.1111/mec.15382 10.1016/j.tree.2018.09.003 10.1002/ece3.4777 10.1111/1755-0998.12159 10.1111/mec.13481 10.1002/edn3.49 10.1111/mec.16202 10.1016/j.margen.2017.11.003 10.1002/edn3.5 10.1016/j.biocon.2014.11.029 10.1002/fee.1490 10.1371/journal.pone.0191720 10.1371/journal.pone.0176343 10.1126/science.1255641 10.1111/1755-0998.12685 10.1111/eva.12882 10.1111/fwb.13920 10.1111/ddi.13142 10.1371/journal.pone.0041732 10.1080/15592294.2018.1529504 10.1111/1755-0998.13450 10.1111/1755-0998.13165 10.1016/j.scitotenv.2021.146891 10.1111/faf.12286 10.1002/edn3.24 10.1111/j.1471-8286.2007.01678.x 10.1098/rspb.2020.0248 10.1371/journal.pone.0253104 10.1002/edn3.253 10.1007/s00227-017-3141-x 10.1002/aqc.2617 10.3390/genes10030192 10.1046/j.1523-1739.1995.09030686.x 10.1371/journal.pone.0112611 10.1111/2041-210X.12890 10.1111/1755-0998.12508 10.1111/1365-2664.13352 10.1371/journal.pone.0114639 10.1002/edn3.75 10.1038/s41598-019-39399-5 10.1111/1755-0998.12257 10.1016/j.envint.2019.105307 10.1038/s41467-020-17337-8 10.1111/1755-0998.12907 10.1139/gen-2016-0100 10.1016/j.biocon.2016.03.010 10.1371/journal.pone.0119071 10.1016/j.tree.2008.07.005 10.1007/s13280-020-01318-8 10.1021/acs.est.1c07638 10.1111/2041-210X.12709 10.1002/edn3.21 10.1016/j.cosust.2010.09.001 10.1038/s41467-021-21655-w 10.1038/s41598-017-12501-5 10.1038/s41598-021-83318-6 10.1093/molbev/msx156 10.3390/genes11030296 10.1111/1755-0998.13247 10.1371/journal.pone.0210357 10.1111/mec.14776 10.1017/S1367943002002299 10.1038/s42003-019-0696-8 10.1007/s10592-015-0775-4 10.1111/j.1442-9993.1995.tb00523.x 10.1038/s41598-019-48546-x 10.1016/j.soilbio.2016.02.003 10.1139/cjfas-2020-0182 10.1111/1755-0998.13451 10.1016/bs.aecr.2018.01.001 10.1111/1755-0998.12522 10.1002/ece3.4653 10.1371/journal.pone.0165252 10.1007/s00027-017-0546-z 10.1111/jfb.13333 10.1038/s41598-018-28424-8 10.1038/nmeth.4240 10.1111/mec.15661 10.1016/j.ecoinf.2019.101033 10.1093/molbev/msy074 10.1007/s12562-018-1282-6 10.1111/faf.12553 10.1016/j.watres.2018.03.003 10.1111/1755-0998.13354 10.1038/nature11018 10.1111/mec.15623 10.1016/j.scitotenv.2021.148054 10.1002/eap.2389 10.1126/science.1229931 10.1016/j.biocon.2014.11.019 10.1371/journal.pone.0169431 10.1146/annurev-ecolsys-110617-062306 10.1002/ece3.6279 10.1111/brv.12480 10.1002/fee.2073 10.1577/1548-8446-33.8.372 10.1111/geb.12096 10.1111/1755-0998.13430 10.1111/mec.15765 10.1111/mec.15644 10.1071/MF08254 |
| ContentType | Journal Article |
| Copyright | 2022 John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| DOI | 10.1111/mec.16659 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Entomology Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| EISSN | 1365-294X |
| EndPage | 5164 |
| ExternalDocumentID | 35972241 10_1111_mec_16659 MEC16659 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: the National Science and Technology Basic Resources Survey Program of China funderid: 2019FY101700 – fundername: National Natural Science Foundation of China funderid: 32100395 – fundername: the Second Tibetan Plateau Scientific Expedition and Research Program funderid: 2019QZKK0304; 2019QZKK0503 – fundername: the Special Project for Social Development of Yunnan Province funderid: 202103AC100001 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29M 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TN5 UB1 V8K W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT Y6R ZZTAW ~02 ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7SN 7SS 8FD C1K FR3 M7N P64 RC3 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c4529-1e0621398754a692b1d0c12a340182e6f836f837d6dc3cdc6e41acf4990b54c33 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000848186500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0962-1083 1365-294X |
| IngestDate | Fri Sep 05 17:27:26 EDT 2025 Tue Aug 05 10:03:54 EDT 2025 Mon Nov 10 02:55:58 EST 2025 Wed Feb 19 02:26:11 EST 2025 Tue Nov 18 21:44:05 EST 2025 Sat Nov 29 05:23:54 EST 2025 Wed Jan 22 16:23:13 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | fish conservation aquatic ecosystem biodiversity surveillance fisheries management DNA metabarcoding eRNA |
| Language | English |
| License | 2022 John Wiley & Sons Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4529-1e0621398754a692b1d0c12a340182e6f836f837d6dc3cdc6e41acf4990b54c33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-8906-1461 |
| PMID | 35972241 |
| PQID | 2723024744 |
| PQPubID | 31465 |
| PageCount | 33 |
| ParticipantIDs | proquest_miscellaneous_2811982157 proquest_miscellaneous_2702976450 proquest_journals_2723024744 pubmed_primary_35972241 crossref_primary_10_1111_mec_16659 crossref_citationtrail_10_1111_mec_16659 wiley_primary_10_1111_mec_16659_MEC16659 |
| PublicationCentury | 2000 |
| PublicationDate | October 2022 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Molecular ecology |
| PublicationTitleAlternate | Mol Ecol |
| PublicationYear | 2022 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2020; 20 2019; 10 2019; 14 2019; 17 2019; 19 2013; 70 2020; 13 2008; 33 2020; 287 2020; 11 2020; 10 2019; 166 2016; 36 2019; 286 1995; 20 2017; 74 2021; 78 2021; 797 2017; 79 2019; 28 2008; 23 2019; 29 2021; 790 2017; 164 2010; 2 2012; 21 2017; 62 2021; 49 2018; 220 2017; 60 2019; 33 2009; 60 2008; 58 1981; 6 2021; 782 2021; 50 2011; 4 2016; 17 2011; 6 2016; 16 2020; 702 2016; 11 2020; 704 2016; 7 2018; 359 2022; 4 2013; 339 2020; 30 2002; 61 2022; 8 2018; 115 2008; 46 2017; 146 2016; 26 2016; 25 2020; 29 2017; 42 2015; 183 2019; 53 2021; 126 2021; 125 2021; 128 2019; 56 2017; 45 2020; 55 2008; 4 2020; 54 2017; 356 2010; 61 2020; 8 2020; 7 2020; 4 2014; 5 2020; 2 2017; 37 2017; 32 2017; 34 2021; 118 2019; 69 2019; 510 2020; 47 2016; 117 2020; 135 2014; 9 2014; 51 2009; 325 2015; 2 2021; 8 2021; 7 2021; 4 2021; 3 2017; 26 2020; 86 2015; 98 2009 2018; 63 2011; 332 2021; 98 2011; 108 2021; 99 2017; 15 2022 2019; 85 2017; 14 2021 2017; 17 2017; 12 2018 2018; 52 2003; 300 1992; 61 2018; 58 2010; 11 2010; 10 2012; 486 2019; 94 2014; 24 2014; 29 2022; 22 2013; 8 2014; 23 2018; 49 2018; 9 2018; 8 2018; 2 2018; 4 2020; 97 2018; 1 2006; 21 2014; 14 2007; 7 2022; 31 2019; 678 2018; 34 2018; 33 2018; 37 2018; 35 2019; 9 2019; 6 2019; 2 2019; 1 2002; 5 2014; 48 2016; 96 2018; 197 2018; 19 2018; 18 2007; 317 2006; 43 2005; 126 2022; 14 2014; 36 2021; 371 2018; 637 2018; 13 2017; 5 2009; 45 2021; 27 2017; 7 2017; 8 2021; 21 2017; 1 2021; 22 2015; 347 2022; 67 2021; 30 2019; 364 2021; 36 2021; 35 2021; 31 2018; 138 2021; 755 2021; 754 2011; 21 2016; 197 2016; 194 2015; 15 2015; 10 2016; 53 2016; 50 2008; 11 2006; 313 2016; 59 2021; 16 2017; 91 2017; 90 2021; 12 2021; 11 2015; 22 2022; 56 2016; 62 2012; 7 2012; 4 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_280_1 e_1_2_14_50_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_288_1 e_1_2_14_239_1 e_1_2_14_58_1 e_1_2_14_216_1 e_1_2_14_182_1 e_1_2_14_242_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_144_1 e_1_2_14_314_1 e_1_2_14_167_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_62_1 e_1_2_14_24_1 e_1_2_14_204_1 e_1_2_14_227_1 e_1_2_14_276_1 e_1_2_14_299_1 e_1_2_14_47_1 e_1_2_14_230_1 e_1_2_14_253_1 e_1_2_14_193_1 e_1_2_14_170_1 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_302_1 e_1_2_14_155_1 e_1_2_14_325_1 e_1_2_14_178_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_301_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_264_1 e_1_2_14_215_1 e_1_2_14_238_1 e_1_2_14_287_1 e_1_2_14_241_1 e_1_2_14_181_1 e_1_2_14_120_1 e_1_2_14_143_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_313_1 e_1_2_14_166_1 e_1_2_14_189_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_312_1 e_1_2_14_290_1 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_275_1 e_1_2_14_203_1 e_1_2_14_249_1 e_1_2_14_298_1 e_1_2_14_69_1 e_1_2_14_226_1 e_1_2_14_252_1 e_1_2_14_192_1 e_1_2_14_131_1 e_1_2_14_154_1 e_1_2_14_309_1 e_1_2_14_324_1 e_1_2_14_177_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_282_1 e_1_2_14_218_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_267_1 e_1_2_14_37_1 e_1_2_14_221_1 e_1_2_14_244_1 e_1_2_14_161_1 e_1_2_14_184_1 e_1_2_14_123_1 e_1_2_14_169_1 e_1_2_14_105_1 e_1_2_14_146_1 e_1_2_14_316_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_270_1 e_1_2_14_293_1 e_1_2_14_229_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_278_1 e_1_2_14_26_1 e_1_2_14_232_1 e_1_2_14_255_1 e_1_2_14_172_1 e_1_2_14_304_1 e_1_2_14_195_1 e_1_2_14_117_1 e_1_2_14_134_1 e_1_2_14_157_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_281_1 e_1_2_14_13_1 e_1_2_14_266_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_217_1 e_1_2_14_289_1 e_1_2_14_243_1 e_1_2_14_160_1 e_1_2_14_183_1 e_1_2_14_220_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_145_1 e_1_2_14_168_1 e_1_2_14_106_1 e_1_2_14_315_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_292_1 e_1_2_14_228_1 e_1_2_14_277_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_205_1 e_1_2_14_254_1 e_1_2_14_171_1 e_1_2_14_194_1 e_1_2_14_231_1 e_1_2_14_303_1 e_1_2_14_118_1 e_1_2_14_133_1 e_1_2_14_156_1 e_1_2_14_179_1 e_1_2_14_114_1 e_1_2_14_137_1 e_1_2_14_321_1 e_1_2_14_31_1 e_1_2_14_92_1 e_1_2_14_261_1 e_1_2_14_284_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_200_1 e_1_2_14_223_1 e_1_2_14_246_1 e_1_2_14_140_1 e_1_2_14_186_1 e_1_2_14_318_1 e_1_2_14_163_1 e_1_2_14_125_1 e_1_2_14_103_1 e_1_2_14_148_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_81_1 e_1_2_14_208_1 e_1_2_14_272_1 e_1_2_14_295_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_89_1 e_1_2_14_211_1 e_1_2_14_234_1 e_1_2_14_257_1 e_1_2_14_269_1 e_1_2_14_151_1 e_1_2_14_197_1 e_1_2_14_174_1 e_1_2_14_115_1 e_1_2_14_136_1 e_1_2_14_306_1 e_1_2_14_320_1 e_1_2_14_159_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 Pavan‐Kymar A. (e_1_2_14_206_1) 2015; 2 e_1_2_14_260_1 e_1_2_14_219_1 e_1_2_14_283_1 e_1_2_14_15_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_268_1 e_1_2_14_245_1 e_1_2_14_222_1 e_1_2_14_317_1 e_1_2_14_162_1 e_1_2_14_185_1 e_1_2_14_124_1 e_1_2_14_147_1 e_1_2_14_104_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 e_1_2_14_271_1 e_1_2_14_207_1 e_1_2_14_294_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_279_1 e_1_2_14_210_1 e_1_2_14_256_1 e_1_2_14_233_1 e_1_2_14_150_1 e_1_2_14_305_1 e_1_2_14_173_1 e_1_2_14_196_1 e_1_2_14_116_1 e_1_2_14_135_1 e_1_2_14_158_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_139_1 e_1_2_14_323_1 e_1_2_14_300_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_263_1 e_1_2_14_286_1 e_1_2_14_33_1 e_1_2_14_214_1 e_1_2_14_79_1 e_1_2_14_237_1 Taberlet P. (e_1_2_14_265_1) 2018 e_1_2_14_202_1 e_1_2_14_180_1 e_1_2_14_240_1 e_1_2_14_165_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_142_1 e_1_2_14_188_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_311_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_274_1 e_1_2_14_297_1 e_1_2_14_22_1 e_1_2_14_225_1 e_1_2_14_248_1 e_1_2_14_19_1 e_1_2_14_213_1 e_1_2_14_251_1 e_1_2_14_191_1 e_1_2_14_130_1 e_1_2_14_176_1 e_1_2_14_153_1 e_1_2_14_308_1 e_1_2_14_199_1 e_1_2_14_113_1 e_1_2_14_138_1 e_1_2_14_322_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_262_1 e_1_2_14_32_1 e_1_2_14_55_1 Sommer R. S. (e_1_2_14_258_1) 2019; 69 e_1_2_14_285_1 e_1_2_14_17_1 e_1_2_14_78_1 e_1_2_14_236_1 e_1_2_14_259_1 e_1_2_14_224_1 e_1_2_14_29_1 e_1_2_14_201_1 e_1_2_14_141_1 e_1_2_14_164_1 e_1_2_14_187_1 e_1_2_14_319_1 e_1_2_14_9_1 e_1_2_14_126_1 e_1_2_14_149_1 Ushio M. (e_1_2_14_291_1) 2018; 2 e_1_2_14_102_1 e_1_2_14_310_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_273_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_209_1 e_1_2_14_296_1 e_1_2_14_247_1 e_1_2_14_190_1 e_1_2_14_18_1 e_1_2_14_235_1 e_1_2_14_212_1 e_1_2_14_250_1 Bonar S. A. (e_1_2_14_38_1) 2009 e_1_2_14_152_1 e_1_2_14_175_1 e_1_2_14_198_1 e_1_2_14_307_1 |
| References_xml | – volume: 15 start-page: 543 year: 2015 end-page: 556 article-title: Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data publication-title: Molecular Ecology Resources – volume: 146 start-page: 99 year: 2017 end-page: 111 article-title: Efficacy of environmental DNA to detect and quantify Brook trout populations in headwater streams of the Adirondack Mountains, New York publication-title: Transactions of the American Fisheries Society – volume: 21 start-page: 1697 year: 2021 end-page: 1704 article-title: eDNAFlow, an automated, reproducible and scalable workflow for analysis of environmental DNA sequences exploiting Nextflow and singularity publication-title: Molecular Ecology Resources – volume: 702 start-page: 134704 year: 2020 article-title: eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River estuary compared to bottom trawling publication-title: Science of the Total Environment – volume: 3 start-page: 1113 year: 2021 end-page: 1127 article-title: Comparing the performance of 12S mitochondrial primers for fish environmental DNA across ecosystems publication-title: Environmental DNA – volume: 21 start-page: 1931 year: 2012 end-page: 1950 article-title: Who is eating what: Diet assessment using next generation sequencing publication-title: Molecular Ecology – volume: 30 start-page: 3068 year: 2021 end-page: 3082 article-title: The relationship between eDNA particle concentration and organism abundance in nature is strengthened by allometric scaling publication-title: Molecular Ecology – volume: 19 start-page: 751 year: 2018 end-page: 768 article-title: The sceptical optimist: Challenges and perspectives for the application of environmental DNA in marine fisheries publication-title: Fish and Fisheries – volume: 1 start-page: 4 year: 2017 article-title: Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA publication-title: Nature Ecology & Evolution – volume: 1 start-page: 185 year: 2018 article-title: Persisitence of environmental DNA in marine systems publication-title: Communications Biology – volume: 49 start-page: 209 year: 2018 end-page: 230 article-title: Uses and misuses of environmental DNA in biodiversity science and conservation publication-title: Annual Review of Ecology Evolution and Systematics – volume: 53 start-page: 6616 year: 2019 end-page: 6631 article-title: New high‐tech flexible networks for the monitoring of deep‐sea ecosystems publication-title: Environmental Science & Technology – volume: 61 start-page: 236 year: 2010 end-page: 252 article-title: Observational methods used in marine spatial monitoring of fishes and associated habitats: A review publication-title: Marine and Freshwater Research – volume: 16 start-page: 123 year: 2016 end-page: 137 article-title: Molecular prey identification in central European piscivores publication-title: Molecular Ecology Resources – volume: 29 start-page: 1069 year: 2020 end-page: 1086 article-title: eDNA metabarcoding survey reveals fine‐scale coral reef community variation across a remote, tropical Island ecosystem publication-title: Molecular Ecology – volume: 20 start-page: 457 year: 2020 end-page: 467 article-title: Environmental DNA facilitates accurate, inexpensive, and multiyear population estimates of millions of anadromous fish publication-title: Molecular Ecology Resources – volume: 790 start-page: 148054 year: 2021 article-title: Impacts of large and small barriers on fish assemblage composition assessed using environmental DNA metabarcoding publication-title: Science of the Total Environment – volume: 51 start-page: 1450 year: 2014 end-page: 1459 article-title: The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology publication-title: Journal of Applied Ecology – volume: 14 start-page: 6.1 year: 2022 end-page: 6.25 article-title: Environmental DNA metabarcoding: A novel method for biodiversity monitoring of marine fish communities publication-title: Annual Review of Marine Sciences – volume: 29 start-page: 4882 year: 2020 end-page: 4897 article-title: Pan‐regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding autonomous reef monitoring structures publication-title: Molecular Ecology – volume: 25 start-page: 1423 year: 2016 end-page: 1428 article-title: From barcodes to genomes: Extending the concept of DNA barcoding publication-title: Molecular Ecology – volume: 9 year: 2014 article-title: Transport distance of invertebrate environmental DNA in a natural river publication-title: PLoS One – volume: 18 start-page: 940 year: 2018 end-page: 952 article-title: Towards robust and repeatable sampling methods in eDNA‐based studies publication-title: Molecular Ecology Resources – volume: 29 start-page: R395 year: 2019 end-page: R402 article-title: Sponges as natural environmental DNA samplers publication-title: Current Biology – volume: 24 start-page: 604 year: 2014 end-page: 615 article-title: Epigenetic modification and inheritance in sexual reversal of fish publication-title: Genome Research – volume: 22 start-page: 1262 year: 2022 end-page: 1273 article-title: Efficiency of eDNA and iDNA in assessing vertebrate diversity and its abundance publication-title: Molecular Ecology Resources – volume: 78 start-page: 422 year: 2021 end-page: 432 article-title: It's complicated … environmental DNA as a predictor of trout and char abundance in streams publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 125 start-page: 107605 year: 2021 article-title: Assessment of sea lamprey ( ) diet using DNA metabarcoding of feces publication-title: Ecological Indicators – volume: 28 start-page: 407 year: 2019 end-page: 419 article-title: The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative publication-title: Molecular Ecology – volume: 12 start-page: 1701 year: 2021 article-title: Threats of global warming to the world's freshwater fishes publication-title: Nature Communications – volume: 115 start-page: 11724 year: 2018 end-page: 11729 article-title: Estimating species distribution and abundance in river networks using environmental DNA publication-title: Proceedings of the National Academy of Sciences of The United States of America – volume: 36 start-page: 662 year: 2016 end-page: 667 article-title: The overlooked fact: Fundamental need for spike‐in control for virtually all genome‐wide analyses publication-title: Molecular and Cellular Biology – volume: 61 start-page: 1 year: 1992 end-page: 10 article-title: Conservation evaluation and phylogenetic diversity publication-title: Biological Conservation – volume: 16 start-page: 673 year: 2016 end-page: 685 article-title: Statistical approaches to account for false‐positive errors in environmental DNA samples publication-title: Molecular Ecology Resources – volume: 339 start-page: 277 year: 2013 end-page: 278 article-title: Essential biodiversity variables publication-title: Science – volume: 58 start-page: 403 year: 2008 end-page: 414 article-title: Freshwater ecoregions of the world: A new map of biogeographic units for freshwater biodiversity conservation publication-title: Bioscience – volume: 126 start-page: 107698 year: 2021 article-title: Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats publication-title: Ecological Indicators – volume: 220 start-page: 1 year: 2018 end-page: 11 article-title: Concentrations of environmental DNA (eDNA) reflect spawning salmon abundance at fine spatial and temporal scales publication-title: Biological Conservation – volume: 8 start-page: 646 year: 2017 end-page: 655 article-title: An environmental DNA‐based method for monitoring spawning activity: A case study, using the endangered Macquarie perch ( ) publication-title: Methods in Ecology and Evolution – volume: 62 start-page: 147 year: 2016 end-page: 153 article-title: The use of environmental DNA of fishes as an efficient method of determining habitat connectivity publication-title: Ecological Indicators – volume: 11 start-page: 3585 year: 2020 article-title: Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems publication-title: Nature Communications – volume: 8 start-page: 640527 year: 2021 article-title: Fieldable environmental DNA sequencing to assess jellyfish biodiversity in nearshore waters of the Florida keys, United States publication-title: Frontiers in Marine Science – volume: 70 start-page: 522 year: 2013 end-page: 526 article-title: Detection of Asian carp DNA as part of a Great Lakes basin‐wide surveillance program publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 54 start-page: 11961 year: 2020 end-page: 11970 article-title: Design and validation of passive environmental DNA samplers using granular activated carbon and montmorillonite clay publication-title: Environmental Science & Technology – volume: 28 start-page: 420 year: 2019 end-page: 430 article-title: How quantitative is metabarcoding: A meta‐analytical approach publication-title: Molecular Ecology – volume: 3 start-page: 492 year: 2021 end-page: 514 article-title: Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes publication-title: Environmental DNA – volume: 9 start-page: 8736 year: 2019 end-page: 8748 article-title: Local parasite pressures and host genotype modulate epigenetic diversity in a mixed‐mating fish publication-title: Ecology and Evolution – volume: 14 year: 2019 article-title: Environmental DNA metabarcoding for fish community analysis in backwater lakes: A comparison of capture methods publication-title: PLoS One – volume: 36 start-page: 103 year: 2014 end-page: 115 article-title: Decrease in cytosine methylation at CpG Island shores and increase in DNA fragmentation during zebrafish aging publication-title: Age – volume: 16 start-page: 415 year: 2016 end-page: 422 article-title: A novel environmental DNA approach to quantify the cryptic invasion of non‐native genotypes publication-title: Molecular Ecology Resources – volume: 371 start-page: 835 year: 2021 end-page: 838 article-title: Human impacts on global freshwater fish biodiversity publication-title: Science – volume: 13 year: 2018 article-title: Shedding light on eDNA: Neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA‐based detection of aquatic organisms publication-title: PLoS One – volume: 21 start-page: 1056 year: 2021 end-page: 1067 article-title: Elucidating shark diets with DNA metabarcoding from cloacal swabs publication-title: Molecular Ecology Resources – volume: 85 start-page: 327 year: 2019 end-page: 337 article-title: Dispersion and degradation of environmental DNA from caged fish in a marine environment publication-title: Fisheries Science – volume: 34 start-page: 666 year: 2018 end-page: 681 article-title: The third revolution in sequencing technology publication-title: Trends in Genetics – volume: 8 start-page: 668822 year: 2021 article-title: Forensics meets ecology—Environmental DNA offers new capabilities for marine ecosystem and fisheries research publication-title: Frontiers in Marine Science – volume: 21 start-page: 453 year: 2011 end-page: 463 article-title: Poverty, sustainability and human wellbeing: A social wellbeing approach to the global fisheries crisis publication-title: Global Environmental Change – volume: 53 start-page: 1148 year: 2016 end-page: 1157 article-title: Quantifying relative fish abundance with eDNA: A promising tool for fisheries management publication-title: Journal of Applied Ecology – volume: 7 year: 2012 article-title: Detection of a diverse marine fish fauna using environmental DNA from seawater samples publication-title: PLoS One – volume: 5 start-page: 676 year: 2014 end-page: 684 article-title: Particle size distribution and optimal capture of aqueous macrobial eDNA publication-title: Methods in Ecology and Evolution – volume: 58 start-page: 63 year: 2018 end-page: 99 – volume: 7 start-page: 355 year: 2007 end-page: 364 article-title: BOLD: The barcode of life data system publication-title: Molecular Ecology Notes – volume: 6 year: 2011 article-title: Persistence of environmental DNA in freshwater ecosystems publication-title: PLoS One – volume: 25 start-page: 929 year: 2016 end-page: 942 article-title: Next‐generation monitoring of aquatic biodiversity using environmental DNA metabarcoding publication-title: Molecular Ecology – volume: 79 start-page: 783 year: 2017 end-page: 801 article-title: Functional ecology of fish: Current approaches and future challenges publication-title: Aquatic Sciences – volume: 22 start-page: 1274 year: 2022 end-page: 1283 article-title: Characterizing the spatial signal of environmental DNA in river systems using a community ecology approach publication-title: Molecular Ecology Resources – volume: 183 start-page: 19 year: 2015 end-page: 28 article-title: Using eDNA to develop a national citizen science‐based monitoring programme for the great crested newt ( ) publication-title: Biological Conservation – volume: 14 year: 2019 article-title: The effect of bivalve filtration on eDNA‐based detection of aquatic organisms publication-title: PLoS One – volume: 19 start-page: 597 year: 2019 end-page: 608 article-title: Environmental DNA for the enumeration and management of Pacific salmon publication-title: Molecular Ecology Resources – volume: 20 start-page: 242 year: 2020 end-page: 255 article-title: Assessment of fish communities using environmental DNA: Effect of spatial sampling design in lentic systems of different sizes publication-title: Molecular Ecology Resources – volume: 10 start-page: 1128 year: 2019 end-page: 1135 article-title: A rapid environmental DNA method for detecting white sharks in the open ocean publication-title: Methods in Ecology and Evolution – volume: 3 start-page: 14 year: 2021 end-page: 21 article-title: Messenger RNA typing of environmental RNA (eRNA): A case study on zebrafish tank water with perspectives for the future development of eRNA analysis on aquatic vertebrates publication-title: Environmental DNA – volume: 7 start-page: 8515 year: 2017 end-page: 8522 article-title: Distinct seasonal migration patterns of Japanese native and non‐native genotypes of common carp estimated by environmental DNA publication-title: Ecology and Evolution – volume: 62 start-page: 30 year: 2017 end-page: 39 article-title: Environmental DNA analysis for estimating the abundance and biomass of stream fish publication-title: Freshwater Biology – volume: 118 year: 2021 article-title: Epigenetic inheritance of DNA methylation changes in fish living in hydrogen sulfide‐rich springs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 183 start-page: 85 year: 2015 end-page: 92 article-title: Quantifying effects of UV‐B, temperature, and pH on eDNA degradation in aquatic microcosms publication-title: Biological Conservation – volume: 5 start-page: 245 year: 2002 end-page: 249 article-title: Declines in the numbers of amateur and professional taxonomists: Implications for conservation publication-title: Animal Conservation – volume: 317 start-page: 111 year: 2007 end-page: 114 article-title: Ancient biomolecules from deep ice cores reveal a forested southern Greenland publication-title: Science – volume: 3 start-page: 699 year: 2021 end-page: 705 article-title: Making environmental DNA (eDNA) biodiversity records globally accessible publication-title: Environmental DNA – volume: 9 year: 2014 article-title: The release rate of environmental DNA from juvenile and adult fish publication-title: PLoS One – year: 2022 article-title: Environmental RNA degrades more rapidly than environmental DNA across a broad range of pH conditions publication-title: Molecular Ecology Resources – volume: 126 start-page: 131 year: 2005 end-page: 140 article-title: Genetics and extinction publication-title: Biological Conservation – volume: 11 start-page: 14439 year: 2021 article-title: Environmental DNA reveals the fine‐grained and hierarchical spatial structure of kelp forest fish communities publication-title: Scientific Reports – volume: 7 start-page: 5065 year: 2017 article-title: Controls on eDNA movement in streams: Transport, retention, and resuspension publication-title: Scientific Reports – volume: 46 year: 2008 article-title: Stratification of lakes publication-title: Reviews of Geophysics – volume: 30 start-page: 685 year: 2021 end-page: 697 article-title: Nuclear eDNA estimates population allele frequencies and abundance in experimental mesocosms and field samples publication-title: Molecular Ecology – volume: 1 start-page: 238 year: 2019 end-page: 250 article-title: Limited dispersion and quick degradation of environmental DNA in fish ponds inferred by metabarcoding publication-title: Environmental DNA – volume: 16 start-page: 604 year: 2016 end-page: 607 article-title: How to limit false positives in environmental DNA and metabarcoding? publication-title: Molecular Ecology Resources – volume: 61 start-page: 229 year: 2002 end-page: 250 article-title: Fishes as indicators of environmental and ecological changes within estuaries: A review of progress and some suggestions for the future publication-title: Journal of Fish Biology – volume: 59 start-page: 603 year: 2016 end-page: 628 article-title: The use of DNA barcodes in food web construction—Terrestrial and aquatic ecologists unite! publication-title: Genome – volume: 20 start-page: 1323 year: 2020 end-page: 1332 article-title: Quantitative evaluation of intraspecific genetic diversity in a natural fish population using environmental DNA analysis publication-title: Molecular Ecology Resources – volume: 26 start-page: 5872 year: 2017 end-page: 5895 article-title: Environmental DNA metabarcoding: Transforming how we survey animal and plant communities publication-title: Molecular Ecology – volume: 22 start-page: 822 year: 2021 end-page: 833 article-title: Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs publication-title: Fish and Fisheries – year: 2009 – volume: 4 start-page: 271 year: 2022 end-page: 283 article-title: Linking the state of environmental DNA to its application for biomonitoring and stock assessment: Targeting mitochondrial/nuclear genes, and different DNA fragment lengths and particle sizes publication-title: Environmental DNA – volume: 16 year: 2021 article-title: eDNA captures depth partitioning in a kelp forest ecosystem publication-title: PLoS One – volume: 98 start-page: 354 year: 2021 end-page: 366 article-title: The future of fish‐based ecological assessment of European rivers: From traditional EU water framework directive compliant methods to eDNA metabarcoding‐based approaches publication-title: Journal of Fish Biology – volume: 12 year: 2017 article-title: Application of stochastic labeling with random‐sequence barcodes for simultaneous quantification and sequencing of environmental 16S rRNA genes publication-title: PLoS One – volume: 11 start-page: 1609 year: 2020 end-page: 1625 article-title: A comprehensive and comparative evaluation of primers for metabarcoding eDNA from fish publication-title: Methods in Ecology and Evolution – volume: 1 start-page: 5 year: 2019 end-page: 13 article-title: Meta‐analysis supports further refinement of eDNA for monitoring aquatic species‐specific abundance in nature publication-title: Environmental DNA – volume: 13 start-page: 988 year: 2018 end-page: 1011 article-title: Dynamic epimarks in sex‐related genes predict gonad phenotype in the European sea bass, a fish with mixed genetic and environmental sex determination publication-title: Epigenetics – volume: 286 start-page: 20191409 year: 2019 article-title: Predicting the fate of eDNA in the environment and implications for studying biodiversity publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 98 start-page: 341 year: 2021 end-page: 353 article-title: Can we manage fisheries with the inherent uncertainty from eDNA publication-title: Journal of Fish Biology – year: 2021 – volume: 332 start-page: 1079 year: 2011 end-page: 1082 article-title: Early warnings of regime shifts: A whole‐ecosystem experiment publication-title: Science – volume: 13 start-page: 245 year: 2020 end-page: 262 article-title: Population‐level inferences from environmental DNA‐current status and future perspectives publication-title: Evolutionary Applications – volume: 21 start-page: 30 year: 2021 end-page: 43 article-title: The quest for absolute abundance: The use of internal standards for DNA‐based community ecology publication-title: Molecular Ecology Resources – volume: 30 start-page: 2937 year: 2021 end-page: 2958 article-title: Ecosystems monitoring powered by environmental genomics: A review of current strategies with an implementation roadmap publication-title: Molecular Ecology – volume: 33 start-page: 372 year: 2008 end-page: 407 article-title: Conservation status of imperiled north American freshwater and diadromous fishes publication-title: Fisheries – volume: 2 start-page: 422 year: 2010 end-page: 430 article-title: Prospects for sustaining freshwater biodiversity in the 21st century: Linking ecosystem structure and function publication-title: Current Opinion in Environmental Sustainability – volume: 10 start-page: 96 year: 2010 end-page: 108 article-title: A PCR‐based method for diet analysis in freshwater organisms using 18S rDNA barcoding on faeces publication-title: Molecular Ecology Resources – volume: 30 start-page: 3057 year: 2021 end-page: 3067 article-title: Estimating fish population abundance by integrating quantitative data on environmental DNA and hydrodynamic modelling publication-title: Molecular Ecology – volume: 69 start-page: 83 year: 2019 end-page: 92 article-title: Preliminary results on the molecular study of fish‐eating by 'trawling Myotis' bat species in Europe publication-title: Vertebrate Zoology – volume: 20 start-page: 29 year: 2020 end-page: 39 article-title: A practical guide to sample preservation and pre‐PCR processing of aquatic environmental DNA publication-title: Molecular Ecology Resources – volume: 108 start-page: 9026 year: 2011 end-page: 9031 article-title: Counting individual DNA molecules by the stochastic attachment of diverse labels publication-title: Proceedings of National Academy of Sciences of The United States of America – volume: 74 start-page: 2030 year: 2017 end-page: 2034 article-title: At the forefront: Evidence of the applicability of using environmental DNA to quantify the abundance of fish populations in natural lentic waters with additional sampling considerations publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 4 start-page: 139 year: 2012 end-page: 146 article-title: Building a global observing system for biodiversity publication-title: Current Opinion in Environmental Sustainability – volume: 164 start-page: 112 year: 2017 article-title: Development of a sensitive detection method to survey pelagic biodiversity using eDNA and quantitative PCR: A case study of devil ray at seamounts publication-title: Marine Biology – volume: 11 start-page: 254 year: 2020 article-title: Environmental DNA reveals seasonal shifts and potential interactions in a marine community publication-title: Nature Communications – volume: 48 start-page: 1819 year: 2014 end-page: 1827 article-title: Environmental conditions influence eDNA persistence in aquatic systems publication-title: Environmental Science & Technology – volume: 1 start-page: 99 year: 2019 end-page: 108 article-title: The detection of aquatic macroorganisms using environmental DNA analysis—A review of methods for collection, extraction, and detection publication-title: Environmental DNA – volume: 22 start-page: 56 year: 2022 end-page: 65 article-title: Individual haplotyping of whale sharks from seawater environmental DNA publication-title: Molecular Ecology Resources – volume: 97 start-page: 444 year: 2020 end-page: 452 article-title: Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long‐term electrofishing survey publication-title: Journal of Fish Biology – volume: 11 start-page: 434 year: 2010 article-title: An approach for the evaluation of DNA barcodes publication-title: BMC Genomics – volume: 43 start-page: 70 year: 2006 end-page: 80 article-title: Assessing river biotic condition at a continental scale: A European approach using functional metrics and fish assemblages publication-title: Journal of Applied Ecology – volume: 35 start-page: 1944 year: 2021 end-page: 1956 article-title: Use of environmental DNA in assessment of fish functional and phylogenetic diversity publication-title: Conservation Biology – volume: 11 year: 2016 article-title: Spatial representativeness of environmental DNA metabarcoding signal for fish biodiversity assessment in a natural freshwater system publication-title: PLoS One – volume: 9 year: 2014 article-title: Using environmental DNA to census marine fishes in a large mesocosm publication-title: PLoS One – volume: 11 start-page: 8281 year: 2021 end-page: 8294 article-title: Environmental DNA metabarcoding primers for freshwater fish detection and quantification: In silico and in tanks publication-title: Ecology and Evolution – volume: 9 start-page: 1 year: 2014 end-page: 9 article-title: Assessing environmental DNA detection in controlled lentic systems publication-title: PLoS One – volume: 9 start-page: 12133 year: 2019 article-title: Understanding PCR processes to draw meaningful conclusions from environmental DNA studies publication-title: Scientific Reports – volume: 55 start-page: 101033 year: 2020 article-title: Monitoring global changes in biodiversity and climate essential as ecological crisis intensifies publication-title: Ecological Informatics – volume: 30 start-page: 3097 year: 2021 end-page: 3110 article-title: Monitoring of spatiotemporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA publication-title: Molecular Ecology – volume: 3 start-page: 837 year: 2021 end-page: 849 article-title: eDNA in a bottleneck: Obstacles to fish metabarcoding studies in megadiverse freshwater systems publication-title: Environmental DNA – volume: 9 start-page: 3085 year: 2019 article-title: Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers publication-title: Scientific Reports – volume: 1 start-page: 4 year: 2018 article-title: Acidity promotes degradation of multi‐species environmental DNA in lotic mesocosms publication-title: Communications Biology – volume: 21 start-page: 2324 year: 2021 end-page: 2332 article-title: Nonlethal age estimation of three threatened fish species using DNA methylation: Australian lungfish, Murray cod and Mary River cod publication-title: Molecular Ecology Resources – volume: 30 year: 2020 article-title: From metabarcoding to metaphylogeography: Separating the wheat from the chaff publication-title: Ecological Applications – volume: 90 start-page: 2214 year: 2017 end-page: 2219 article-title: Application of DNA metabarcoding on faeces to identify European catfish diet publication-title: Journal of Fish Biology – volume: 7 year: 2012 article-title: Estimation of fish biomass using environmental DNA publication-title: PLoS One – volume: 45 start-page: 43 year: 2017 end-page: 50 article-title: Molecular‐biological sensing in aquatic environments: Recent developments and emerging capabilities publication-title: Current Opinion in Biotechnology – volume: 14 year: 2019 article-title: Using eDNA to biomonitor the fish community in a tropical oligotrophic lake publication-title: PLoS One – volume: 183 start-page: 4 year: 2015 end-page: 18 article-title: Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity publication-title: Biological Conservation – volume: 30 start-page: 3111 year: 2021 end-page: 3126 article-title: Multispecies models reveal that eDNA metabarcoding is more sensitive than backpack electrofishing for conducting fish surveys in freshwater streams publication-title: Molecular Ecology – volume: 30 start-page: 3127 year: 2021 end-page: 3139 article-title: Environmental DNA effectively captures functional diversity of coastal fish communities publication-title: Molecular Ecology – volume: 42 start-page: 90 year: 2017 end-page: 99 article-title: Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing publication-title: Fisheries – volume: 8 year: 2013 article-title: Using environmental DNA to estimate the distribution of an invasive fish species in ponds publication-title: PLoS One – volume: 135 start-page: 105307 year: 2020 article-title: Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals publication-title: Environment International – volume: 9 start-page: 553 year: 2019 end-page: 567 article-title: Identifying spawning sites and other critical habitat in lotic systems using eDNA “snapshots”: A case study using the sea lamprey L publication-title: Ecology and Evolution – volume: 197 start-page: 60 year: 2018 end-page: 66 article-title: Freshwater fisheries assessment using environmental DNA: A primer on the method, its potential, and shortcomings as a conservation tool publication-title: Fisheries Research – volume: 7 start-page: 40368 year: 2017 article-title: Environmental DNA metabarcoding reveals local fish communities in a species‐rich coastal sea publication-title: Scientific Reports – volume: 21 start-page: 1789 year: 2012 end-page: 1793 article-title: Environmental DNA publication-title: Molecular Ecology – volume: 86 start-page: 465 year: 2020 end-page: 471 article-title: The effect of temperature on environmental DNA degradation of Japanese eel publication-title: Fisheries Science – volume: 56 start-page: 10798 year: 2022 end-page: 10807 article-title: A comparative evaluation of common materials as passive samplers of environmental DNA publication-title: Environmental Science and Technology – volume: 60 start-page: 358 year: 2017 end-page: 374 article-title: The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA publication-title: Genome – volume: 67 start-page: 1333 year: 2022 end-page: 1343 article-title: Meta‐analyses of environmental DNA downstream transport and deposition in relation to hydrogeography in riverine environments publication-title: Freshwater Biology. – volume: 29 start-page: 358 year: 2014 end-page: 367 article-title: Environmental DNA for wildlife biology and biodiversity monitoring publication-title: Trends in Ecology & Evolution – volume: 183 start-page: 77 year: 2015 end-page: 84 article-title: Quantification of eDNA shedding rates from invasive bighead carp and silver carp publication-title: Biological Conservation – volume: 486 start-page: 52 year: 2012 end-page: 58 article-title: Approaching a state shift in Earth's biosphere publication-title: Nature – volume: 347 start-page: 247 year: 2015 end-page: 254 article-title: Marine defaunation: Animal loss in the global ocean publication-title: Science – volume: 94 start-page: 849 year: 2019 end-page: 873 article-title: Emerging threats and persistent conservation challenges for freshwater biodiversity publication-title: Biological Reviews – volume: 52 start-page: 8530 year: 2018 end-page: 8537 article-title: Water flow and biofilm cover influence environmental DNA detection in recirculating streams publication-title: Environmental Science & Technology – volume: 63 start-page: 569 year: 2018 end-page: 580 article-title: Comparing local‐ and regional‐scale estimations of the diversity of stream fish using eDNA metabarcoding and conventional observation methods publication-title: Freshwater Biology – volume: 166 start-page: 106 year: 2019 article-title: Metabarcoding analysis of the Pacific harbor seal diet in Mexico publication-title: Marine Biology – year: 2022 article-title: Systematic review and meta‐analysis: Water type and temperature affect environmental DNA decay publication-title: Molecular Ecology Resources – volume: 21 start-page: 2045 year: 2012 end-page: 2050 article-title: Towards next‐generation biodiversity assessment using DNA metabarcoding publication-title: Molecular Ecology – volume: 4 year: 2020 article-title: Read counts from environmental DNA (eDNA) metabarcoding reflect fish abundance and biomass in drained ponds publication-title: Metabarcoding and Metagenomics – volume: 1 start-page: 368 year: 2019 end-page: 394 article-title: Comparison of fish detections, community diversity, and relative abundance using environmental DNA metabarcoding and traditional gears publication-title: Environmental DNA – volume: 17 start-page: 523 year: 2017 end-page: 532 article-title: Residual eDNA detection sensitivity assessed by quantitative real‐time PCR in a river ecosystem publication-title: Molecular Ecology Resources – volume: 9 start-page: 535 year: 2018 end-page: 543 article-title: Estimating species colonization dates using DNA in lake sediment publication-title: Methods in Ecology and Evolution – volume: 16 start-page: 1401 year: 2016 end-page: 1414 article-title: Estimating fish abundance and biomass from eDNA concentrations: Variability among capture methods and environmental conditions publication-title: Molecular Ecology Resources – volume: 31 start-page: 1820 year: 2022 end-page: 1835 article-title: Meta‐analysis shows both congruence and complementarity of DNA and eDNA metabarcoding to traditional methods for biological community assessment publication-title: Molecular Ecology – volume: 7 start-page: 605148 year: 2020 article-title: More than expected from old sponge samples: A natural sampler DNA metabarcoding assessment of marine fish diversity in Nha Trang Bay (Vietnam) publication-title: Frontiers in Marine Science – volume: 49 start-page: D92 year: 2021 end-page: D96 article-title: GenBank publication-title: Nucleic Acids Research – volume: 7 start-page: 1299 year: 2016 end-page: 1307 article-title: Critical considerations for the application of environmental DNA methods to detect aquatic species publication-title: Methods in Ecology and Evolution – volume: 9 start-page: 1135 year: 2019 end-page: 1146 article-title: Effect of water temperature and fish biomass on environmental DNA shedding, degradation, and size distribution publication-title: Ecology and Evolution – volume: 45 start-page: 219 year: 2009 end-page: 235 article-title: Extracellular DNA in soil and sediment: Fate and ecological relevance publication-title: Biology and Fertility of Soils – volume: 14 start-page: 109 year: 2014 end-page: 116 article-title: Factors influencing detection of eDNA from a stream‐dwelling amphibian publication-title: Molecular Ecology Resources – volume: 50 start-page: 10456 year: 2016 end-page: 10464 article-title: Quantification of environmental DNA (eDNA) shedding and decay rates for three marine fish publication-title: Environmental Science & Technology – volume: 8 start-page: 276 year: 2020 article-title: Calibrating environmental DNA metabarcoding to conventional surveys for measuring fish species richness publication-title: Frontiers in Ecology and Evolution – volume: 6 year: 2011 article-title: Molecular detection of vertebrates in stream water: A demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders publication-title: PLoS One – volume: 60 start-page: 607 year: 2009 end-page: 609 article-title: DNA evidence of whale sharks ( ) feeding on red crab ( ) larvae at Christmas Island, Australia publication-title: Marine and Freshwater Research – volume: 31 year: 2021 article-title: Consistent declines in aquatic biodiversity across diverse domains of life in rivers impacted by surface coal mining publication-title: Ecological Applications – volume: 25 start-page: 527 year: 2016 end-page: 541 article-title: Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA publication-title: Molecular Ecology – volume: 12 year: 2017 article-title: Application of environmental DNA to detect an endangered marine skate species in the wild publication-title: PLoS One – volume: 56 start-page: 5322 year: 2022 end-page: 5333 article-title: The multiple states of environmental DNA and what is known about their persistence in aquatic environments publication-title: Environmental Science and Technology – volume: 4 start-page: 222 year: 2022 end-page: 238 article-title: Environmental DNA in a global biodiversity hotspot: Lessons from coral reef fish diversity across the Indonesian archipelago publication-title: Environmental DNA – volume: 21 start-page: 2039 year: 2012 end-page: 2044 article-title: Biomonitoring 2.0: A new paradigm in ecosystem assessment made possible by next‐generation DNA sequencing publication-title: Molecular Ecology – volume: 20 start-page: 65 year: 1995 end-page: 80 article-title: The use of fish in ecological assessments publication-title: Australian Journal of Ecology – volume: 3 start-page: 8 year: 2021 end-page: 13 article-title: An illustrated manual for environmental DNA research: Water sampling guidelines and experimental protocols publication-title: Environmental DNA – volume: 98 start-page: 367 year: 2021 end-page: 382 article-title: Fish as predators and prey: DNA‐based assessment of their role in food webs publication-title: Journal of Fish Biology – volume: 21 start-page: 1422 year: 2021 end-page: 1433 article-title: Improving the reliability of eDNA data interpretation publication-title: Molecular Ecology Resources – volume: 50 start-page: 1859 year: 2016 end-page: 1867 article-title: Effects of temperature and trophic state on degradation of environmental DNA in lake water publication-title: Environmental Science & Technology – volume: 2 start-page: 99 year: 2020 end-page: 111 article-title: Water stratification in the marine biome restricts vertical environmental DNA (eDNA) signal dispersal publication-title: Environmental DNA – volume: 13 year: 2018 article-title: Environmental DNA (eDNA): A tool for quantifying the abundant but elusive round goby ( ) publication-title: PLoS One – volume: 12 year: 2017 article-title: Water temperature‐dependent degradation of environmental DNA and its relation to bacterial abundance publication-title: PLoS One – volume: 11 start-page: 609 year: 2008 end-page: 623 article-title: Ecological consequences of genetic diversity publication-title: Ecology Letters – volume: 8 year: 2020 article-title: The diet of otters ( ) on the Agri river system, one of the most important presence sites in Italy: A molecular approach publication-title: PeerJ – volume: 32 start-page: 477 year: 2017 end-page: 487 article-title: Next‐generation global biomonitoring: Large‐scale, automated reconstruction of ecological networks publication-title: Trends in Ecology & Evolution – volume: 11 start-page: 4372 year: 2021 article-title: Simultaneous absolute quantification and sequencing of fish environmental DNA in a mesocosm by quantitative sequencing technique publication-title: Scientific Reports – volume: 47 start-page: 509 year: 2020 end-page: 522 article-title: Species in the faeces: DNA metabarcoding as a method to determine the diet of the endangered yellow‐eyed penguin publication-title: Wildlife Research – volume: 30 start-page: 3083 year: 2021 end-page: 3096 article-title: Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes publication-title: Molecular Ecology – volume: 7 start-page: 604878 year: 2021 article-title: DNA methylation dynamics in Atlantic salmon ( ) challenged with high temperature and moderate hypoxia publication-title: Frontiers in Marine Science – volume: 8 start-page: 6714 issue: 13 year: 2018 end-page: 6727 article-title: Attracting common carp to a bait site with food reveals strong positive relationships between fish density, feeding activity, environmental DNA, and sex pheromone release that could be used in invasive fish management publication-title: Ecology and Evolution – volume: 138 start-page: 192 year: 2018 end-page: 205 article-title: Implementation options for DNA‐based identification into ecological status assessment under the European water framework directive publication-title: Water Research – volume: 2 start-page: 42 year: 2020 end-page: 52 article-title: Evaluating intraspecific genetic diversity using environmental DNA and denoising approach: A case study using tank water publication-title: Environmental DNA – volume: 52 start-page: 6408 year: 2018 end-page: 6416 article-title: Does size matter? An experimental evaluation of the relative abundance and decay rates of aquatic environmental DNA publication-title: Environmental Science & Technology – volume: 21 start-page: 2565 year: 2021 end-page: 2579 article-title: Benchmarking bioinformatic tools for fast and accurate eDNA metabarcoding species identification publication-title: Molecular Ecology Resources – volume: 22 start-page: 16262 year: 2015 end-page: 16276 article-title: Zebrafish as a model to study the role of DNA methylation in environmental toxicology publication-title: Environmental Science and Pollution Research – volume: 5 year: 2017 article-title: Spatial distribution of environmental DNA in a nearshore marine habitat publication-title: PeerJ – volume: 678 start-page: 499 year: 2019 end-page: 524 article-title: DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap‐analysis and recommendations for future work publication-title: Science of the Total Environment – volume: 50 start-page: 85 year: 2021 end-page: 94 article-title: Scientists' warning to humanity on the freshwater biodiversity crisis publication-title: Ambio – volume: 10 start-page: 13272 year: 2020 article-title: Remote, autonomous real‐time monitoring of environmental DNA from commercial fish publication-title: Scientific Reports – volume: 74 start-page: 1362 year: 2017 end-page: 1374 article-title: Fish community assessment with eDNA metabarcoding: Effects of sampling design and bioinformatic filtering publication-title: Canadian Journal of Fisheries and Aquatic Sciences – volume: 10 start-page: 1985 year: 2019 end-page: 2001 article-title: Non‐specific amplification compromises environmental DNA metabarcoding with COI publication-title: Methods in Ecology and Evolution – volume: 34 start-page: 2203 year: 2017 end-page: 2213 article-title: Genome‐wide DNA methylation profiling reveals epigenetic adaptation of stickleback to marine and freshwater conditions publication-title: Molecular Biology and Evolution – volume: 29 start-page: 1996 year: 2019 end-page: 2009 article-title: Taxonomic and geographical representation of freshwater environmental DNA research in aquatic conservation publication-title: Aquatic Conservation‐Marine and Freshwater Ecosystems – volume: 52 start-page: 10562 year: 2018 end-page: 10570 article-title: Simulating the advection and degradation of the environmental DNA of common carp along a river publication-title: Environmental Science & Technology – volume: 86 start-page: 939 year: 2020 end-page: 970 article-title: MiFish metabarcoding: A high‐throughput approach for simultaneous detection of multiple fish species from environmental DNA and other samples publication-title: Fisheries Science – volume: 183 start-page: 1 year: 2015 end-page: 3 article-title: Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms publication-title: Biological Conservation – volume: 8 start-page: 10361 year: 2018 article-title: Environmental DNA reveals quantitative patterns of fish biodiversity in large rivers despite its downstream transportation publication-title: Scientific Reports – volume: 37 start-page: 1010 year: 2017 end-page: 1027 article-title: Comparison of American fisheries society (AFS) standard fish sampling techniques and environmental DNA for characterizing fish communities in a large reservoir publication-title: North American Journal of Fisheries Management – volume: 7 start-page: 12240 year: 2017 article-title: Ecosystem biomonitoring with eDNA: Metabarcoding across the tree of life in a tropical marine environment publication-title: Scientific Reports – volume: 98 start-page: 415 year: 2021 end-page: 425 article-title: At Palmyra atoll, the fish‐community environmental DNA signal changes across habitats but not with tides publication-title: Journal of Fish Biology – volume: 29 start-page: 2521 year: 2020 end-page: 2534 article-title: Beyond DNA barcoding: The unrealized potential of genome skim data in sample identification publication-title: Molecular Ecology – volume: 313 start-page: 58 year: 2006 end-page: 61 article-title: Global biodiversity conservation priorities publication-title: Science – volume: 17 start-page: e25 year: 2017 end-page: e33 article-title: Rapid degradation of longer DNA fragments enables the improved estimation of distribution and biomass using environmental DNA publication-title: Molecular Ecology Resources – volume: 1 start-page: 26 year: 2019 end-page: 39 article-title: Temporal and spatial variation in distribution of fish environmental DNA in England's largest lake publication-title: Environmental DNA – volume: 21 start-page: 178 year: 2006 end-page: 185 article-title: Rebuilding community ecology from functional traits publication-title: Trends in Ecology & Evolution – volume: 2 year: 2018 article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing publication-title: Metabarcoding and Metagenomics – volume: 117 start-page: 268 year: 2016 end-page: 278 article-title: Making sense of the relationships between ne, Nb and Nc towards defining conservation thresholds in Atlantic salmon ( ) publication-title: Heredity – volume: 4 start-page: 236 year: 2021 article-title: Passive eDNA collection enhances aquatic biodiversity analysis publication-title: Communications Biology – volume: 27 start-page: 1880 year: 2021 end-page: 1892 article-title: GAPeDNA: Assessing and mapping global species gaps in genetic databases for eDNA metabarcoding publication-title: Diversity and Distributions – volume: 31 start-page: 4817 year: 2021 end-page: 4823 article-title: Disentangling tropicalization and deborealization in marine ecosystems under climate change publication-title: Current Biology – volume: 20 start-page: 387 year: 2020 end-page: 397 article-title: A clockwork fish: Age prediction using DNA methylation‐based biomarkers in the European seabass publication-title: Molecular Ecology Resources – volume: 30 start-page: 1120 year: 2021 end-page: 1135 article-title: Connecting high‐throughput biodiversity inventories: Opportunities for a site‐based genomic framework for global integration and synthesis publication-title: Molecular Ecology – volume: 4 year: 2018 article-title: Environmental DNA illuminates the dark diversity of sharks publication-title: Science Advances – volume: 20 start-page: 1248 year: 2020 end-page: 1258 article-title: Environmental DNA analysis shows high potential as a tool for estimating intraspecific genetic diversity in a wild fish population publication-title: Molecular Ecology Resources – volume: 183 start-page: 93 year: 2015 end-page: 102 article-title: Fish environmental DNA is more concentrated in aquatic sediments than surface water publication-title: Biological Conservation – volume: 183 start-page: 29 year: 2015 end-page: 37 article-title: Characterizing the distribution of an endangered salmonid using environmental DNA analysis publication-title: Biological Conservation – volume: 3 start-page: 43 year: 2021 end-page: 54 article-title: A drop in the ocean: Monitoring fish communities in spawning areas using environmental DNA publication-title: Environmental DNA – volume: 197 start-page: 131 year: 2016 end-page: 138 article-title: Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system publication-title: Biological Conservation – volume: 21 start-page: 1558 year: 2021 end-page: 1574 article-title: Integrating eDNA metabarcoding and simultaneous underwater visual surveys to describe complex fish communities in a marine biodiversity hotspot publication-title: Molecular Ecology Resources – volume: 11 start-page: 296 year: 2020 article-title: Standards for methods utilizing environmental DNA for detection of fish species publication-title: Genes – volume: 754 start-page: 142096 year: 2021 article-title: Space‐time dynamics in monitoring neotropical fish communities using eDNA metabarcoding publication-title: Science of the Total Environment – volume: 28 start-page: 1857 year: 2019 end-page: 1862 article-title: DNA metabarcoding‐need for robust experimental designs to draw sound ecological conclusions publication-title: Molecular Ecology – volume: 12 year: 2017 article-title: Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding publication-title: PLoS One – volume: 359 start-page: 986 year: 2018 end-page: 987 article-title: Seeking resilience in marine ecosystems publication-title: Science – volume: 287 start-page: 20200248 year: 2020 article-title: Accumulation curves of environmental DNA sequences predict coastal fish diversity in the coral triangle publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 755 start-page: 142622 year: 2021 article-title: Methodology of fish eDNA and its applications in ecology and environment publication-title: Science of the Total Environment – volume: 6 start-page: 373 year: 2019 article-title: In situ autonomous acquisition and preservation of marine environmental DNA using an autonomous underwater vehicle publication-title: Frontiers in Marine Science – volume: 19 start-page: 1278 year: 2019 end-page: 1291 article-title: DNA barcoding the ichthyofauna of the Yangtze River: Insights from the molecular inventory of a mega‐diverse temperate fauna publication-title: Molecular Ecology Resources – volume: 17 start-page: 313 year: 2019 end-page: 318 article-title: Environmental DNA in lake sediment reveals biogeography of native genetic diversity publication-title: Frontiers in Ecology and the Environment – volume: 11 start-page: 19477 year: 2021 article-title: Quantitative assessment of multiple fish species around artificial reefs combining environmental DNA metabarcoding and acoustic survey publication-title: Scientific Reports – volume: 797 start-page: 149175 year: 2021 article-title: The particle size distribution of environmental DNA varies with species and degradation publication-title: Science of the Total Environment – volume: 194 start-page: 209 year: 2016 end-page: 216 article-title: Understanding environmental DNA detection probabilities: A case study using a stream‐dwelling char publication-title: Biological Conservation – year: 2018 – volume: 128 start-page: 107796 year: 2021 article-title: Fish environmental RNA enables precise ecological surveys with high positive predictivity publication-title: Ecological Indicators – volume: 7 start-page: 14860 year: 2017 article-title: Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities publication-title: Scientific Reports – volume: 8 year: 2022 article-title: Environmental DNA captures native and non‐native fish community variations across the lentic and lotic systems of a megacity publication-title: Science Advances – volume: 510 start-page: 31 year: 2019 end-page: 45 article-title: Species‐specific detection and quantification of environmental DNA from marine fishes in the Baltic Sea publication-title: Journal of Experimental Marine Biology and Ecology – volume: 14 year: 2019 article-title: Invasion genetics of the silver carp across North America: Differentiation of fronts, introgression, and eDNA metabarcode detection publication-title: PLoS One – volume: 96 start-page: 145 year: 2016 end-page: 151 article-title: A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing publication-title: Soil Biology and Biochemistry – volume: 637 start-page: 1295 year: 2018 end-page: 1310 article-title: The future of biotic indices in the ecogenomic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems publication-title: Science of the Total Environment – volume: 4 start-page: 150 year: 2011 end-page: 157 article-title: "sight‐unseen" detection of rare aquatic species using environmental DNA publication-title: Conservation Letters – volume: 2 start-page: 461 year: 2019 article-title: Environmental DNA concentrations are correlated with regional biomass of Atlantic cod in oceanic waters publication-title: Communications Biology – volume: 19 start-page: 27 year: 2019 end-page: 46 article-title: Unlocking biodiversity and conservation studies in high‐diversity environments using environmental DNA (eDNA): A test with Guianese freshwater fishes publication-title: Molecular Ecology Resources – volume: 15 start-page: 266 year: 2017 end-page: 274 article-title: Freshwater biomonitoring in the information age publication-title: Frontiers in Ecology and the Environment – volume: 2 start-page: 493 year: 2020 end-page: 504 article-title: Maximizing fish detection with eDNA metabarcoding publication-title: Environmental DNA – volume: 10 start-page: 858 year: 2019 article-title: Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: Current uses and future directions publication-title: Genes – volume: 183 start-page: 46 year: 2015 end-page: 52 article-title: Monitoring the near‐extinct European weather loach in Denmark based on environmental DNA from water samples publication-title: Biological Conservation – volume: 14 year: 2019 article-title: Nonlinear relationship between silver carp density and their eDNA concentration in a large river publication-title: PLoS One – volume: 21 start-page: 2546 year: 2021 end-page: 2564 article-title: Improving metabarcoding taxonomic assignment: A case study of fishes in a large marine ecosystem publication-title: Molecular Ecology Resources – volume: 9 start-page: 134 year: 2018 end-page: 147 article-title: Scrutinizing key steps for reliable metabarcoding of environmental samples publication-title: Methods in Ecology and Evolution – volume: 11 start-page: 2769 year: 2021 article-title: Environmental (e)RNA advances the reliability of eDNA by predicting its age publication-title: Scientific Reports – volume: 14 start-page: 347 year: 2017 end-page: 348 article-title: Nanopore sequencing meets epigenetics publication-title: Nature Methods – volume: 26 start-page: 1107 year: 2016 end-page: 1119 article-title: Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar ( ) publication-title: Aquatic Conservation‐Marine and Freshwater Ecosystems – volume: 98 start-page: 1889 year: 2015 end-page: 1893 article-title: Environmental DNA as an effective tool for detection of imperiled fishes publication-title: Environmental Biology of Fishes – volume: 35 start-page: 1553 year: 2018 end-page: 1555 article-title: MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding publication-title: Molecular Biology and Evolution – volume: 56 start-page: 1232 year: 2019 end-page: 1244 article-title: Ground‐truthing of a fish‐based environmental DNA metabarcoding method for assessing the quality of lakes publication-title: Journal of Applied Ecology – volume: 14 start-page: 1210 year: 2014 end-page: 1221 article-title: Spatial heterogeneity in the Mediterranean biodiversity hotspot affects barcoding accuracy of its freshwater fishes publication-title: Molecular Ecology Resources – volume: 36 start-page: 7 year: 2021 end-page: 609 article-title: Environmental RNA: A revolution in ecological resolution publication-title: Trends in Ecology & Evolution – volume: 10 start-page: 192 year: 2019 article-title: Beyond biodiversity: Can environmental DNA (eDNA) cut it as a population genetics tool? publication-title: Genes – volume: 16 start-page: 29 year: 2016 end-page: 41 article-title: Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding publication-title: Molecular Ecology Resources – volume: 6 start-page: 21 year: 1981 end-page: 27 article-title: Assessment of biotic integrity using fish communities publication-title: Fisheries – volume: 10 start-page: 5354 year: 2020 end-page: 5367 article-title: Effects of sampling seasons and locations on fish environmental DNA metabarcoding in dam reservoirs publication-title: Ecology and Evolution – volume: 23 start-page: 40 year: 2014 end-page: 51 article-title: Global patterns of freshwater species diversity, threat and endemism publication-title: Global Ecology and Biogeography – volume: 325 start-page: 1215 year: 2009 end-page: 1216 article-title: Threats to freshwater fish publication-title: Science – volume: 10 year: 2015 article-title: Of paleo‐genes and perch: What if an “alien” is actually a native? publication-title: PLoS One – volume: 23 start-page: 619 year: 2008 end-page: 630 article-title: Phylogenetic analysis of community assembly and structure over space and time publication-title: Trends in Ecology & Evolution – volume: 2 start-page: 505 year: 2020 end-page: 518 article-title: Sedimentary eDNA provides different information on timescale and fish species composition compared with aqueous eDNA publication-title: Environmental DNA – volume: 782 start-page: 146891 year: 2021 article-title: Environmental DNA and environmental RNA: Current and prospective applications for biological monitoring publication-title: Science of the Total Environment – volume: 8 start-page: 8697 year: 2018 end-page: 8712 article-title: Toward an ecoregion scale evaluation of eDNA metabarcoding primers: A case study for the freshwater fish biodiversity of the Murray‐Darling basin (Australia) publication-title: Ecology and Evolution – volume: 22 start-page: 841 year: 2022 end-page: 861 article-title: Coming of age for COI metabarcoding of whole organism community DNA: Towards bioinformatic harmonisation publication-title: Molecular Ecology Resources – volume: 364 start-page: 1192 year: 2019 end-page: 1195 article-title: The small world of global marine fisheries: The cross‐boundary consequences of larval dispersal publication-title: Science – volume: 704 start-page: 135314 year: 2020 article-title: Release and degradation of environmental DNA and RNA in a marine system publication-title: Science of the Total Environment – volume: 10 start-page: 1602 year: 2020 end-page: 1612 article-title: Spatial and temporal patterns of environmental DNA detection to inform sampling protocols in lentic and lotic systems publication-title: Ecology and Evolution – volume: 91 start-page: 144 year: 2017 end-page: 174 article-title: Comparison of nine different methods to assess fish communities in lentic flood‐plain habitats publication-title: Journal of Fish Biology – volume: 11 year: 2016 article-title: Environmental DNA as a 'snapshot' of fish distribution: A case study of Japanese jack mackerel in Maizuru Bay, sea of Japan publication-title: PLoS One – volume: 9 start-page: 6074 year: 2019 article-title: Release of eDNA by different life history stages and during spawning activities of laboratory‐reared Japanese eels for interpretation of oceanic survey data publication-title: Scientific Reports – volume: 37 start-page: 148 year: 2018 end-page: 160 article-title: Metagenomic sequencing of environmental DNA reveals marine faunal assemblages from the West Antarctic peninsula publication-title: Marine Genomics – volume: 8 start-page: 609973 year: 2020 article-title: The elephant in the lab (and field): Contamination in aquatic environmental DNA studies publication-title: Frontiers in Ecology and Evolution – volume: 8 start-page: 11964 year: 2018 end-page: 11974 article-title: Environmental DNA analysis as a non‐invasive quantitative tool for reproductive migration of a threatened endemic fish in rivers publication-title: Ecology and Evolution – volume: 4 start-page: 9 year: 2022 end-page: 33 article-title: Environmental DNA (eDNA) as a tool for assessing fish biomass: A review of approaches and future considerations for resource surveys publication-title: Environmental DNA – volume: 33 start-page: 196 year: 2019 end-page: 205 article-title: Combined use of eDNA metabarcoding and video surveillance for the assessment of fish biodiversity publication-title: Conservation Biology – volume: 99 start-page: 1446 year: 2021 end-page: 1454 article-title: Meta‐fish‐lib: A generalised, dynamic DNA reference library pipeline for metabarcoding of fishes publication-title: Journal of Fish Biology – volume: 30 start-page: 4970 year: 2021 end-page: 4990 article-title: Estimating the genetic diversity of Pacific salmon and trout using multigene eDNA metabarcoding publication-title: Molecular Ecology – volume: 11 year: 2016 article-title: Environmental DNA from seawater samples correlate with trawl catches of subarctic, Deepwater fishes publication-title: PLoS One – volume: 33 start-page: 945 year: 2018 end-page: 957 article-title: Environmental DNA time series in ecology publication-title: Trends in Ecology & Evolution – volume: 9 year: 2014 article-title: The relationship between the distribution of common carp and their environmental DNA in a small lake publication-title: PLoS One – volume: 22 start-page: 1440 year: 2022 end-page: 1453 article-title: Fish eDNA metabarcoding from aquatic biofilm samples: Methodological aspects publication-title: Molecular Ecology Resources – volume: 300 start-page: 791 year: 2003 end-page: 795 article-title: Diverse plant and animal genetic records from Holocene and Pleistocene sediments publication-title: Science – volume: 30 start-page: 6531 year: 2021 end-page: 6550 article-title: Integrating physiology and environmental dynamics to operationalize environmental DNA (eDNA) as a means to monitor freshwater macro‐organism abundance publication-title: Molecular Ecology – volume: 356 start-page: 270 year: 2017 end-page: 275 article-title: Biodiversity losses and conservation responses in the Anthropocene publication-title: Science – volume: 15 start-page: 216 year: 2015 end-page: 227 article-title: Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams publication-title: Molecular Ecology Resources – volume: 2 start-page: 111 year: 2015 article-title: DNA Metabarcoding: A new approach forrapid biodiversity assessment publication-title: Journal of Cell Science & Molecular Biology – volume: 21 start-page: 1490 year: 2021 end-page: 1503 article-title: Complex interactions between environmental DNA (eDNA) state and water chemistries on eDNA persistence suggested by meta‐analyses publication-title: Molecular Ecology Resources – volume: 25 start-page: 3101 year: 2016 end-page: 3119 article-title: Environmental DNA metabarcoding of lake fish communities reflects long‐term data from established survey methods publication-title: Molecular Ecology – volume: 17 year: 2019 article-title: Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA publication-title: Global Ecology and Conservation – volume: 17 start-page: 1 year: 2016 end-page: 17 article-title: The ecology of environmental DNA and implications for conservation genetics publication-title: Conservation Genetics – volume: 3 start-page: 55 year: 2021 end-page: 69 article-title: Environmental DNA metabarcoding for biodiversity monitoring of a highly diverse tropical fish community in a coral reef lagoon: Estimation of species richness and detection of habitat segregation publication-title: Environmental DNA – volume: 4 start-page: 423 year: 2008 end-page: 425 article-title: Species detection using environmental DNA from water samples publication-title: Biology Letters – ident: e_1_2_14_69_1 doi: 10.1016/j.gloenvcha.2011.01.003 – ident: e_1_2_14_93_1 doi: 10.1186/1471-2164-11-434 – ident: e_1_2_14_94_1 doi: 10.1098/rsbl.2008.0118 – ident: e_1_2_14_138_1 doi: 10.1016/j.ecolind.2021.107605 – ident: e_1_2_14_208_1 doi: 10.1111/mec.15692 – ident: e_1_2_14_116_1 doi: 10.1098/rspb.2019.1409 – ident: e_1_2_14_18_1 doi: 10.1111/1755-0998.12598 – ident: e_1_2_14_44_1 doi: 10.1111/mec.15742 – ident: e_1_2_14_244_1 doi: 10.1038/s42003-017-0005-3 – ident: e_1_2_14_78_1 doi: 10.3897/mbmg.4.56959 – ident: e_1_2_14_219_1 doi: 10.1111/jfb.14176 – ident: e_1_2_14_108_1 doi: 10.1016/j.biocon.2014.11.040 – ident: e_1_2_14_159_1 doi: 10.1111/1755‐0998.13627 – ident: e_1_2_14_245_1 doi: 10.1101/gr.162172.113 – ident: e_1_2_14_261_1 doi: 10.1111/cobi.13183 – ident: e_1_2_14_234_1 doi: 10.1021/acs.est.6b03114 – ident: e_1_2_14_288_1 doi: 10.1111/1755-0998.12460 – ident: e_1_2_14_150_1 doi: 10.1139/cjfas-2017-0114 – ident: e_1_2_14_324_1 doi: 10.1111/mec.15060 – ident: e_1_2_14_183_1 doi: 10.3389/fevo.2020.00276 – ident: e_1_2_14_109_1 doi: 10.1111/2041-210X.12595 – ident: e_1_2_14_144_1 doi: 10.1111/mec.16364 – ident: e_1_2_14_216_1 doi: 10.1111/j.1365-294X.2011.05403.x – ident: e_1_2_14_91_1 doi: 10.1016/0006-3207(92)91201-3 – ident: e_1_2_14_224_1 doi: 10.1111/1365-2664.12306 – ident: e_1_2_14_87_1 doi: 10.1016/j.fishres.2017.09.013 – ident: e_1_2_14_112_1 doi: 10.1111/mec.13660 – ident: e_1_2_14_107_1 doi: 10.1371/journal.pone.0022746 – ident: e_1_2_14_40_1 doi: 10.1126/sciadv.aap9661 – ident: e_1_2_14_154_1 doi: 10.1111/1755-0998.13107 – ident: e_1_2_14_80_1 doi: 10.1038/s41467-019-14105-1 – ident: e_1_2_14_161_1 doi: 10.1038/s41598-021-93859-5 – ident: e_1_2_14_241_1 doi: 10.1016/j.cosust.2011.12.005 – ident: e_1_2_14_302_1 doi: 10.1371/journal.pone.0178124 – ident: e_1_2_14_42_1 doi: 10.1007/s00227-019-3555-8 – ident: e_1_2_14_100_1 doi: 10.1073/pnas.1017621108 – ident: e_1_2_14_248_1 doi: 10.1007/s11357-013-9548-5 – ident: e_1_2_14_266_1 doi: 10.1111/j.1365-294X.2012.05542.x – ident: e_1_2_14_36_1 doi: 10.1016/j.tree.2014.04.003 – ident: e_1_2_14_15_1 doi: 10.1111/mec.15797 – ident: e_1_2_14_188_1 doi: 10.1002/edn3.121 – ident: e_1_2_14_231_1 doi: 10.1016/j.scitotenv.2020.142096 – ident: e_1_2_14_312_1 doi: 10.1371/journal.pone.0149786 – ident: e_1_2_14_193_1 doi: 10.1111/1755-0998.13356 – ident: e_1_2_14_95_1 doi: 10.1111/1755-0998.12338 – ident: e_1_2_14_125_1 doi: 10.1111/1755-0998.12285 – ident: e_1_2_14_294_1 doi: 10.1111/mec.13428 – ident: e_1_2_14_284_1 doi: 10.1111/2041-210X.12206 – ident: e_1_2_14_198_1 doi: 10.1111/fwb.13094 – ident: e_1_2_14_268_1 doi: 10.1371/journal.pone.0056584 – ident: e_1_2_14_316_1 doi: 10.1002/edn3.7 – ident: e_1_2_14_66_1 doi: 10.1111/mec.15472 – ident: e_1_2_14_300_1 doi: 10.1016/j.scitotenv.2019.04.247 – ident: e_1_2_14_310_1 doi: 10.3389/fmars.2019.00373 – ident: e_1_2_14_37_1 doi: 10.1111/mec.15507 – ident: e_1_2_14_34_1 doi: 10.1029/2006RG000210 – ident: e_1_2_14_102_1 doi: 10.1111/mec.15530 – ident: e_1_2_14_321_1 doi: 10.1126/sciadv.abk0097 – ident: e_1_2_14_63_1 doi: 10.1111/jfb.14852 – ident: e_1_2_14_189_1 doi: 10.1146/annurev-marine-041421-082251 – ident: e_1_2_14_158_1 doi: 10.1111/1755-0998.12486 – ident: e_1_2_14_279_1 doi: 10.1002/edn3.44 – ident: e_1_2_14_210_1 doi: 10.1080/02755947.2017.1342721 – ident: e_1_2_14_275_1 doi: 10.1016/j.biocon.2018.01.030 – ident: e_1_2_14_14_1 doi: 10.1002/edn3.141 – ident: e_1_2_14_155_1 doi: 10.1111/1365-2664.12598 – ident: e_1_2_14_11_1 – ident: e_1_2_14_207_1 doi: 10.1016/j.scitotenv.2018.05.002 – ident: e_1_2_14_270_1 doi: 10.1038/s41598-019-42641-9 – ident: e_1_2_14_31_1 doi: 10.1038/s42003-021-01760-8 – ident: e_1_2_14_262_1 doi: 10.1371/journal.pone.0203012 – ident: e_1_2_14_295_1 doi: 10.1016/j.tig.2018.05.008 – ident: e_1_2_14_267_1 doi: 10.1111/j.1365-294X.2012.05470.x – ident: e_1_2_14_152_1 doi: 10.1016/j.jembe.2018.09.004 – ident: e_1_2_14_227_1 doi: 10.1139/gen-2015-0229 – ident: e_1_2_14_263_1 doi: 10.1016/j.biocon.2014.11.038 – ident: e_1_2_14_283_1 doi: 10.1002/edn3.169 – ident: e_1_2_14_296_1 doi: 10.1111/1755-0998.13315 – ident: e_1_2_14_228_1 doi: 10.1002/edn3.185 – ident: e_1_2_14_318_1 doi: 10.1071/WR19246 – ident: e_1_2_14_169_1 doi: 10.1371/journal.pone.0195529 – ident: e_1_2_14_255_1 doi: 10.1038/s41559-016-0004 – ident: e_1_2_14_311_1 doi: 10.1038/srep40368 – ident: e_1_2_14_211_1 doi: 10.1007/s00374-008-0345-8 – ident: e_1_2_14_285_1 doi: 10.1016/j.biocon.2014.11.017 – ident: e_1_2_14_253_1 doi: 10.1016/j.biocon.2014.11.023 – ident: e_1_2_14_299_1 doi: 10.1016/j.scitotenv.2020.142622 – ident: e_1_2_14_52_1 doi: 10.1126/science.1203672 – ident: e_1_2_14_276_1 doi: 10.1111/jfb.14400 – ident: e_1_2_14_89_1 doi: 10.1111/1755-0998.12433 – ident: e_1_2_14_85_1 doi: 10.1021/acs.est.5b05672 – ident: e_1_2_14_149_1 doi: 10.1021/acs.est.0c01863 – ident: e_1_2_14_217_1 doi: 10.1111/j.1365-2664.2005.01126.x – ident: e_1_2_14_92_1 doi: 10.1038/hdy.2016.62 – ident: e_1_2_14_201_1 doi: 10.1021/acs.est.8b02293 – ident: e_1_2_14_165_1 doi: 10.1111/1755-0998.12987 – ident: e_1_2_14_214_1 doi: 10.1111/1755-0998.13123 – ident: e_1_2_14_74_1 doi: 10.1126/science.aas9852 – ident: e_1_2_14_124_1 doi: 10.1002/edn3.191 – ident: e_1_2_14_203_1 doi: 10.7717/peerj.3044 – ident: e_1_2_14_143_1 doi: 10.1007/s12562-020-01409-1 – ident: e_1_2_14_111_1 doi: 10.1111/jfb.13294 – ident: e_1_2_14_47_1 doi: 10.1021/acs.est.8b01071 – ident: e_1_2_14_185_1 doi: 10.1016/j.cub.2021.08.034 – ident: e_1_2_14_68_1 doi: 10.1371/journal.pone.0218823 – ident: e_1_2_14_23_1 doi: 10.1021/es404734p – ident: e_1_2_14_128_1 doi: 10.1111/jfb.14218 – ident: e_1_2_14_204_1 doi: 10.1002/edn3.132 – volume: 69 start-page: 83 year: 2019 ident: e_1_2_14_258_1 article-title: Preliminary results on the molecular study of fish‐eating by 'trawling Myotis' bat species in Europe publication-title: Vertebrate Zoology – ident: e_1_2_14_229_1 doi: 10.1016/j.gecco.2019.e00547 – ident: e_1_2_14_233_1 doi: 10.1002/edn3.38 – ident: e_1_2_14_29_1 doi: 10.1002/edn3.173 – ident: e_1_2_14_56_1 doi: 10.1128/MCB.00970-14 – ident: e_1_2_14_76_1 doi: 10.1111/mec.14350 – ident: e_1_2_14_190_1 doi: 10.1007/s12562-020-01461-x – ident: e_1_2_14_67_1 doi: 10.1111/j.1755-0998.2009.02795.x – ident: e_1_2_14_160_1 doi: 10.1111/mec.14920 – ident: e_1_2_14_8_1 doi: 10.3389/fmars.2021.640527 – ident: e_1_2_14_325_1 doi: 10.1016/j.scitotenv.2019.134704 – ident: e_1_2_14_307_1 doi: 10.1126/science.1084114 – ident: e_1_2_14_315_1 doi: 10.1016/j.tree.2021.03.001 – ident: e_1_2_14_75_1 doi: 10.1371/journal.pone.0088786 – volume-title: Environmental DNA‐for biodiversity research and monitoring year: 2018 ident: e_1_2_14_265_1 doi: 10.1093/oso/9780198767220.001.0001 – ident: e_1_2_14_317_1 doi: 10.1111/mec.15543 – ident: e_1_2_14_280_1 doi: 10.1111/1755-0998.13200 – ident: e_1_2_14_239_1 doi: 10.3389/fmars.2021.668822 – ident: e_1_2_14_30_1 doi: 10.1002/edn3.74 – ident: e_1_2_14_130_1 doi: 10.1111/j.1755-263X.2010.00158.x – ident: e_1_2_14_129_1 doi: 10.1139/cjfas-2012-0478 – ident: e_1_2_14_26_1 doi: 10.3389/fmars.2020.604878 – ident: e_1_2_14_59_1 doi: 10.1371/journal.pone.0157366 – ident: e_1_2_14_170_1 doi: 10.1126/science.1177215 – ident: e_1_2_14_238_1 doi: 10.1093/nar/gkaa1023 – ident: e_1_2_14_215_1 doi: 10.1002/edn3.232 – ident: e_1_2_14_226_1 doi: 10.1111/1755-0998.13568 – ident: e_1_2_14_53_1 doi: 10.1073/pnas.1813843115 – ident: e_1_2_14_55_1 doi: 10.1111/1755-0998.13543 – ident: e_1_2_14_235_1 doi: 10.1038/s41598-017-14978-6 – ident: e_1_2_14_287_1 doi: 10.1002/eap.2036 – ident: e_1_2_14_62_1 doi: 10.1111/2041-210X.13276 – ident: e_1_2_14_5_1 doi: 10.1021/acs.est.9b00409 – ident: e_1_2_14_28_1 doi: 10.1002/ece3.5426 – ident: e_1_2_14_293_1 doi: 10.1111/1755-0998.13375 – ident: e_1_2_14_45_1 doi: 10.7717/peerj.9606 – ident: e_1_2_14_43_1 doi: 10.1126/science.1127609 – ident: e_1_2_14_110_1 doi: 10.1111/jfb.14383 – ident: e_1_2_14_142_1 doi: 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2 – ident: e_1_2_14_172_1 doi: 10.1111/cobi.13802 – ident: e_1_2_14_51_1 doi: 10.1111/1755-0998.13544 – ident: e_1_2_14_146_1 doi: 10.1073/pnas.2014929118 – ident: e_1_2_14_252_1 doi: 10.1002/ece3.7658 – ident: e_1_2_14_137_1 doi: 10.1126/science.aam9317 – ident: e_1_2_14_35_1 doi: 10.1016/j.tree.2017.03.001 – ident: e_1_2_14_49_1 doi: 10.1002/ece3.4387 – ident: e_1_2_14_194_1 doi: 10.1371/journal.pone.0103767 – ident: e_1_2_14_313_1 doi: 10.1016/j.ecolind.2015.11.022 – ident: e_1_2_14_19_1 doi: 10.1080/00028487.2016.1243578 – ident: e_1_2_14_305_1 doi: 10.1016/j.biocon.2015.12.023 – ident: e_1_2_14_58_1 doi: 10.1111/1755-0998.12900 – ident: e_1_2_14_197_1 doi: 10.1071/MF09068 – ident: e_1_2_14_153_1 doi: 10.3390/genes10110858 – ident: e_1_2_14_320_1 doi: 10.1111/2041-210X.13485 – volume: 2 start-page: e23297 year: 2018 ident: e_1_2_14_291_1 article-title: Quantitative monitoring of multispecies fish environmental DNA using high‐throughput sequencing publication-title: Metabarcoding and Metagenomics – ident: e_1_2_14_46_1 doi: 10.1111/1755-0998.13367 – ident: e_1_2_14_114_1 doi: 10.1038/s41598-020-70206-8 – ident: e_1_2_14_126_1 doi: 10.1007/s10641-015-0405-5 – ident: e_1_2_14_174_1 doi: 10.1038/s41598-021-82205-4 – ident: e_1_2_14_306_1 doi: 10.1126/science.1141758 – ident: e_1_2_14_309_1 – ident: e_1_2_14_301_1 doi: 10.1111/mec.15811 – ident: e_1_2_14_323_1 doi: 10.1016/j.scitotenv.2021.149175 – ident: e_1_2_14_184_1 doi: 10.1016/j.tree.2006.02.002 – ident: e_1_2_14_60_1 doi: 10.1111/mec.13549 – ident: e_1_2_14_162_1 doi: 10.1016/j.biocon.2014.11.025 – ident: e_1_2_14_99_1 doi: 10.1371/journal.pone.0222830 – ident: e_1_2_14_88_1 doi: 10.1139/cjfas-2016-0306 – ident: e_1_2_14_147_1 doi: 10.1371/journal.pone.0086175 – ident: e_1_2_14_151_1 doi: 10.1016/j.biocon.2014.11.020 – ident: e_1_2_14_123_1 doi: 10.1111/j.1461-0248.2008.01179.x – ident: e_1_2_14_236_1 doi: 10.1038/s41598-021-98926-5 – ident: e_1_2_14_2_1 doi: 10.1641/B580507 – ident: e_1_2_14_271_1 doi: 10.1111/1755-0998.12436 – ident: e_1_2_14_277_1 doi: 10.1111/2041-210X.13201 – ident: e_1_2_14_105_1 doi: 10.1002/ece3.4169 – ident: e_1_2_14_249_1 doi: 10.1038/s41598-017-05223-1 – ident: e_1_2_14_286_1 doi: 10.3389/fmars.2020.605148 – ident: e_1_2_14_186_1 doi: 10.1016/j.copbio.2016.11.022 – ident: e_1_2_14_171_1 doi: 10.1016/j.cub.2019.04.031 – ident: e_1_2_14_180_1 doi: 10.1111/1755-0998.13440 – ident: e_1_2_14_90_1 doi: 10.1080/03632415.2017.1276329 – ident: e_1_2_14_25_1 doi: 10.1002/ece3.6014 – ident: e_1_2_14_264_1 doi: 10.1126/science.abd3369 – ident: e_1_2_14_9_1 doi: 10.1111/1755-0998.13111 – ident: e_1_2_14_319_1 doi: 10.1111/1755-0998.13105 – ident: e_1_2_14_77_1 doi: 10.1371/journal.pone.0023398 – ident: e_1_2_14_141_1 doi: 10.1007/s11356-014-3466-7 – ident: e_1_2_14_308_1 doi: 10.1016/j.scitotenv.2019.135314 – ident: e_1_2_14_191_1 doi: 10.1016/j.ecolind.2021.107796 – ident: e_1_2_14_81_1 doi: 10.1111/fwb.12846 – ident: e_1_2_14_71_1 doi: 10.1111/1755-0998.13502 – ident: e_1_2_14_289_1 doi: 10.1002/ece3.3346 – ident: e_1_2_14_222_1 doi: 10.1002/edn3.87 – ident: e_1_2_14_6_1 doi: 10.1111/2041-210X.12849 – ident: e_1_2_14_304_1 doi: 10.1111/j.1095-8649.2002.tb01773.x – ident: e_1_2_14_27_1 doi: 10.1002/aqc.3208 – ident: e_1_2_14_140_1 doi: 10.1111/1755‐0998.13655 – ident: e_1_2_14_221_1 doi: 10.1126/science.aav3409 – ident: e_1_2_14_134_1 doi: 10.1002/ece3.4802 – ident: e_1_2_14_292_1 doi: 10.1371/journal.pone.0215505 – ident: e_1_2_14_250_1 doi: 10.1021/acs.est.8b01822 – ident: e_1_2_14_33_1 doi: 10.1016/j.ecolind.2021.107698 – ident: e_1_2_14_64_1 doi: 10.1038/s42003-018-0192-6 – ident: e_1_2_14_17_1 doi: 10.1111/j.1365-294X.2012.05519.x – ident: e_1_2_14_57_1 doi: 10.1021/acs.est.2c02506 – ident: e_1_2_14_247_1 doi: 10.1111/1755-0998.12961 – ident: e_1_2_14_269_1 doi: 10.1371/journal.pone.0035868 – ident: e_1_2_14_243_1 doi: 10.3389/fevo.2020.609973 – ident: e_1_2_14_157_1 doi: 10.1111/jfb.14403 – ident: e_1_2_14_177_1 doi: 10.1002/edn3.257 – ident: e_1_2_14_282_1 doi: 10.1371/journal.pone.0176608 – ident: e_1_2_14_303_1 doi: 10.1111/mec.15382 – ident: e_1_2_14_20_1 doi: 10.1016/j.tree.2018.09.003 – ident: e_1_2_14_41_1 doi: 10.1002/ece3.4777 – ident: e_1_2_14_212_1 doi: 10.1111/1755-0998.12159 – ident: e_1_2_14_220_1 doi: 10.1111/mec.13481 – ident: e_1_2_14_131_1 doi: 10.1002/edn3.49 – ident: e_1_2_14_314_1 doi: 10.1111/mec.16202 – ident: e_1_2_14_70_1 doi: 10.1016/j.margen.2017.11.003 – ident: e_1_2_14_163_1 doi: 10.1002/edn3.5 – ident: e_1_2_14_32_1 doi: 10.1016/j.biocon.2014.11.029 – ident: e_1_2_14_145_1 doi: 10.1002/fee.1490 – ident: e_1_2_14_200_1 doi: 10.1371/journal.pone.0191720 – ident: e_1_2_14_13_1 doi: 10.1371/journal.pone.0176343 – ident: e_1_2_14_181_1 doi: 10.1126/science.1255641 – ident: e_1_2_14_133_1 doi: 10.1111/1755-0998.12685 – ident: e_1_2_14_290_1 – volume: 2 start-page: 111 year: 2015 ident: e_1_2_14_206_1 article-title: DNA Metabarcoding: A new approach forrapid biodiversity assessment publication-title: Journal of Cell Science & Molecular Biology – ident: e_1_2_14_254_1 doi: 10.1111/eva.12882 – ident: e_1_2_14_136_1 doi: 10.1111/fwb.13920 – ident: e_1_2_14_173_1 doi: 10.1111/ddi.13142 – ident: e_1_2_14_272_1 doi: 10.1371/journal.pone.0041732 – ident: e_1_2_14_10_1 doi: 10.1080/15592294.2018.1529504 – ident: e_1_2_14_106_1 doi: 10.1111/1755-0998.13450 – ident: e_1_2_14_278_1 doi: 10.1111/1755-0998.13165 – ident: e_1_2_14_297_1 doi: 10.1016/j.scitotenv.2021.146891 – ident: e_1_2_14_113_1 doi: 10.1111/faf.12286 – ident: e_1_2_14_167_1 doi: 10.1002/edn3.24 – ident: e_1_2_14_223_1 doi: 10.1111/j.1471-8286.2007.01678.x – ident: e_1_2_14_139_1 doi: 10.1098/rspb.2020.0248 – ident: e_1_2_14_192_1 doi: 10.1371/journal.pone.0253104 – ident: e_1_2_14_135_1 doi: 10.1002/edn3.253 – ident: e_1_2_14_103_1 doi: 10.1007/s00227-017-3141-x – ident: e_1_2_14_39_1 doi: 10.1002/aqc.2617 – ident: e_1_2_14_3_1 doi: 10.3390/genes10030192 – ident: e_1_2_14_97_1 doi: 10.1046/j.1523-1739.1995.09030686.x – ident: e_1_2_14_84_1 doi: 10.1371/journal.pone.0112611 – ident: e_1_2_14_205_1 doi: 10.1111/2041-210X.12890 – ident: e_1_2_14_96_1 doi: 10.1111/1755-0998.12508 – ident: e_1_2_14_166_1 doi: 10.1111/1365-2664.13352 – ident: e_1_2_14_175_1 doi: 10.1371/journal.pone.0114639 – ident: e_1_2_14_230_1 doi: 10.1002/edn3.75 – ident: e_1_2_14_50_1 doi: 10.1038/s41598-019-39399-5 – ident: e_1_2_14_104_1 doi: 10.1111/1755-0998.12257 – ident: e_1_2_14_322_1 doi: 10.1016/j.envint.2019.105307 – ident: e_1_2_14_54_1 doi: 10.1038/s41467-020-17337-8 – ident: e_1_2_14_79_1 doi: 10.1111/1755-0998.12907 – ident: e_1_2_14_98_1 doi: 10.1139/gen-2016-0100 – ident: e_1_2_14_246_1 doi: 10.1016/j.biocon.2016.03.010 – ident: e_1_2_14_259_1 doi: 10.1371/journal.pone.0119071 – ident: e_1_2_14_86_1 doi: 10.1016/j.tree.2008.07.005 – ident: e_1_2_14_7_1 doi: 10.1007/s13280-020-01318-8 – ident: e_1_2_14_179_1 doi: 10.1021/acs.est.1c07638 – ident: e_1_2_14_48_1 doi: 10.1111/2041-210X.12709 – ident: e_1_2_14_281_1 doi: 10.1002/edn3.21 – ident: e_1_2_14_82_1 doi: 10.1016/j.cosust.2010.09.001 – ident: e_1_2_14_21_1 doi: 10.1038/s41467-021-21655-w – ident: e_1_2_14_260_1 doi: 10.1038/s41598-017-12501-5 – ident: e_1_2_14_122_1 doi: 10.1038/s41598-021-83318-6 – ident: e_1_2_14_16_1 doi: 10.1093/molbev/msx156 – ident: e_1_2_14_251_1 doi: 10.3390/genes11030296 – ident: e_1_2_14_117_1 doi: 10.1111/1755-0998.13247 – ident: e_1_2_14_101_1 doi: 10.1371/journal.pone.0210357 – ident: e_1_2_14_213_1 doi: 10.1111/mec.14776 – ident: e_1_2_14_120_1 doi: 10.1017/S1367943002002299 – ident: e_1_2_14_232_1 doi: 10.1038/s42003-019-0696-8 – ident: e_1_2_14_22_1 doi: 10.1007/s10592-015-0775-4 – ident: e_1_2_14_115_1 doi: 10.1111/j.1442-9993.1995.tb00523.x – ident: e_1_2_14_148_1 doi: 10.1038/s41598-019-48546-x – ident: e_1_2_14_257_1 doi: 10.1016/j.soilbio.2016.02.003 – ident: e_1_2_14_242_1 doi: 10.1139/cjfas-2020-0182 – ident: e_1_2_14_83_1 doi: 10.1111/1755-0998.13451 – ident: e_1_2_14_164_1 doi: 10.1016/bs.aecr.2018.01.001 – ident: e_1_2_14_156_1 doi: 10.1111/1755-0998.12522 – ident: e_1_2_14_176_1 doi: 10.1002/ece3.4653 – ident: e_1_2_14_273_1 doi: 10.1371/journal.pone.0165252 – ident: e_1_2_14_298_1 doi: 10.1007/s00027-017-0546-z – ident: e_1_2_14_195_1 doi: 10.1111/jfb.13333 – ident: e_1_2_14_218_1 doi: 10.1038/s41598-018-28424-8 – ident: e_1_2_14_240_1 doi: 10.1038/nmeth.4240 – ident: e_1_2_14_4_1 doi: 10.1111/mec.15661 – ident: e_1_2_14_202_1 doi: 10.1016/j.ecoinf.2019.101033 – ident: e_1_2_14_237_1 doi: 10.1093/molbev/msy074 – ident: e_1_2_14_196_1 doi: 10.1007/s12562-018-1282-6 – ident: e_1_2_14_73_1 doi: 10.1111/faf.12553 – ident: e_1_2_14_119_1 doi: 10.1016/j.watres.2018.03.003 – ident: e_1_2_14_132_1 doi: 10.1111/1755-0998.13354 – ident: e_1_2_14_24_1 doi: 10.1038/nature11018 – ident: e_1_2_14_168_1 doi: 10.1111/mec.15623 – ident: e_1_2_14_65_1 doi: 10.1016/j.scitotenv.2021.148054 – ident: e_1_2_14_256_1 doi: 10.1002/eap.2389 – ident: e_1_2_14_209_1 doi: 10.1126/science.1229931 – ident: e_1_2_14_274_1 doi: 10.1016/j.biocon.2014.11.019 – volume-title: Standard methods for sampling north American freshwater fishes year: 2009 ident: e_1_2_14_38_1 – ident: e_1_2_14_121_1 doi: 10.1371/journal.pone.0169431 – ident: e_1_2_14_72_1 doi: 10.1146/annurev-ecolsys-110617-062306 – ident: e_1_2_14_118_1 doi: 10.1002/ece3.6279 – ident: e_1_2_14_225_1 doi: 10.1111/brv.12480 – ident: e_1_2_14_199_1 doi: 10.1002/fee.2073 – ident: e_1_2_14_127_1 doi: 10.1577/1548-8446-33.8.372 – ident: e_1_2_14_61_1 doi: 10.1111/geb.12096 – ident: e_1_2_14_178_1 doi: 10.1111/1755-0998.13430 – ident: e_1_2_14_12_1 doi: 10.1111/mec.15765 – ident: e_1_2_14_182_1 doi: 10.1111/mec.15644 – ident: e_1_2_14_187_1 doi: 10.1071/MF08254 |
| SSID | ssj0013255 |
| Score | 2.669471 |
| SecondaryResourceType | review_article |
| Snippet | Vast global declines of freshwater and marine fish diversity and population abundance pose serious threats to both ecosystem sustainability and human... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5132 |
| SubjectTerms | Animals aquatic ecosystem Aquatic environment Aquatic habitats Aquatic populations Biodiversity biodiversity conservation biodiversity surveillance Biomonitoring Conservation cost effectiveness Deoxyribonucleic acid DNA DNA Barcoding, Taxonomic DNA metabarcoding DNA, Environmental - genetics Ecosystem Environmental DNA environmental monitoring Environmental Monitoring - methods eRNA Fish Fish behavior Fish conservation Fish populations Fisheries Fisheries management Fisheries research Fishes - genetics Fishing freshwater Freshwater fish Genetics Humans Hunting lentic systems lotic systems Marine ecosystems Marine fish Optimization Population genetics species abundance Standardization Sustainable ecosystems Trends Wildlife conservation |
| Title | Fishing for fish environmental DNA: Ecological applications, methodological considerations, surveying designs, and ways forward |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.16659 https://www.ncbi.nlm.nih.gov/pubmed/35972241 https://www.proquest.com/docview/2723024744 https://www.proquest.com/docview/2702976450 https://www.proquest.com/docview/2811982157 |
| Volume | 31 |
| WOSCitedRecordID | wos000848186500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1365-294X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013255 issn: 0962-1083 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tHUi8DMbHCIzKIB54IFPsuLbDnqatFQ-sQmiT-hbZjiMhQTo17VCf-Nd3dj7Uagwh8RDJii-JY9_Zv_Od7wDeG5pZXMlNzEqexFwVLNYuMXFWcqmVoVpTE5JNyOlUzWbZ1x046c7CNPEh-g03LxlhvvYCrk29IeQ_nT2mQoyyXdhjyLejAeydf5tcfdkwIoSkpwjSGc42Km0DC3lHnv7h7eXoDsbchqxhzZk8_q_WPoH9FmqS04Y3DmDHVU_hYZN8co2lcQhYvX4GvyfNRhRBAEtKLJON42_4hvPp6SfSUPshJZtG74-kyUHdV9o2A2hXXa8WN86fpSJFcBbBW7oqyC-9rv33vNPuc7iajC_PPsdtYobYejttTF0iGEJH1HW4FhkztEgsZTpFZU0xJ0qV-ksWorCpLaxwnGpbonKVmBG3afoCBtW8ci-BSCsyYVyCFIYLkyqG_GIzaRnqWvjOCD5045PbNmq5T57xI--0F-zZPPRsBO960usmVMefiI66Qc5baa1zJlERY1xyHsHbvhrlzBtPdOXmK0_j03wJPkr-QqMozRSCKBnBYcNAfUtS1Nw8XMIfCnxyfxPzi_FZKLz6d9LX8Ij5cxnBy_AIBsvFyr2BB_Zm-b1eDGFXztSwFY9badYReA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xFL20PNtteRjEgQNBseN1nKoXBLsCsawQAolbZDuOVKnNVrss1Z7464ydhxa1ICQOkax4kjj2jP2NZzwDsK9pYnAl1wHLeRhwmbFA2VAHSc5jJTVVimqfbCLu9-XdXXI1Az_qszBlfIhmw81Jhp-vnYC7DekpKf9tzREVop3MwjxHNkL-nj-97t72pqwIPusponSG042MqshCzpOnefj5evQPyHyOWf2i0_30vuYuw8cKbJLjkjtWYMYWq7BYpp-cYKnjQ1ZP1uCxW25FEYSwJMcymToAh2847R9_JyW1G1QybfY-JGUW6qbSVDlA6-rRePhg3Wkqknl3Ebylioz8VZOR-55z212H227n5uQsqFIzBMZZagNqQ8EQPKK2w5VImKZZaChTEaprklmRy8hdcSYyE5nMCMupMjmqV6FucxNFGzBXDAr7BUhsRCK0DZFCc6EjyZBjTBIbhtoWvrMFB_UApaaKW-7SZ_xKa_0Fezb1PduCvYb0Txms439Em_Uop5W8jlIWoyrGeMx5C3abapQ0Zz5RhR2MHY1L9CV4O3yFRlKaSIRRcQs-lxzUtCRC3c0BJvwhzygvNzG97Jz4wte3k-7A0tnNZS_tnfcvvsEH5k5peJ_DTZi7H47tFiyYh_ufo-F2JSVPUZIUgA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7BAlUvbXm12wI1iAMHUsWO13GqXhC7UStghRBI3CLbcaRKNKB9VXvqX-_YeWhRS4XUQyQrniSOPWPPeMbzARxqmhhcyXXACh4GXOYsUDbUQVLwWElNlaLag03Ew6G8vU0ul-BLcxamyg_Rbrg5yfDztRNw-5AXC1L-w5pPVIhesgwr3IHIdGClf5XenC94ETzqKWrpDKcbGdWZhVwkT_vw4_XoDyXzsc7qF5309f819w28qpVNclJxxzos2XID1ir4yTmWBj5l9XwTfqXVVhRBFZYUWCYLB-DwDf3hyWdSUbtBJYtu72NSoVC3labGAG2qx9PRzLrTVCT34SJ4S5U5-anmY_c9F7a7BTfp4Pr0a1BDMwTGeWoDakPBUHlEa4crkTBN89BQpiI01ySzopCRu-Jc5CYyuRGWU2UKNK9C3eMmirahU96X9h2Q2IhEaBsiheZCR5Ihx5gkNgytLXxnF46aAcpMnbfcwWfcZY39gj2b-Z7twkFL-lAl6_gb0U4zylktr-OMxWiKMR5z3oX9tholzblPVGnvp47GAX0J3gv_QSMpTSSqUXEX3lYc1LYkQtvNKUz4Q55Rnm5idjE49YX3zyf9CC8u-2l2_m149gFeMndIw4cc7kBnMpraXVg1s8n38WivFpLfvnUT-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fishing+for+fish+environmental+DNA%3A+Ecological+applications%2C+methodological+considerations%2C+surveying+designs%2C+and+ways+forward&rft.jtitle=Molecular+ecology&rft.au=Yao%2C+Meng&rft.au=Zhang%2C+Shan&rft.au=Lu%2C+Qi&rft.au=Chen%2C+Xiaoyu&rft.date=2022-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=31&rft.issue=20&rft.spage=5132&rft.epage=5164&rft_id=info:doi/10.1111%2Fmec.16659&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon |