The K = 2 conundrum

Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering‐based methods, was developed to provide robust estimates without the need for populations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology Jg. 26; H. 14; S. 3594 - 3602
Hauptverfasser: Janes, Jasmine K., Miller, Joshua M., Dupuis, Julian R., Malenfant, René M., Gorrell, Jamieson C., Cullingham, Catherine I., Andrew, Rose L.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Blackwell Publishing Ltd 01.07.2017
Schlagworte:
ISSN:0962-1083, 1365-294X, 1365-294X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering‐based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the ΔK method was proposed to assist in the identification of the “true” number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used ΔK were more likely to identify K = 2 (54%, 443/822) than studies that did not use ΔK (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both ΔK and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, ΔK frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over‐ or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
AbstractList Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering-based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the [Delta]K method was proposed to assist in the identification of the "true" number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used [Delta]K were more likely to identify K = 2 (54%, 443/822) than studies that did not use [Delta]K (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both [Delta]K and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, [Delta]K frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over- or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering‐based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the ΔK method was proposed to assist in the identification of the “true” number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used ΔK were more likely to identify K = 2 (54%, 443/822) than studies that did not use ΔK (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both ΔK and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, ΔK frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over‐ or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering-based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the ΔK method was proposed to assist in the identification of the "true" number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used ΔK were more likely to identify K = 2 (54%, 443/822) than studies that did not use ΔK (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both ΔK and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, ΔK frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over- or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering-based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the ΔK method was proposed to assist in the identification of the "true" number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used ΔK were more likely to identify K = 2 (54%, 443/822) than studies that did not use ΔK (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both ΔK and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, ΔK frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over- or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure , the most highly cited of several clustering‐based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the Δ K method was proposed to assist in the identification of the “true” number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used Δ K were more likely to identify K  =   2 (54%, 443/822) than studies that did not use Δ K (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both Δ K and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, Δ K frequently identifies K  =   2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over‐ or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow. structure, the most highly cited of several clustering‐based methods, was developed to provide robust estimates without the need for populations to be determined a priori. structure introduces the problem of selecting the optimal number of clusters, and as a result, the ΔK method was proposed to assist in the identification of the “true” number of clusters. In our review of 1,264 studies using structure to explore population subdivision, studies that used ΔK were more likely to identify K = 2 (54%, 443/822) than studies that did not use ΔK (21%, 82/386). A troubling finding was that very few studies performed the hierarchical analysis recommended by the authors of both ΔK and structure to fully explore population subdivision. Furthermore, extensions of earlier simulations indicate that, with a representative number of markers, ΔK frequently identifies K = 2 as the top level of hierarchical structure, even when more subpopulations are present. This review suggests that many studies may have been over‐ or underestimating population genetic structure; both scenarios have serious consequences, particularly with respect to conservation and management. We recommend publication standards for population structure results so that readers can assess the implications of the results given their own understanding of the species biology.
Author Malenfant, René M.
Dupuis, Julian R.
Miller, Joshua M.
Gorrell, Jamieson C.
Andrew, Rose L.
Cullingham, Catherine I.
Janes, Jasmine K.
Author_xml – sequence: 1
  givenname: Jasmine K.
  orcidid: 0000-0002-4511-2087
  surname: Janes
  fullname: Janes, Jasmine K.
  email: jjanes@une.edu.au
  organization: Vancouver Island University
– sequence: 2
  givenname: Joshua M.
  orcidid: 0000-0002-4019-7675
  surname: Miller
  fullname: Miller, Joshua M.
  organization: Yale University
– sequence: 3
  givenname: Julian R.
  surname: Dupuis
  fullname: Dupuis, Julian R.
  organization: University of Hawai'i at Mãnoa
– sequence: 4
  givenname: René M.
  orcidid: 0000-0003-1505-3669
  surname: Malenfant
  fullname: Malenfant, René M.
  organization: University of New Brunswick
– sequence: 5
  givenname: Jamieson C.
  surname: Gorrell
  fullname: Gorrell, Jamieson C.
  organization: Vancouver Island University
– sequence: 6
  givenname: Catherine I.
  surname: Cullingham
  fullname: Cullingham, Catherine I.
  organization: University of Alberta
– sequence: 7
  givenname: Rose L.
  surname: Andrew
  fullname: Andrew, Rose L.
  organization: The University of New England
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28544181$$D View this record in MEDLINE/PubMed
BookMark eNqF0L1LAzEYBvAgFfuhg7hLwUWHa_MmedNkcJBSP7DiUsEtXHMpXrmPmrtD-t-b2nYpilmy_J6H5OmSVlEWjpBzoAMIZ5g7OwABanREOsAlRkyL9xbpUC1ZBFTxNulW1ZJS4AzxhLSZQhE8dMjF7MP1n_u3fda3ZdEUiW_yU3K8iLPKne3uHnm7n8zGj9H09eFpfDeNrEA2iiSNFWqFUnDnKOBcxxIQYmblCB0VGiHhqJhzdo4UUSq0TOkFMGRJiPAeud72rnz52biqNnlaWZdlceHKpjKMMqoBlBD_UtCUg8QQCPTqgC7LxhfhI0FBeAaXelN4uVPNPHeJWfk0j_3a7JcJYLgF1pdV5d3C2LSO67Qsah-nmQFqNtubsL352T4kbg4S-9Lf7K79K83c-m9oXibjbeIby5eL-w
CitedBy_id crossref_primary_10_1139_cjfas_2019_0103
crossref_primary_10_1007_s10592_019_01172_6
crossref_primary_10_1111_eva_13276
crossref_primary_10_1007_s11295_019_1389_7
crossref_primary_10_1093_jmammal_gyae151
crossref_primary_10_1002_aqc_4153
crossref_primary_10_1371_journal_pone_0199032
crossref_primary_10_1111_eva_13033
crossref_primary_10_1111_eva_70067
crossref_primary_10_1111_jbi_14313
crossref_primary_10_1071_SB24031
crossref_primary_10_1002_tafs_10351
crossref_primary_10_1007_s10592_020_01317_y
crossref_primary_10_1139_cjb_2017_0130
crossref_primary_10_1002_tafs_10115
crossref_primary_10_1093_aob_mcab140
crossref_primary_10_1111_1755_0998_13090
crossref_primary_10_1371_journal_pone_0189234
crossref_primary_10_1002_ece3_11700
crossref_primary_10_1007_s10592_020_01315_0
crossref_primary_10_1007_s12042_019_09236_0
crossref_primary_10_1111_ddi_13940
crossref_primary_10_1655_Herpetologica_D_23_00048
crossref_primary_10_3389_fevo_2020_00279
crossref_primary_10_1038_s41598_020_68140_w
crossref_primary_10_1111_jbi_13698
crossref_primary_10_3732_ajb_1700291
crossref_primary_10_1111_oik_09442
crossref_primary_10_1186_s12870_021_03302_0
crossref_primary_10_7717_peerj_4702
crossref_primary_10_1111_jav_01723
crossref_primary_10_1038_s41598_020_68402_7
crossref_primary_10_1007_s10592_021_01369_8
crossref_primary_10_3897_zookeys_1086_77190
crossref_primary_10_1111_jse_13005
crossref_primary_10_1002_aqc_4016
crossref_primary_10_1007_s12686_020_01165_5
crossref_primary_10_3389_fpls_2022_912080
crossref_primary_10_1002_ece3_6838
crossref_primary_10_1086_713446
crossref_primary_10_1038_s41598_024_66495_y
crossref_primary_10_1007_s00035_024_00322_y
crossref_primary_10_1371_journal_pone_0200214
crossref_primary_10_1016_j_ppees_2018_04_005
crossref_primary_10_1111_jse_13010
crossref_primary_10_1111_eva_70058
crossref_primary_10_1007_s10592_019_01182_4
crossref_primary_10_1111_jbi_13429
crossref_primary_10_1016_j_biocon_2021_109072
crossref_primary_10_1086_715637
crossref_primary_10_3390_genes12030340
crossref_primary_10_1186_s12870_023_04337_1
crossref_primary_10_1093_zoolinnean_zlad108
crossref_primary_10_3389_fgene_2022_725772
crossref_primary_10_1111_ddi_13854
crossref_primary_10_1186_s12864_022_08363_5
crossref_primary_10_1038_s41467_018_05257_7
crossref_primary_10_1007_s10722_024_02067_3
crossref_primary_10_1007_s10592_022_01429_7
crossref_primary_10_1111_jbi_13536
crossref_primary_10_1007_s00338_021_02157_z
crossref_primary_10_1038_s41598_019_55273_w
crossref_primary_10_1111_eva_13587
crossref_primary_10_1007_s10592_021_01335_4
crossref_primary_10_1007_s10592_020_01295_1
crossref_primary_10_1111_eva_13346
crossref_primary_10_1111_jbi_14739
crossref_primary_10_1371_journal_pone_0217956
crossref_primary_10_1007_s42991_021_00145_y
crossref_primary_10_1111_jbi_13405
crossref_primary_10_1007_s13364_024_00759_w
crossref_primary_10_1371_journal_pone_0214439
crossref_primary_10_1111_jbi_14861
crossref_primary_10_3389_fmicb_2020_01280
crossref_primary_10_1007_s13595_021_01077_w
crossref_primary_10_3390_d15050595
crossref_primary_10_1038_s41598_022_09007_0
crossref_primary_10_1111_eva_13577
crossref_primary_10_1002_ece3_9900
crossref_primary_10_1007_s13595_018_0770_2
crossref_primary_10_1111_mec_17156
crossref_primary_10_3389_fmars_2022_772259
crossref_primary_10_1111_mec_15091
crossref_primary_10_1111_mec_16060
crossref_primary_10_1038_s41437_018_0124_8
crossref_primary_10_1186_s12859_020_03701_4
crossref_primary_10_1002_nafm_10589
crossref_primary_10_1007_s10342_018_1115_2
crossref_primary_10_1016_j_ympev_2020_107006
crossref_primary_10_1016_j_ympev_2018_03_003
crossref_primary_10_1186_s12864_021_07805_w
crossref_primary_10_1670_18_088
crossref_primary_10_3389_fevo_2022_765977
crossref_primary_10_1086_700104
crossref_primary_10_1111_ddi_12676
crossref_primary_10_1111_eva_13689
crossref_primary_10_1016_j_biocon_2018_06_018
crossref_primary_10_1111_mec_17269
crossref_primary_10_1093_biolinnean_blaa200
crossref_primary_10_1007_s10592_021_01390_x
crossref_primary_10_3389_fpls_2019_01060
crossref_primary_10_1371_journal_pone_0234008
crossref_primary_10_1080_14772000_2020_1730475
crossref_primary_10_1002_nafm_10697
crossref_primary_10_1111_mec_16728
crossref_primary_10_1002_ajb2_1758
crossref_primary_10_1007_s10592_020_01324_z
crossref_primary_10_1080_0028825X_2021_1960567
crossref_primary_10_1007_s41208_025_00881_9
crossref_primary_10_1007_s10592_024_01621_x
crossref_primary_10_1007_s10592_022_01477_z
crossref_primary_10_1073_pnas_2009533118
crossref_primary_10_1016_j_ympev_2020_107024
crossref_primary_10_1007_s10592_020_01248_8
crossref_primary_10_7717_peerj_11947
crossref_primary_10_1007_s10592_023_01505_6
crossref_primary_10_1093_jhered_esae011
crossref_primary_10_1038_s41437_018_0073_2
crossref_primary_10_1111_mec_15626
crossref_primary_10_1093_biolinnean_blz050
crossref_primary_10_1111_ddi_13304
crossref_primary_10_1093_evolinnean_kzaf012
crossref_primary_10_1139_cjz_2019_0183
crossref_primary_10_1002_ajb2_1625
crossref_primary_10_1002_ece3_8169
crossref_primary_10_1002_jwmg_22599
crossref_primary_10_1111_mec_16951
crossref_primary_10_1111_mec_14896
crossref_primary_10_1139_cjfas_2020_0069
crossref_primary_10_1111_jbi_13726
crossref_primary_10_1016_j_zool_2020_125817
crossref_primary_10_1007_s10592_018_1123_2
crossref_primary_10_7717_peerj_6045
crossref_primary_10_1007_s11105_025_01582_6
crossref_primary_10_1093_sysbio_syae053
crossref_primary_10_1002_ecm_1386
crossref_primary_10_1093_botlinnean_boy086
crossref_primary_10_1007_s10531_025_03134_6
crossref_primary_10_1093_aob_mcac061
crossref_primary_10_1016_j_ympev_2022_107398
crossref_primary_10_1093_biolinnean_blz166
crossref_primary_10_1007_s10592_021_01366_x
crossref_primary_10_1111_mec_15736
crossref_primary_10_3390_f12081125
crossref_primary_10_1111_mec_16828
crossref_primary_10_1007_s12686_024_01359_1
crossref_primary_10_1007_s00606_021_01744_5
crossref_primary_10_1111_mec_14883
crossref_primary_10_1093_aob_mcac091
crossref_primary_10_1007_s10592_022_01498_8
crossref_primary_10_1111_1442_1984_12473
crossref_primary_10_3390_f13010024
crossref_primary_10_1111_1755_0998_13350
crossref_primary_10_1111_aec_12862
crossref_primary_10_1111_1755_0998_13234
crossref_primary_10_1111_mec_16930
crossref_primary_10_1111_1442_1984_12488
crossref_primary_10_1186_s12863_021_01008_8
crossref_primary_10_1002_ece3_4707
crossref_primary_10_3390_d15030384
crossref_primary_10_1086_717657
crossref_primary_10_1038_s41437_020_00393_7
crossref_primary_10_3390_plants13162209
crossref_primary_10_1371_journal_pone_0276117
crossref_primary_10_3389_fpls_2022_962364
crossref_primary_10_1139_cjfas_2020_0373
crossref_primary_10_3390_plants12010107
crossref_primary_10_1002_ajb2_1830
crossref_primary_10_1098_rsos_200288
crossref_primary_10_1139_cjfas_2020_0255
crossref_primary_10_1007_s10592_019_01193_1
crossref_primary_10_1007_s10980_020_01001_z
crossref_primary_10_1111_eva_70152
crossref_primary_10_1007_s10340_021_01356_5
crossref_primary_10_1007_s10592_024_01612_y
crossref_primary_10_1111_jse_12818
crossref_primary_10_1093_aob_mcad087
crossref_primary_10_1016_j_ympev_2022_107465
crossref_primary_10_1371_journal_pone_0304348
crossref_primary_10_1111_1755_0998_13171
crossref_primary_10_1111_mec_14735
crossref_primary_10_1002_ece3_9052
crossref_primary_10_1093_biolinnean_bly160
crossref_primary_10_1038_s41598_020_58551_0
crossref_primary_10_1007_s10750_023_05464_4
crossref_primary_10_1038_s41437_022_00510_8
crossref_primary_10_1038_s41598_019_55698_3
crossref_primary_10_7717_peerj_10533
crossref_primary_10_1016_j_meegid_2017_12_018
crossref_primary_10_1093_botlinnean_boz016
crossref_primary_10_1007_s10592_023_01593_4
crossref_primary_10_1016_j_fishres_2023_106709
crossref_primary_10_1371_journal_pone_0253255
crossref_primary_10_1007_s10531_020_01934_6
crossref_primary_10_3390_f9120752
crossref_primary_10_1111_eva_13179
crossref_primary_10_1111_mec_14846
crossref_primary_10_1111_1755_0998_70011
crossref_primary_10_1655_Herpetologica_D_22_00044
crossref_primary_10_1111_1755_0998_14114
crossref_primary_10_1038_s41437_021_00413_0
crossref_primary_10_1038_s41477_025_02073_y
crossref_primary_10_1007_s10592_019_01192_2
crossref_primary_10_1038_s41598_020_71915_w
crossref_primary_10_1177_19400829221128539
crossref_primary_10_3390_d16050274
crossref_primary_10_1007_s10592_023_01504_7
crossref_primary_10_1007_s10592_022_01473_3
crossref_primary_10_1111_eva_13288
crossref_primary_10_1007_s10592_018_1059_6
crossref_primary_10_1007_s10592_021_01356_z
crossref_primary_10_1002_ece3_4981
crossref_primary_10_1111_1442_1984_12207
crossref_primary_10_3390_d14121067
crossref_primary_10_1007_s10592_022_01440_y
crossref_primary_10_1002_ece3_6927
crossref_primary_10_1093_botlinnean_boae077
crossref_primary_10_1186_s12863_020_00849_z
crossref_primary_10_1111_csp2_12769
crossref_primary_10_1098_rspb_2018_0143
crossref_primary_10_1002_ece3_7224
crossref_primary_10_1139_facets_2017_0081
crossref_primary_10_1371_journal_pone_0185309
crossref_primary_10_3390_insects11110813
crossref_primary_10_1002_ajb2_16467
crossref_primary_10_1111_1755_0998_13522
crossref_primary_10_1111_mec_16446
crossref_primary_10_1002_ece3_71201
crossref_primary_10_1007_s10980_021_01235_5
crossref_primary_10_1002_ece3_7469
crossref_primary_10_1093_isd_ixy019
crossref_primary_10_7717_peerj_7780
crossref_primary_10_1007_s10592_024_01601_1
crossref_primary_10_1111_syen_12631
crossref_primary_10_1007_s10528_019_09914_4
crossref_primary_10_1016_j_cub_2021_02_027
crossref_primary_10_1002_ece3_5297
crossref_primary_10_1111_mec_15220
crossref_primary_10_1111_mec_16431
crossref_primary_10_1093_jeb_voae152
crossref_primary_10_1093_najfmt_vqaf060
crossref_primary_10_3390_genes11030265
crossref_primary_10_1002_aqc_3973
crossref_primary_10_1111_icad_12516
crossref_primary_10_1016_j_ympev_2023_107939
crossref_primary_10_1080_01584197_2021_1911601
crossref_primary_10_1016_j_baae_2024_09_003
crossref_primary_10_1016_j_ympev_2023_107937
crossref_primary_10_1093_g3journal_jkae071
crossref_primary_10_3389_fgene_2022_900572
crossref_primary_10_1016_j_ympev_2019_106661
crossref_primary_10_1016_j_rsma_2021_101861
crossref_primary_10_1093_evolut_qpad010
crossref_primary_10_1038_s41598_022_05856_x
crossref_primary_10_3390_v12040437
crossref_primary_10_1111_fme_12542
crossref_primary_10_1111_mms_12899
crossref_primary_10_1093_biolinnean_blac138
crossref_primary_10_1016_j_ijppaw_2025_101081
crossref_primary_10_1038_s41598_018_32369_3
crossref_primary_10_1111_mec_17511
crossref_primary_10_1002_jwmg_21452
crossref_primary_10_1093_jisesa_ieac012
crossref_primary_10_1111_mec_14368
crossref_primary_10_1093_jhered_esaa033
crossref_primary_10_3390_fishes8070373
crossref_primary_10_1002_ece3_6165
crossref_primary_10_1093_jhered_esy031
crossref_primary_10_1038_s41598_018_24912_z
crossref_primary_10_3389_fpls_2023_1130889
crossref_primary_10_1111_mec_15684
crossref_primary_10_1007_s00338_020_02040_3
crossref_primary_10_1002_ece3_71652
crossref_primary_10_1093_sysbio_syad024
crossref_primary_10_1016_j_ympev_2020_106921
crossref_primary_10_1007_s11295_019_1380_3
crossref_primary_10_1093_ornithapp_duab017
crossref_primary_10_1038_s41437_025_00765_x
crossref_primary_10_3390_ani12111464
crossref_primary_10_1111_mec_15558
crossref_primary_10_1016_j_meegid_2019_04_032
crossref_primary_10_1111_acv_12695
crossref_primary_10_1007_s10530_020_02354_x
crossref_primary_10_1016_j_indcrop_2019_04_010
crossref_primary_10_1002_ajb2_16385
crossref_primary_10_1007_s11295_018_1271_z
crossref_primary_10_1016_j_ympev_2022_107629
crossref_primary_10_1186_s40657_021_00295_0
crossref_primary_10_1111_ibi_13126
crossref_primary_10_1111_zsc_12417
crossref_primary_10_1111_mec_15548
crossref_primary_10_1016_j_flora_2018_06_007
crossref_primary_10_1002_ece3_6064
crossref_primary_10_1111_mec_15540
crossref_primary_10_1002_ajb2_1424
crossref_primary_10_1093_sysbio_syae017
crossref_primary_10_1038_s41598_024_56875_9
crossref_primary_10_1111_icad_12316
crossref_primary_10_1002_ajb2_16374
crossref_primary_10_1640_0002_8444_111_2_129
crossref_primary_10_1111_jbi_14068
crossref_primary_10_3390_agronomy11010118
crossref_primary_10_1111_eva_12923
crossref_primary_10_1073_pnas_1817453116
crossref_primary_10_1080_17550874_2018_1496366
crossref_primary_10_1111_mec_15536
crossref_primary_10_1002_ece3_8250
crossref_primary_10_1111_mec_17717
crossref_primary_10_1007_s00338_021_02160_4
crossref_primary_10_1093_molbev_msab333
crossref_primary_10_1038_s41437_018_0097_7
crossref_primary_10_1038_s41437_020_0348_2
crossref_primary_10_3390_ani10081375
crossref_primary_10_1111_eff_12651
crossref_primary_10_1093_jhered_esx094
crossref_primary_10_1093_sysbio_syaf013
crossref_primary_10_1111_mec_15413
crossref_primary_10_1111_mec_14446
crossref_primary_10_1111_mec_14567
crossref_primary_10_1111_rec_13418
crossref_primary_10_3389_fpls_2024_1395676
crossref_primary_10_1007_s10592_022_01478_y
crossref_primary_10_1007_s00122_023_04243_y
crossref_primary_10_1093_sysbio_syad073
crossref_primary_10_3390_horticulturae9050575
crossref_primary_10_1111_jbi_14294
crossref_primary_10_1007_s11295_019_1370_5
crossref_primary_10_1016_j_biocon_2021_109442
crossref_primary_10_1093_jhered_esac010
crossref_primary_10_1111_ddi_13191
crossref_primary_10_1016_j_ympev_2021_107206
crossref_primary_10_1016_j_ympev_2019_106536
crossref_primary_10_1016_j_ympev_2019_106535
crossref_primary_10_1642_AUK_17_144_1
crossref_primary_10_1111_mec_17707
crossref_primary_10_1093_molbev_msab207
crossref_primary_10_1093_sysbio_syad064
crossref_primary_10_1002_aqc_3510
crossref_primary_10_1007_s10592_020_01256_8
crossref_primary_10_1111_fwb_14194
crossref_primary_10_1007_s10592_021_01408_4
crossref_primary_10_1007_s10530_018_1659_6
crossref_primary_10_1007_s10980_024_01828_w
crossref_primary_10_1007_s10592_023_01555_w
crossref_primary_10_1111_jse_12573
crossref_primary_10_1016_j_biocon_2020_108417
crossref_primary_10_1002_ece3_4237
crossref_primary_10_1111_mec_15192
crossref_primary_10_1038_s41437_020_00369_7
crossref_primary_10_1093_bioadv_vbad168
crossref_primary_10_1111_afe_12658
crossref_primary_10_7717_peerj_13565
crossref_primary_10_1007_s10592_023_01520_7
crossref_primary_10_1002_ece3_70879
crossref_primary_10_1007_s00035_017_0196_8
crossref_primary_10_1007_s10592_025_01719_w
crossref_primary_10_1093_biomethods_bpab017
crossref_primary_10_1038_s41437_024_00677_2
crossref_primary_10_1111_1755_0998_12967
crossref_primary_10_1111_rec_13014
crossref_primary_10_1007_s10592_020_01274_6
crossref_primary_10_1007_s10841_018_0067_7
crossref_primary_10_1093_jmammal_gyaa175
crossref_primary_10_3389_fgene_2023_1206543
crossref_primary_10_7554_eLife_70494
crossref_primary_10_1002_ece3_10227
crossref_primary_10_1002_ece3_6670
crossref_primary_10_3389_fmars_2022_849402
crossref_primary_10_1007_s10592_022_01437_7
crossref_primary_10_1111_mec_15172
crossref_primary_10_1038_s41598_021_88238_z
crossref_primary_10_1002_tax_13176
crossref_primary_10_1371_journal_pgen_1007414
crossref_primary_10_1007_s11295_017_1217_x
crossref_primary_10_1111_rec_70063
crossref_primary_10_1002_jwmg_21848
crossref_primary_10_3389_fpls_2023_1192356
crossref_primary_10_1002_ece3_7897
crossref_primary_10_1111_mec_15286
crossref_primary_10_1111_mec_17102
crossref_primary_10_1007_s10592_025_01718_x
crossref_primary_10_3354_meps14640
crossref_primary_10_1111_zsc_12281
crossref_primary_10_1111_ecog_04534
crossref_primary_10_1111_mec_15164
crossref_primary_10_1111_mec_17341
crossref_primary_10_1111_jbi_14241
crossref_primary_10_1007_s10722_021_01307_0
crossref_primary_10_1007_s10592_023_01599_y
crossref_primary_10_1101_gr_280176_124
crossref_primary_10_3390_genes11020154
crossref_primary_10_3398_064_084_0304
crossref_primary_10_1111_mec_17212
crossref_primary_10_1111_mec_15036
crossref_primary_10_1111_mec_15157
crossref_primary_10_1111_mec_16487
crossref_primary_10_1016_j_cub_2023_07_057
crossref_primary_10_1002_ece3_8635
crossref_primary_10_1111_1755_0998_13724
crossref_primary_10_1093_biolinnean_blaa062
crossref_primary_10_1111_jbi_14475
crossref_primary_10_1111_mec_15030
crossref_primary_10_1186_s12864_018_4973_6
crossref_primary_10_1093_aobpla_plac060
crossref_primary_10_1111_evo_14205
crossref_primary_10_3390_genes11080863
crossref_primary_10_1111_eva_13505
crossref_primary_10_1007_s11295_017_1183_3
crossref_primary_10_1016_j_ympev_2025_108426
crossref_primary_10_1111_eva_12892
crossref_primary_10_1007_s10530_021_02635_z
crossref_primary_10_1002_ece3_5132
crossref_primary_10_1007_s12686_021_01216_5
crossref_primary_10_1002_tax_12050
crossref_primary_10_1111_mec_16597
crossref_primary_10_3389_fpls_2025_1526670
crossref_primary_10_1007_s12686_018_1070_8
crossref_primary_10_3390_ani14192904
crossref_primary_10_1111_mec_16592
crossref_primary_10_1111_1440_1703_12366
crossref_primary_10_1111_jbi_14586
crossref_primary_10_1007_s10750_024_05764_3
crossref_primary_10_1002_tafs_10448
crossref_primary_10_3390_ijms20051192
crossref_primary_10_1093_aob_mcaa145
crossref_primary_10_1007_s11295_019_1408_8
crossref_primary_10_1007_s10592_019_01230_z
crossref_primary_10_1111_eva_13613
crossref_primary_10_1186_s12864_020_6603_3
crossref_primary_10_1038_s41437_020_0344_6
crossref_primary_10_3389_fmars_2023_1052033
crossref_primary_10_3389_fpls_2023_1276764
crossref_primary_10_1111_mec_15374
crossref_primary_10_1016_j_meegid_2024_105584
crossref_primary_10_1111_mec_70027
crossref_primary_10_1371_journal_pone_0230735
crossref_primary_10_1371_journal_pone_0283351
crossref_primary_10_1111_mec_16225
crossref_primary_10_7717_peerj_12264
crossref_primary_10_1111_mec_17316
crossref_primary_10_1186_s12863_020_00955_y
crossref_primary_10_1002_nafm_11033
crossref_primary_10_1111_jbi_13125
crossref_primary_10_1111_1755_0998_13943
crossref_primary_10_1371_journal_pone_0260344
crossref_primary_10_1111_eff_12818
crossref_primary_10_1007_s10592_018_1074_7
crossref_primary_10_1111_acv_12508
crossref_primary_10_1016_j_jia_2022_08_110
crossref_primary_10_1073_pnas_1920051117
crossref_primary_10_1111_mec_15365
crossref_primary_10_1656_045_031_0412
crossref_primary_10_1111_nph_16669
crossref_primary_10_3390_agronomy11030564
crossref_primary_10_1002_tax_13129
Cites_doi 10.1007/s12686-011-9548-7
10.1214/09-STS307
10.1111/j.1365-294X.2010.04769.x
10.1038/hdy.2009.74
10.1073/pnas.94.17.9197
10.1111/j.1365-294X.2007.03329.x
10.1111/j.0021-8901.2004.00936.x
10.1111/j.1471-8286.2007.01769.x
10.1111/j.1755-0998.2009.02591.x
10.1111/j.1365-294X.2004.02396.x
10.1093/jmammal/gyw015
10.1371/journal.pgen.0010070
10.1111/j.1365-294X.2012.05754.x
10.1111/j.1365-294X.1995.tb00227.x
10.1111/j.1365-294X.2005.02553.x
10.1111/j.1365-294X.2008.03989.x
10.1093/jhered/92.3.301
10.1111/j.1755-0998.2012.03156.x
10.1016/j.tree.2012.05.012
10.1046/j.0962-1083.2001.01436.x
10.1002/ece3.376
10.1111/j.1365-294X.2008.03869.x
10.1007/s10592-005-9098-1
10.1002/ece3.964
10.1111/1755-0998.12387
10.1111/j.1755-0998.2010.02868.x
10.1111/mec.14022
10.1111/1755-0998.12512
10.1111/j.1558-5646.1984.tb05657.x
10.1111/mec.13269
10.1016/S0169-5347(00)01876-0
10.1007/s10592-014-0615-y
10.1111/j.1365-294X.2006.02890.x
10.1111/j.1755-0998.2011.03014.x
10.1111/j.1469-1809.1949.tb02451.x
10.1534/genetics.116.195164
10.1007/s10344-009-0292-1
10.1093/genetics/163.1.367
10.1126/science.1078311
10.1534/genetics.115.180992
10.1038/hdy.2014.39
10.1007/s10531-013-0514-4
10.1111/j.1601-5223.1999.00217.x
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.14187
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts

MEDLINE - Academic
CrossRef
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 3602
ExternalDocumentID 28544181
10_1111_mec_14187
MEC14187
Genre news
Journal Article
Review
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP150103591
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AIQQE
CITATION
O8X
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
ESX
NPM
WRC
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4527-60a85985643ee015b9a6151a2c675e04951d3582eecb5055685c289f1252d3ee3
IEDL.DBID DRFUL
ISICitedReferencesCount 512
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000404618000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:15:09 EDT 2025
Thu Oct 02 11:44:45 EDT 2025
Mon Nov 10 03:05:11 EST 2025
Wed Feb 19 02:40:49 EST 2025
Tue Nov 18 22:17:47 EST 2025
Sat Nov 29 05:23:19 EST 2025
Wed Aug 20 07:26:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords clustering methods
optimal K
conservation
delta K
population genetic structure
management
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4527-60a85985643ee015b9a6151a2c675e04951d3582eecb5055685c289f1252d3ee3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4511-2087
0000-0003-1505-3669
0000-0002-4019-7675
PMID 28544181
PQID 1915563694
PQPubID 31465
PageCount 9
ParticipantIDs proquest_miscellaneous_2020911844
proquest_miscellaneous_1903165020
proquest_journals_1915563694
pubmed_primary_28544181
crossref_citationtrail_10_1111_mec_14187
crossref_primary_10_1111_mec_14187
wiley_primary_10_1111_mec_14187_MEC14187
PublicationCentury 2000
PublicationDate July 2017
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: July 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2010; 56
2001; 92
2010; 10
2013; 22
2010; 19
2002; 11
2011; 11
2012; 12
2014; 4
1997; 94
2000; 15
2014; 15
2007; 7
1999; 130
2012; 27
2012; 21
2009; 18
2003; 164
2003; 163
2004; 41
2015; 15
2009; 24
2016; 19
2017; 26
2002; 298
2008; 17
2006; 15
2006; 7
2016; 97
2016; 204
2000; 155
2003
2016; 203
1995; 4
2016; 16
2014; 197
2014; 113
2007; 16
2015; 24
2012; 2
1984; 38
2009; 9
2016
2005; 1
2015
1951; 15
2012; 4
2009; 103
2005; 14
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_10_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_39_1
e_1_2_14_16_1
e_1_2_14_37_1
e_1_2_14_6_1
e_1_2_14_8_1
e_1_2_14_2_1
e_1_2_14_41_1
e_1_2_14_20_1
e_1_2_14_4_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_22_1
e_1_2_14_28_1
e_1_2_14_49_1
e_1_2_14_26_1
e_1_2_14_47_1
e_1_2_14_19_1
e_1_2_14_30_1
Wang J. (e_1_2_14_45_1) 2016; 19
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_13_1
e_1_2_14_32_1
Falush D. (e_1_2_14_17_1) 2016
e_1_2_14_15_1
e_1_2_14_36_1
Raj A. (e_1_2_14_38_1) 2014; 197
e_1_2_14_29_1
e_1_2_14_5_1
e_1_2_14_7_1
e_1_2_14_9_1
e_1_2_14_42_1
e_1_2_14_3_1
e_1_2_14_40_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_27_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
References_xml – volume: 11
  start-page: 591
  year: 2011
  end-page: 611
  article-title: Current trends in microsatellite genotyping
  publication-title: Molecular Ecology Resources
– volume: 15
  start-page: 323
  year: 1951
  end-page: 354
  article-title: The genetic structure of populations
  publication-title: Annals of Eugenics
– volume: 163
  start-page: 367
  year: 2003
  end-page: 374
  article-title: Bayesian analysis of genetic differentiation between populations
  publication-title: Genetics
– volume: 2
  start-page: 2631
  year: 2012
  end-page: 2644
  article-title: What does population structure analysis reveal about the complex (Orchidaceae)?
  publication-title: Ecology and Evolution
– volume: 15
  start-page: 1179
  year: 2015
  end-page: 1191
  article-title: Clumpak: A program for identifying clustering modes and packaging population structure inferences across K
  publication-title: Molecular Ecology Resources
– volume: 97
  start-page: 839
  year: 2016
  end-page: 851
  article-title: Population structure and dispersal of wolves in the Canadian Rocky Mountains
  publication-title: Journal of Mammalogy
– volume: 197
  start-page: 573
  year: 2014
  end-page: 589
  article-title: fastSTRUCTURE: variational inference of population structure in large SNP data sets
  publication-title: Genetics Society of America
– volume: 16
  start-page: 2638
  year: 2007
  end-page: 2654
  article-title: Life‐history and habitat features influence the within‐river genetic structure of Atlantic salmon
  publication-title: Molecular Ecology
– start-page: 1
  year: 2016
  end-page: 16
  article-title: A tutorial on how (not) to over‐interpret STRUCTURE/ADMIXTURE bar plots
  publication-title: bioRxiv
– volume: 11
  start-page: 155
  year: 2002
  end-page: 165
  article-title: The estimation of population differentiation with microsatellite markers
  publication-title: Molecular Ecology
– volume: 4
  start-page: 347
  year: 1995
  end-page: 354
  article-title: Microsatellite analysis of population structure in Canadian polar bears
  publication-title: Molecular Ecology
– volume: 103
  start-page: 285
  year: 2009
  end-page: 298
  article-title: Detecting loci under selection in a hierarchically structured population
  publication-title: Heredity
– volume: 19
  start-page: 4412
  year: 2010
  end-page: 4427
  article-title: A novel assessment of population structure and gene flow in grey wolf populations of the Northern Rocky Mountains of the United States
  publication-title: Molecular Ecology
– volume: 203
  start-page: 1827
  year: 2016
  end-page: 1839
  article-title: Estimating the number of subpopulations ( ) in structured populations
  publication-title: Genetics
– volume: 16
  start-page: 608
  year: 2016
  end-page: 627
  article-title: The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem
  publication-title: Molecular Ecology Resources
– volume: 10
  start-page: 773
  year: 2010
  end-page: 784
  article-title: Spatially explicit Bayesian clustering models in population genetics
  publication-title: Molecular Ecology Resources
– volume: 38
  start-page: 1358
  year: 1984
  end-page: 1370
  article-title: Estimating F‐statistics for the analysis of population structure
  publication-title: Evolution
– volume: 204
  start-page: 391
  year: 2016
  end-page: 393
  article-title: Pritchard, Stephens, and Donnelly on population structure
  publication-title: Genetics
– volume: 130
  start-page: 217
  year: 1999
  end-page: 228
  article-title: Conservation unites and translocations: Strategies for conserving evolutionary processes
  publication-title: Hereditas
– volume: 56
  start-page: 67
  year: 2010
  end-page: 81
  article-title: Population structure of the Daubenton's bat ( ) in western Europe and the associated occurrence of rabies
  publication-title: European Journal of Wildlife Research
– volume: 12
  start-page: 873
  year: 2012
  end-page: 884
  article-title: The effect of close relatives on unsupervised Bayesian clustering algorithms in population genetic structure analysis
  publication-title: Molecular Ecology
– volume: 15
  start-page: 1243
  year: 2014
  end-page: 1257
  article-title: Conflict in outcomes for conservation based on population genetic diversity and genetic divergence approaches: A case study in the Japanese relictual conifer Sciadopitys verticillata (Sciadopityaceae)
  publication-title: Conservation Genetics
– volume: 7
  start-page: 747
  year: 2007
  end-page: 756
  article-title: Bayesian clustering algorithms ascertaining spatial population structure: A new computer program and a comparison study
  publication-title: Molecular Ecology Notes
– year: 2015
– volume: 24
  start-page: 451
  year: 2009
  end-page: 471
  article-title: Population structure and cryptic relatedness in genetic association studies
  publication-title: Statistical Science
– volume: 18
  start-page: 43
  year: 2009
  end-page: 53
  article-title: Differential permeability of rivers to raccoon gene flow corresponds to rabies incidence in Ontario, Canada
  publication-title: Molecular Ecology
– volume: 15
  start-page: 1419
  year: 2006
  end-page: 1439
  article-title: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity
  publication-title: Molecular Ecology
– volume: 7
  start-page: 295
  year: 2006
  end-page: 302
  article-title: Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation
  publication-title: Conservation Genetics
– volume: 113
  start-page: 390
  year: 2014
  end-page: 400
  article-title: Contrasted invasion processes imprint the genetic structure of an invasive scale insect across southern Europe
  publication-title: Heredity
– year: 2003
– volume: 27
  start-page: 489
  year: 2012
  end-page: 496
  article-title: Harnessing genomics for delineating conservation units
  publication-title: Trends in Ecology and Evolution
– volume: 24
  start-page: 3668
  year: 2015
  end-page: 3687
  article-title: Phylogeny and biogeography of the American live oaks ( subsection Virentes): A genomic and population genetics approach
  publication-title: Molecular Ecology
– volume: 41
  start-page: 735
  year: 2004
  end-page: 743
  article-title: Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: A case study with feral pigs
  publication-title: Journal of Applied Ecology
– volume: 1
  start-page: e70
  year: 2005
  end-page: 12
  article-title: Clines, clusters, and the effect of study design on the inference of human population structure
  publication-title: PLoS Genetics
– volume: 164
  start-page: 1567
  year: 2003
  end-page: 1587
  article-title: Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies
  publication-title: Genetics
– volume: 21
  start-page: 4925
  year: 2012
  end-page: 4930
  article-title: Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program STRUCTURE
  publication-title: Molecular Ecology
– volume: 19
  year: 2016
  article-title: The computer program Structure for assigning individuals to populations: Easy to use but easier to misuse
  publication-title: Molecular Ecology Resources
– volume: 17
  start-page: 3640
  year: 2008
  end-page: 3653
  article-title: Do outbreaks affect genetic population structure? A worldwide survey in , a pest plagued by microsatellite null alleles
  publication-title: Molecular Ecology
– volume: 14
  start-page: 2611
  year: 2005
  end-page: 2620
  article-title: Detecting the number of clusters of individuals using the software structure: A simulation study
  publication-title: Molecular Ecology
– volume: 92
  start-page: 301
  year: 2001
  end-page: 302
  article-title: EASYPOP (Version 1.7): A computer program for population genetics simulations
  publication-title: Journal of Heredity
– volume: 4
  start-page: 743
  year: 2014
  end-page: 755
  article-title: Determining population structure and hybridization for two iris species
  publication-title: Ecology and Evolution
– volume: 4
  start-page: 359
  year: 2012
  end-page: 361
  article-title: STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method
  publication-title: Conservation Genetics Resources
– volume: 155
  start-page: 945
  year: 2000
  end-page: 959
  article-title: Inference of population structure using multilocus genotype data
  publication-title: Genetics
– volume: 15
  start-page: 290
  year: 2000
  end-page: 295
  article-title: Considering evolutionary processes in conservation biology
  publication-title: Trends in Ecology and Evolution
– volume: 9
  start-page: 1322
  year: 2009
  end-page: 1332
  article-title: Inferring weak population structure with the assistance of sample group information
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 1799
  year: 2013
  end-page: 1820
  article-title: Doomed before they are described? The need for conservation assessments of cryptic species complexes using an amblyopsid cavefish (Amblyopsidae: Typhlichthys) as a case study
  publication-title: Biodiversity and Conservation
– volume: 298
  start-page: 2381
  year: 2002
  end-page: 2385
  article-title: Genetic Structure of Human Populations
  publication-title: Science
– volume: 26
  start-page: 1211
  year: 2017
  end-page: 1224
  article-title: Purging putative siblings from population genetic datasets: A cautionary view
  publication-title: Molecular Ecology
– volume: 94
  start-page: 9197
  year: 1997
  end-page: 9201
  article-title: Detecting immigration by using multilocus genotypes
  publication-title: Proceedings of the National Academy of Science
– ident: e_1_2_14_13_1
  doi: 10.1007/s12686-011-9548-7
– ident: e_1_2_14_2_1
  doi: 10.1214/09-STS307
– ident: e_1_2_14_24_1
  doi: 10.1111/j.1365-294X.2010.04769.x
– ident: e_1_2_14_15_1
  doi: 10.1038/hdy.2009.74
– ident: e_1_2_14_27_1
– ident: e_1_2_14_39_1
  doi: 10.1073/pnas.94.17.9197
– ident: e_1_2_14_43_1
  doi: 10.1111/j.1365-294X.2007.03329.x
– ident: e_1_2_14_23_1
  doi: 10.1111/j.0021-8901.2004.00936.x
– ident: e_1_2_14_8_1
  doi: 10.1111/j.1471-8286.2007.01769.x
– ident: e_1_2_14_25_1
  doi: 10.1111/j.1755-0998.2009.02591.x
– ident: e_1_2_14_35_1
  doi: 10.1111/j.1365-294X.2004.02396.x
– ident: e_1_2_14_12_1
  doi: 10.1093/jmammal/gyw015
– ident: e_1_2_14_41_1
  doi: 10.1371/journal.pgen.0010070
– ident: e_1_2_14_20_1
  doi: 10.1111/j.1365-294X.2012.05754.x
– ident: e_1_2_14_34_1
  doi: 10.1111/j.1365-294X.1995.tb00227.x
– volume: 197
  start-page: 573
  year: 2014
  ident: e_1_2_14_38_1
  article-title: fastSTRUCTURE: variational inference of population structure in large SNP data sets
  publication-title: Genetics Society of America
– ident: e_1_2_14_14_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_14_11_1
  doi: 10.1111/j.1365-294X.2008.03989.x
– ident: e_1_2_14_4_1
  doi: 10.1093/jhered/92.3.301
– ident: e_1_2_14_40_1
  doi: 10.1111/j.1755-0998.2012.03156.x
– ident: e_1_2_14_19_1
  doi: 10.1016/j.tree.2012.05.012
– ident: e_1_2_14_5_1
  doi: 10.1046/j.0962-1083.2001.01436.x
– ident: e_1_2_14_26_1
  doi: 10.1002/ece3.376
– ident: e_1_2_14_7_1
  doi: 10.1111/j.1365-294X.2008.03869.x
– ident: e_1_2_14_30_1
  doi: 10.1007/s10592-005-9098-1
– ident: e_1_2_14_22_1
  doi: 10.1002/ece3.964
– ident: e_1_2_14_29_1
  doi: 10.1111/1755-0998.12387
– ident: e_1_2_14_18_1
  doi: 10.1111/j.1755-0998.2010.02868.x
– ident: e_1_2_14_46_1
  doi: 10.1111/mec.14022
– ident: e_1_2_14_37_1
  doi: 10.1111/1755-0998.12512
– ident: e_1_2_14_48_1
  doi: 10.1111/j.1558-5646.1984.tb05657.x
– ident: e_1_2_14_6_1
  doi: 10.1111/mec.13269
– ident: e_1_2_14_10_1
  doi: 10.1016/S0169-5347(00)01876-0
– start-page: 1
  year: 2016
  ident: e_1_2_14_17_1
  article-title: A tutorial on how (not) to over‐interpret STRUCTURE/ADMIXTURE bar plots
  publication-title: bioRxiv
– ident: e_1_2_14_49_1
  doi: 10.1007/s10592-014-0615-y
– ident: e_1_2_14_47_1
  doi: 10.1111/j.1365-294X.2006.02890.x
– ident: e_1_2_14_21_1
  doi: 10.1111/j.1755-0998.2011.03014.x
– ident: e_1_2_14_50_1
  doi: 10.1111/j.1469-1809.1949.tb02451.x
– ident: e_1_2_14_33_1
  doi: 10.1534/genetics.116.195164
– ident: e_1_2_14_3_1
  doi: 10.1007/s10344-009-0292-1
– ident: e_1_2_14_9_1
  doi: 10.1093/genetics/163.1.367
– ident: e_1_2_14_42_1
  doi: 10.1126/science.1078311
– ident: e_1_2_14_44_1
  doi: 10.1534/genetics.115.180992
– ident: e_1_2_14_36_1
– ident: e_1_2_14_16_1
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_2_14_28_1
  doi: 10.1038/hdy.2014.39
– volume: 19
  year: 2016
  ident: e_1_2_14_45_1
  article-title: The computer program Structure for assigning individuals to populations: Easy to use but easier to misuse
  publication-title: Molecular Ecology Resources
– ident: e_1_2_14_32_1
  doi: 10.1007/s10531-013-0514-4
– ident: e_1_2_14_31_1
  doi: 10.1111/j.1601-5223.1999.00217.x
SSID ssj0013255
Score 2.6703625
SecondaryResourceType review_article
Snippet Assessments of population genetic structure have become an increasing focus as they can provide valuable insight into patterns of migration and gene flow....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3594
SubjectTerms Biological effects
Cluster Analysis
Clustering
clustering methods
Clusters
conservation
delta K
founder effect
Gene Flow
Genetic structure
Genetics, Population - methods
management
Migration
Models, Genetic
optimal K
Population
population genetic structure
Population genetics
Population structure
Population studies
Readers
Research Design
Structural hierarchy
Subpopulations
Title The K = 2 conundrum
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14187
https://www.ncbi.nlm.nih.gov/pubmed/28544181
https://www.proquest.com/docview/1915563694
https://www.proquest.com/docview/1903165020
https://www.proquest.com/docview/2020911844
Volume 26
WOSCitedRecordID wos000404618000003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_cpuCLH_NrOkcVH3wptGnTpogPMjcEdYg42FtJkwwE18m2CvvvvaRd2dCB4Fshl3BJ7uN3TXIHcOWhG5EOdWzl6mNGHnGboym2Q0HJkISBTLgwxSbCXo8NBtHLBtws3sLk-SHKH25aM4y91grOk-mSko-UQDV3WViBGkG5pVWo3b92-09Lhwim6CmCdILWhnlFYiF9kafsvOqOfmDMVchqfE5391_c7sFOATWtu1w29mFDpXXYyotPzvGrYxJWzw-gjrJiPVq3FrEwOs5SOclGh9Dvdt7aD3ZRLMEWPiWhHTic0YhRRBhKoY9PIq7BCicCQwKFcQB1pX4Vq5RIqM6gw6jAYGuIAIdI7OIdQTUdp-oELPToUvqez-lQYnTi4lAsSBxKBKeEO6wB14s1i0WRSVwXtPiIFxEFzjY2s23AZUn6mafP-I2ouVj4uNCgaezqxPWBF0R-Ay7KZpR9faDBUzXONA2aJISYxFlPQ7AVDTrzcZzjfFNLTvTrUWTAxQmZvVvPYvzcaZuP07-TnsE20RjA3O1tQnU2ydQ5bIqv2ft00oJKOGCtQmS_AUP55rw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qq-iLR73qGcUHXwLJJptsQB-ktlR6INJC38J2swXBptI2Qv-9s5s0tGhB8G1hZ5c95vhmjxmAOwfNSGRRy5S2umbkATc5qmLTF5QMie9FAy50sgm_02H9fvBagIfFX5g0PkR-4KYkQ-trJeDqQHpJykdSoJzbzN-AkotshPxden6r91pLtwg66ymidILqhjlZZCH1kidvvGqPfoDMVcyqjU5973_D3YfdDGwaTyl3HEBBxmXYStNPzrFU0yGr54dQRm4xmsajQQz0j5M4miSjI-jVa91qw8zSJZjCpcQ3PYszGjCKGENKtPKDgCu4wolAp0CiJ0DtSP2LlVIMqIqhw6hAd2uIEIdE2MQ5hmI8juUpGGjTo8h1XE6HEfonNnbFvIFFieCUcItV4H6xaKHIYomrlBYf4cKnwNmGerYVuM1JP9MAGr8RXSxWPsxkaBraKnS953iBW4GbvBq5X11p8FiOE0WDSglBJrHW0xCsRZXOXOznJN3VfCTq_ygOwMYJ6c1bP8SwXavqwtnfSa9hu9Ftt8LWS6d5DjtEIQL90vcCirNJIi9hU3zN3qeTq4xzvwG8h-nE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_m_MAXP-bX_Kzigy-FNm3aFPRB5oqyOUQc7K1kSQqCq2Ozgv-9l7QrExUE3wq5hEtyH79rkjuAcw_diHSoYytXHzPyiNscTbEdCkpSEgZyyIUpNhH2emwwiB5qcDl7C1Pkh6h-uGnNMPZaK7gay3ROy0dKoJ67LFyARV8XkanD4s1j3O_OnSKYqqeI0gmaG-aVmYX0TZ6q81d_9A1kfsWsxunE6_9jdwPWSrBpXRfSsQk1lTVguSg_-YFfbZOy-mMLGigtVse6soiF8XGeyUk-2oZ-3H5q3dpluQRb-JSEduBwRiNGEWMohV5-GHENVzgRGBQojASoK_W7WKXEkOocOowKDLdShDhEYhdvB-rZa6b2wEKfLqXv-ZymEuMTF4diwdChRHBKuMOacDFbtESUucR1SYuXZBZT4GwTM9smnFWk4yKBxk9Eh7OVT0odmiauTl0feEHkN-G0akbp10caPFOvuaZBo4Qgkzi_0xBsRZPOfBxnt9jVihP9fhQZcHFCZvN-ZzG5b7fMx_7fSU9g5eEmTrp3vc4BrBINCMxF30Oov01ydQRL4v3teTo5LgX3E2V86T8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+K+%3D+2+conundrum&rft.jtitle=Molecular+ecology&rft.au=Janes%2C+Jasmine+K&rft.au=Miller%2C+Joshua+M&rft.au=Dupuis%2C+Julian+R&rft.au=Malenfant%2C+Ren%C3%A9+M&rft.date=2017-07-01&rft.issn=0962-1083&rft.volume=26&rft.issue=14+p.3594-3602&rft.spage=3594&rft.epage=3602&rft_id=info:doi/10.1111%2Fmec.14187&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon