Biodiversity and species competition regulate the resilience of microbial biofilm community

The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Molecular ecology Ročník 26; číslo 21; s. 6170 - 6182
Hlavní autoři: Feng, Kai, Zhang, Zhaojing, Cai, Weiwei, Liu, Wenzong, Xu, Meiying, Yin, Huaqun, Wang, Aijie, He, Zhili, Deng, Ye
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Blackwell Publishing Ltd 01.11.2017
Témata:
ISSN:0962-1083, 1365-294X, 1365-294X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.
AbstractList The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.
The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells (MEC) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.
The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called microbial electrolysis cells ( MEC ) contain moderate species numbers and easy tractable functional traits, thus providing an ideal platform for verifying ecological theories in microbial ecosystems. Here, we investigated the resilience of biofilm communities with a gradient of diversity, and explored the relationship between biodiversity and stability in response to a pH shock. The results showed that all bioreactors could recover to stable performance after pH disturbance, exhibiting a great resilience ability. A further analysis of microbial composition showed that the rebound of Geobacter and other exoelectrogens contributed to the resilient effectiveness, and that the presence of Methanobrevibacter might delay the functional recovery of biofilms. The microbial communities with higher diversity tended to be recovered faster, implying biofilms with high biodiversity showed better resilience in response to environmental disturbance. Network analysis revealed that the negative interactions between the two dominant genera of Geobacter and Methanobrevibacter increased when the recovery time became longer, implying the internal resource or spatial competition of key functional taxa might fundamentally impact the resilience performances of biofilm communities. This study provides new insights into our understanding of the relationship between diversity and ecosystem functioning.
Author Liu, Wenzong
Deng, Ye
Yin, Huaqun
Wang, Aijie
Xu, Meiying
Zhang, Zhaojing
Feng, Kai
Cai, Weiwei
He, Zhili
Author_xml – sequence: 1
  givenname: Kai
  surname: Feng
  fullname: Feng, Kai
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Zhaojing
  surname: Zhang
  fullname: Zhang, Zhaojing
  organization: Dalian University of Technology
– sequence: 3
  givenname: Weiwei
  surname: Cai
  fullname: Cai, Weiwei
  organization: Harbin Institute of Technology (SKLUWRE, HIT)
– sequence: 4
  givenname: Wenzong
  surname: Liu
  fullname: Liu, Wenzong
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Meiying
  surname: Xu
  fullname: Xu, Meiying
  organization: Guangdong Institute of Microbiology
– sequence: 6
  givenname: Huaqun
  surname: Yin
  fullname: Yin, Huaqun
  organization: Central South University
– sequence: 7
  givenname: Aijie
  surname: Wang
  fullname: Wang, Aijie
  organization: University of Chinese Academy of Sciences
– sequence: 8
  givenname: Zhili
  surname: He
  fullname: He, Zhili
  organization: University of Oklahoma
– sequence: 9
  givenname: Ye
  orcidid: 0000-0002-7584-0632
  surname: Deng
  fullname: Deng, Ye
  email: yedeng@rcees.ac.cn
  organization: University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28926148$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFDEYhoNU7LZ68B-QAS_2MG1-b3LUpVah4kVB8BAymW_0K5nJmswo-9-bdbeXophLCDzvA3nfM3IypQkIec7oJavnaoRwyaRQ-hFZMaFVy638ckJW1GreMmrEKTkr5Y5SJrhST8gpN5ZrJs2KfH2DqcefkAvOu8ZPfVO2EBBKE9K4hRlnTFOT4dsS_QzN_B3qo2BEmAI0aWhGDDl16GPTYRowjvvguExV95Q8Hnws8Ox4n5PPb68_bd61tx9v3m9e37ZBKq5bxQe5Zmwdeu6ptXrde6OhC55Tq8CIvhNaKAmSCd9LbqCz2g7CGjZIqw0X5-TVwbvN6ccCZXYjlgAx-gnSUhynjHKqLGP_RZmVFTRC7a0vH6B3aclT_UiltFSqFr6u1IsjtXQj9G6bcfR55-4brsDVAag1lZJhcAFnv291zh6jY9TtN3R1Q_dnw5q4eJC4l_6NPdp_YYTdv0H34XpzSPwGxdSpnQ
CitedBy_id crossref_primary_10_1016_j_watres_2022_119055
crossref_primary_10_1111_1755_0998_13081
crossref_primary_10_1111_1462_2920_16024
crossref_primary_10_1016_j_jenvman_2022_115013
crossref_primary_10_1016_j_soilbio_2020_108018
crossref_primary_10_1038_s41598_024_54019_7
crossref_primary_10_1186_s13213_023_01717_8
crossref_primary_10_1002_npp2_70015
crossref_primary_10_1016_j_chemosphere_2022_136598
crossref_primary_10_1007_s00343_022_2081_6
crossref_primary_10_1007_s11104_025_07414_6
crossref_primary_10_1016_j_watres_2018_10_073
crossref_primary_10_3389_fmicb_2022_938490
crossref_primary_10_1128_spectrum_01696_21
crossref_primary_10_1016_j_apsoil_2025_106065
crossref_primary_10_1111_gcb_17111
crossref_primary_10_1016_j_rhisph_2023_100839
crossref_primary_10_1128_msystems_00630_21
crossref_primary_10_1016_j_jenvman_2024_121129
crossref_primary_10_1016_j_jenvman_2023_118111
crossref_primary_10_1016_j_scitotenv_2021_149362
crossref_primary_10_1016_j_envres_2024_120029
crossref_primary_10_1016_j_scitotenv_2018_11_130
crossref_primary_10_1016_j_aquaculture_2022_738979
crossref_primary_10_1016_j_envres_2022_113298
crossref_primary_10_1016_j_envres_2023_115897
crossref_primary_10_1007_s00203_022_02934_6
crossref_primary_10_1111_1755_0998_13097
crossref_primary_10_3390_agronomy13082111
crossref_primary_10_3389_fbioe_2022_897094
crossref_primary_10_1016_j_envres_2021_112143
crossref_primary_10_1039_D4FO05674D
crossref_primary_10_1186_s40168_022_01422_9
crossref_primary_10_1007_s11356_022_21246_2
crossref_primary_10_3389_fmicb_2021_607601
crossref_primary_10_1016_j_envres_2020_109123
crossref_primary_10_1016_j_jece_2021_106620
crossref_primary_10_1038_s41598_024_76195_2
crossref_primary_10_1128_mSystems_00566_19
crossref_primary_10_1186_s12866_020_01965_7
crossref_primary_10_1016_j_scitotenv_2020_140250
crossref_primary_10_3390_microbiolres14010019
crossref_primary_10_1016_j_envpol_2024_124814
crossref_primary_10_1016_j_chemosphere_2021_132268
crossref_primary_10_3389_fmicb_2021_808285
crossref_primary_10_3390_microorganisms9091929
crossref_primary_10_1128_msystems_00469_22
crossref_primary_10_1002_mlf2_70006
crossref_primary_10_1016_j_dwt_2024_100300
crossref_primary_10_1016_j_scitotenv_2024_174018
crossref_primary_10_1007_s11356_021_16830_x
crossref_primary_10_1016_j_scitotenv_2024_175107
crossref_primary_10_1080_08927014_2020_1714600
crossref_primary_10_1016_j_marpolbul_2024_116138
crossref_primary_10_1186_s40168_024_01890_1
crossref_primary_10_1016_j_jhazmat_2024_136982
crossref_primary_10_1016_j_scitotenv_2021_148724
crossref_primary_10_1128_msystems_00401_22
crossref_primary_10_3389_fmicb_2019_02523
crossref_primary_10_1016_j_jes_2025_07_031
crossref_primary_10_1186_s40168_019_0688_4
crossref_primary_10_1007_s00248_023_02277_9
crossref_primary_10_1007_s13205_020_02465_1
crossref_primary_10_1038_s43705_022_00148_x
crossref_primary_10_1128_aem_01392_25
crossref_primary_10_3389_fmicb_2023_1120151
crossref_primary_10_3389_fmicb_2023_1109128
crossref_primary_10_3389_fpls_2022_1000045
crossref_primary_10_1016_j_scitotenv_2023_165943
crossref_primary_10_3389_fmicb_2021_722626
crossref_primary_10_1016_j_envres_2025_122510
crossref_primary_10_1002_ldr_3272
crossref_primary_10_1016_j_envres_2022_113605
crossref_primary_10_1186_s12866_022_02468_3
crossref_primary_10_3389_fmicb_2023_1136187
crossref_primary_10_1016_j_scitotenv_2022_158939
crossref_primary_10_1016_j_scitotenv_2021_148297
crossref_primary_10_1016_j_scitotenv_2021_145465
crossref_primary_10_1111_mec_15441
crossref_primary_10_1016_j_apsoil_2020_103508
crossref_primary_10_1016_j_envres_2025_122647
crossref_primary_10_1016_j_cej_2024_158273
crossref_primary_10_3389_fmicb_2020_556002
crossref_primary_10_1016_j_jwpe_2023_104642
crossref_primary_10_1016_j_envres_2020_109145
crossref_primary_10_1016_j_watres_2021_117744
crossref_primary_10_1016_j_oneear_2024_06_002
crossref_primary_10_1016_j_foreco_2023_121222
crossref_primary_10_1128_AEM_01366_21
crossref_primary_10_1007_s11104_021_04859_3
crossref_primary_10_1016_j_scitotenv_2022_153539
crossref_primary_10_3390_agronomy12020316
crossref_primary_10_1111_1755_0998_14092
crossref_primary_10_1007_s42995_022_00159_6
crossref_primary_10_1016_j_biortech_2020_122938
crossref_primary_10_1016_j_biortech_2023_130284
crossref_primary_10_1016_j_ecofro_2025_07_005
crossref_primary_10_1111_iwj_12932
crossref_primary_10_1016_j_jenvman_2025_124724
crossref_primary_10_1016_j_scitotenv_2024_172692
crossref_primary_10_1038_s44185_024_00063_5
crossref_primary_10_1016_j_agee_2025_109550
crossref_primary_10_1016_j_chemosphere_2023_140010
crossref_primary_10_1007_s00248_022_01997_8
crossref_primary_10_3390_foods13081181
crossref_primary_10_1016_j_soilbio_2021_108210
crossref_primary_10_1016_j_jhazmat_2025_138945
crossref_primary_10_1016_j_marenvres_2023_106082
crossref_primary_10_1016_j_envres_2020_109392
crossref_primary_10_3389_fmicb_2022_973469
crossref_primary_10_1007_s11783_018_1064_5
crossref_primary_10_1128_spectrum_02066_22
crossref_primary_10_3389_fpls_2022_848691
crossref_primary_10_1186_s40793_023_00516_7
crossref_primary_10_1080_01490451_2024_2360479
crossref_primary_10_1016_j_aquaculture_2024_741091
crossref_primary_10_1016_j_jhazmat_2021_125850
crossref_primary_10_1007_s42832_019_0009_7
crossref_primary_10_1016_j_envres_2022_113010
crossref_primary_10_3389_fpls_2023_1194598
crossref_primary_10_1016_j_jenvman_2023_117860
crossref_primary_10_1111_mec_17727
crossref_primary_10_1016_j_catena_2025_109360
crossref_primary_10_1016_S2095_3119_20_63364_0
crossref_primary_10_1016_j_jhazmat_2022_128985
crossref_primary_10_1186_s42523_022_00185_w
crossref_primary_10_1016_j_chemosphere_2018_10_020
crossref_primary_10_1016_j_biortech_2023_129508
crossref_primary_10_1002_ldr_3804
crossref_primary_10_1007_s00248_023_02305_8
crossref_primary_10_1007_s42729_024_01741_w
crossref_primary_10_1007_s11356_021_18386_2
crossref_primary_10_3389_fmicb_2021_629852
crossref_primary_10_1016_j_cej_2025_161048
crossref_primary_10_3390_agronomy13020481
crossref_primary_10_1093_femsec_fiaa020
crossref_primary_10_1016_j_envres_2023_117564
crossref_primary_10_1016_j_envres_2024_119946
crossref_primary_10_1016_j_jhazmat_2025_137192
crossref_primary_10_1016_j_scitotenv_2024_175822
crossref_primary_10_1007_s00128_024_03920_y
crossref_primary_10_1016_j_biortech_2021_125352
crossref_primary_10_1016_j_scitotenv_2024_176596
crossref_primary_10_1016_j_jhazmat_2025_138962
crossref_primary_10_1016_j_indcrop_2024_120401
crossref_primary_10_1016_j_scitotenv_2024_172670
crossref_primary_10_3390_agronomy13123012
crossref_primary_10_3390_microorganisms10091743
crossref_primary_10_1016_j_ecohyd_2022_06_001
crossref_primary_10_1038_s41522_020_00176_2
crossref_primary_10_1016_j_gecco_2024_e03171
crossref_primary_10_1111_mec_15777
crossref_primary_10_1016_j_aquaculture_2024_741447
crossref_primary_10_1016_j_soilbio_2024_109325
crossref_primary_10_1016_j_scitotenv_2023_164532
crossref_primary_10_1016_j_scib_2021_01_021
crossref_primary_10_1016_j_soilbio_2020_107782
crossref_primary_10_1016_j_jwpe_2021_102108
crossref_primary_10_1093_femsec_fiad089
crossref_primary_10_1016_j_envres_2024_120373
crossref_primary_10_1016_j_watres_2025_123890
crossref_primary_10_1016_j_jhazmat_2019_121782
crossref_primary_10_1016_j_watres_2024_122283
crossref_primary_10_1007_s11104_025_07512_5
crossref_primary_10_1186_s40793_023_00481_1
crossref_primary_10_1016_j_scitotenv_2024_173413
crossref_primary_10_1038_s41396_023_01447_4
crossref_primary_10_1016_j_wasman_2022_12_009
crossref_primary_10_1016_j_apsoil_2025_106304
crossref_primary_10_1039_D4EW00681J
crossref_primary_10_1007_s00374_023_01706_8
crossref_primary_10_1016_j_watres_2024_123006
crossref_primary_10_1007_s11104_020_04576_3
crossref_primary_10_1016_j_soilbio_2020_107775
crossref_primary_10_1016_j_watres_2023_120914
crossref_primary_10_1016_j_jes_2021_05_015
crossref_primary_10_1007_s42832_025_0295_1
crossref_primary_10_3389_fmicb_2021_785737
crossref_primary_10_3389_fmicb_2022_870766
crossref_primary_10_1016_j_chemosphere_2019_06_174
crossref_primary_10_1016_j_soilbio_2023_109019
crossref_primary_10_1111_2041_210X_13946
crossref_primary_10_1111_2041_210X_13702
crossref_primary_10_1016_j_micres_2021_126897
crossref_primary_10_1016_j_scitotenv_2019_02_385
crossref_primary_10_1128_AEM_01056_20
crossref_primary_10_1016_j_bej_2019_02_008
crossref_primary_10_1016_j_fbio_2022_102305
crossref_primary_10_1128_aem_01778_24
crossref_primary_10_1038_s41579_022_00744_7
crossref_primary_10_1186_s12864_022_08534_4
crossref_primary_10_1016_j_clnu_2025_04_008
crossref_primary_10_3389_fmicb_2020_583995
crossref_primary_10_3389_fmicb_2022_801083
crossref_primary_10_1016_j_watres_2023_119730
crossref_primary_10_1002_er_7919
crossref_primary_10_1007_s00374_023_01759_9
crossref_primary_10_1016_j_still_2019_104443
crossref_primary_10_1016_j_watres_2023_119734
crossref_primary_10_1016_j_biortech_2022_127351
crossref_primary_10_1016_j_apsoil_2023_104954
crossref_primary_10_1111_mec_16047
crossref_primary_10_1016_j_envint_2024_108538
crossref_primary_10_1016_j_apsoil_2024_105409
crossref_primary_10_1016_j_jhazmat_2021_126914
crossref_primary_10_1016_j_scitotenv_2024_175083
crossref_primary_10_1016_j_ejsobi_2025_103747
crossref_primary_10_1016_j_scitotenv_2020_142840
crossref_primary_10_1016_j_jece_2025_119085
crossref_primary_10_1002_imt2_13
crossref_primary_10_1016_S2468_1253_21_00400_3
crossref_primary_10_3389_fbioe_2024_1435695
crossref_primary_10_1016_j_jhazmat_2024_135478
crossref_primary_10_3389_fmicb_2022_931585
crossref_primary_10_1016_j_jhazmat_2023_132921
crossref_primary_10_1128_AEM_00251_21
crossref_primary_10_1007_s11356_025_36646_3
crossref_primary_10_1016_j_jhazmat_2021_127315
crossref_primary_10_1111_nph_17297
crossref_primary_10_1186_s12870_024_05209_y
crossref_primary_10_1016_j_jenvman_2023_117301
crossref_primary_10_1016_j_apsoil_2022_104442
crossref_primary_10_1186_s13073_021_00951_6
crossref_primary_10_1029_2024JG008712
crossref_primary_10_1016_j_envres_2024_118342
crossref_primary_10_1186_s13717_024_00542_4
crossref_primary_10_1016_j_apsoil_2022_104567
crossref_primary_10_1016_j_envres_2021_112660
crossref_primary_10_1016_j_jhazmat_2022_128709
crossref_primary_10_1007_s00374_022_01637_w
crossref_primary_10_1016_j_scitotenv_2019_04_032
crossref_primary_10_1038_s42003_024_06396_y
crossref_primary_10_3389_fmicb_2022_906818
crossref_primary_10_3390_microorganisms9122463
crossref_primary_10_1007_s10123_022_00244_x
crossref_primary_10_1016_j_ijhydene_2020_08_189
crossref_primary_10_3389_fmicb_2021_689762
crossref_primary_10_1016_j_envres_2024_118136
crossref_primary_10_1016_j_envres_2024_118379
crossref_primary_10_1111_1365_2435_13947
crossref_primary_10_1016_j_scitotenv_2020_141649
crossref_primary_10_1016_j_ecoenv_2024_116418
crossref_primary_10_1002_ecy_2734
crossref_primary_10_1016_j_agee_2021_107550
crossref_primary_10_1016_j_aquaculture_2021_737057
crossref_primary_10_1016_j_agee_2022_108044
crossref_primary_10_1016_j_geoderma_2024_117022
crossref_primary_10_1002_ldr_5059
crossref_primary_10_1007_s00248_020_01532_7
crossref_primary_10_1016_j_scitotenv_2019_135955
crossref_primary_10_1016_j_scitotenv_2023_162034
crossref_primary_10_1016_j_jes_2021_04_027
crossref_primary_10_3390_microorganisms11020274
crossref_primary_10_1016_j_biortech_2022_126839
crossref_primary_10_1007_s10532_021_09934_1
crossref_primary_10_1016_j_watres_2023_120141
crossref_primary_10_1016_j_apsoil_2020_103590
crossref_primary_10_1186_s40168_023_01723_7
crossref_primary_10_3390_agronomy12123090
crossref_primary_10_3389_fpls_2022_938865
crossref_primary_10_3389_fmicb_2022_858508
crossref_primary_10_1016_j_scitotenv_2021_150092
crossref_primary_10_1016_j_jes_2024_02_007
crossref_primary_10_1515_biol_2025_1103
crossref_primary_10_1128_mSystems_01058_20
crossref_primary_10_1128_mSystems_00905_20
crossref_primary_10_1111_1750_3841_16092
crossref_primary_10_1016_j_envres_2024_119330
crossref_primary_10_1016_j_eehl_2022_09_004
crossref_primary_10_1016_j_envres_2023_115470
crossref_primary_10_1016_j_scitotenv_2023_163109
crossref_primary_10_1038_s43247_024_01912_8
crossref_primary_10_3390_microorganisms9020211
crossref_primary_10_1016_j_soilbio_2019_107532
crossref_primary_10_1016_j_watres_2023_119726
crossref_primary_10_1007_s42832_021_0111_5
crossref_primary_10_1111_pce_15350
crossref_primary_10_1038_s41598_025_94366_7
crossref_primary_10_1016_j_envres_2022_114409
crossref_primary_10_1016_j_jece_2024_112494
crossref_primary_10_1016_j_scitotenv_2024_174911
crossref_primary_10_1016_j_aqrep_2024_102580
crossref_primary_10_1016_j_jenvman_2024_120920
crossref_primary_10_3389_fmicb_2025_1622150
crossref_primary_10_1016_j_jenvman_2024_120486
crossref_primary_10_1016_j_watres_2023_119654
crossref_primary_10_3389_fmicb_2020_00101
crossref_primary_10_3390_foods11223733
crossref_primary_10_1016_j_jhazmat_2025_138785
crossref_primary_10_1029_2021WR030909
crossref_primary_10_1016_j_indcrop_2022_115434
crossref_primary_10_1016_j_scitotenv_2020_137570
crossref_primary_10_1007_s11368_021_03073_z
crossref_primary_10_1016_j_jhazmat_2021_126790
crossref_primary_10_3390_microorganisms8020311
crossref_primary_10_1016_j_heliyon_2023_e13668
crossref_primary_10_1111_gcb_15891
crossref_primary_10_1016_j_jhazmat_2020_123040
crossref_primary_10_1016_j_envres_2022_115033
crossref_primary_10_1007_s11356_024_32365_3
crossref_primary_10_1016_j_ecolind_2023_111356
crossref_primary_10_1016_j_envpol_2023_123075
crossref_primary_10_1016_j_scitotenv_2024_175334
crossref_primary_10_1016_j_bej_2020_107800
crossref_primary_10_1128_AEM_02345_20
crossref_primary_10_1016_j_jhazmat_2020_123616
crossref_primary_10_1016_j_agee_2021_107815
crossref_primary_10_3390_microorganisms10030542
crossref_primary_10_1016_j_marpolbul_2025_117530
crossref_primary_10_1016_j_jclepro_2023_136928
crossref_primary_10_1186_s13568_019_0800_y
crossref_primary_10_3390_agronomy12071722
crossref_primary_10_1016_j_scitotenv_2020_138416
crossref_primary_10_3389_fevo_2023_1112519
crossref_primary_10_3390_microorganisms10061148
crossref_primary_10_1016_j_apsoil_2021_104350
crossref_primary_10_1128_msystems_00247_22
crossref_primary_10_1128_msphere_00665_23
crossref_primary_10_2166_wst_2024_314
crossref_primary_10_1016_j_agee_2022_108087
crossref_primary_10_3389_fmicb_2024_1416256
crossref_primary_10_3389_fmars_2023_1228813
crossref_primary_10_1016_j_envres_2023_117602
crossref_primary_10_1016_j_marenvres_2024_106624
crossref_primary_10_1186_s40168_020_00985_9
crossref_primary_10_3389_fmicb_2023_1258659
crossref_primary_10_3389_fnut_2023_1139836
crossref_primary_10_1186_s40793_023_00534_5
crossref_primary_10_1007_s11104_021_04979_w
crossref_primary_10_1016_j_jenvman_2024_120949
crossref_primary_10_1111_ddi_12949
crossref_primary_10_3390_su151310483
crossref_primary_10_1016_j_scitotenv_2021_144966
crossref_primary_10_3389_fmicb_2022_1076610
crossref_primary_10_3389_fmicb_2023_1214167
crossref_primary_10_1016_j_envres_2025_122311
crossref_primary_10_1016_j_envres_2025_121585
crossref_primary_10_1016_j_jwpe_2022_103439
crossref_primary_10_1038_s41467_025_57258_y
crossref_primary_10_1111_gcb_70335
crossref_primary_10_1016_j_ecolind_2024_111631
crossref_primary_10_3389_fmicb_2023_1143742
crossref_primary_10_1016_j_ecohyd_2022_08_001
crossref_primary_10_1016_j_marpolbul_2024_116603
crossref_primary_10_1007_s42729_022_01011_7
crossref_primary_10_1016_j_jes_2024_10_021
crossref_primary_10_1093_ismeco_ycae157
crossref_primary_10_1016_j_marenvres_2025_107469
crossref_primary_10_1016_j_scitotenv_2019_135884
crossref_primary_10_1016_j_watres_2021_117542
crossref_primary_10_1371_journal_pone_0276920
crossref_primary_10_1016_j_jwpe_2025_107595
crossref_primary_10_1128_IAI_00455_20
crossref_primary_10_3389_fmicb_2020_00138
crossref_primary_10_1016_j_watbs_2025_100455
crossref_primary_10_1016_j_jhazmat_2025_137243
crossref_primary_10_3390_w14081216
crossref_primary_10_3389_fmicb_2025_1559646
crossref_primary_10_3390_microorganisms11051114
crossref_primary_10_1016_j_ibiod_2020_105058
crossref_primary_10_1111_1462_2920_70167
crossref_primary_10_3389_fmicb_2022_889415
crossref_primary_10_3390_su11164428
crossref_primary_10_1016_j_scitotenv_2023_165330
crossref_primary_10_1002_mlf2_12159
crossref_primary_10_1016_j_scitotenv_2021_150963
Cites_doi 10.1038/nrmicro2695
10.3389/fmicb.2014.00219
10.1186/1471-2105-13-113
10.1128/mBio.00584-12
10.1021/es8001822
10.1111/1462-2920.12986
10.1093/bioinformatics/btr507
10.1016/j.ijhydene.2014.01.001
10.1515/9780691206912
10.1111/j.1574-6968.2011.02435.x
10.1111/1462-2920.12981
10.1093/bioinformatics/btp636
10.1890/04-1005
10.1186/1471-2105-8-299
10.1093/molbev/msp077
10.1038/npjbiofilms.2015.27
10.1126/science.aac8480
10.1128/mBio.00122-11
10.1021/es050244p
10.1021/es900204j
10.1016/j.ijhydene.2007.02.035
10.3389/fmicb.2015.01182
10.1038/35012234
10.1111/ele.12109
10.1890/ES15-00317.1
10.1007/s00253-012-4456-7
10.1038/nature05749
10.1038/ncomms8989
10.1111/ele.12088
10.1101/gr.1239303
10.1038/30918
10.1186/1471-2105-7-371
10.1073/pnas.0801925105
10.1890/12-1406.1
10.1016/0006-3207(92)91201-3
10.1021/es0627592
10.1038/nrmicro2113
10.1128/mBio.01536-14
10.1016/j.tree.2015.06.010
10.1111/aec.12133
10.1111/1462-2920.12824
10.1093/bioinformatics/btq166
10.3389/fmicb.2012.00417
10.1111/ele.12073
10.1038/nrmicro3417
10.1038/nrmicro821
10.1016/j.watres.2012.02.005
10.1890/09-0147.1
10.1016/j.ygeno.2011.05.009
10.1128/AEM.01996-06
10.1890/07-1228.1
10.1021/es062644y
10.1111/j.1574-6976.2012.00343.x
10.1128/AEM.01541-09
10.1038/nmeth.2604
10.1890/14-1067.1
10.1128/AEM.71.12.8228-8235.2005
10.1128/mBio.00169-10
10.1038/nrmicro3010
10.1111/1462-2920.13058
10.1038/ismej.2011.119
10.1890/0012-9658(2006)87[2058:SIOFAG]2.0.CO;2
10.1038/nature04742
10.1086/286117
10.1111/icad.12037
10.1016/j.tim.2016.11.008
10.1021/es100608a
10.1038/nrmicro2832
10.1111/ele.12019
10.1128/microbiolspec.MB-0009-2014
10.1111/j.1461-0248.2012.01863.x
10.1126/science.1133258
10.1016/j.jbiotec.2011.09.010
10.1007/s11356-015-4372-3
10.1890/09-1162.1
ContentType Journal Article
Copyright 2017 John Wiley & Sons Ltd
2017 John Wiley & Sons Ltd.
Copyright © 2017 John Wiley & Sons Ltd
Copyright_xml – notice: 2017 John Wiley & Sons Ltd
– notice: 2017 John Wiley & Sons Ltd.
– notice: Copyright © 2017 John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
DOI 10.1111/mec.14356
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Entomology Abstracts
MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1365-294X
EndPage 6182
ExternalDocumentID 28926148
10_1111_mec_14356
MEC14356
Genre article
Journal Article
GrantInformation_xml – fundername: Key Research Program of Frontier Sciences, CAS
  funderid: QYZDB‐SSW‐DQC026
– fundername: CAS 100 talent program
– fundername: National Water Pollution Control and Treatment Science and Technology Major Project
  funderid: 2015ZX07206
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB15010302
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29M
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
UB1
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
7S9
L.6
ID FETCH-LOGICAL-c4526-52f47117cd2a09967da86ebca2095e83db36354e413ad428eb969f3981f496823
IEDL.DBID DRFUL
ISICitedReferencesCount 382
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000415362500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0962-1083
1365-294X
IngestDate Fri Sep 05 17:31:34 EDT 2025
Thu Oct 02 11:33:14 EDT 2025
Wed Aug 13 03:51:25 EDT 2025
Wed Feb 19 02:39:59 EST 2025
Sat Nov 29 05:23:20 EST 2025
Tue Nov 18 21:43:07 EST 2025
Wed Jan 22 16:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords biofilm community
environmental disturbance
microbial diversity
microbial electrolysis cells
species competition
resilience
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4526-52f47117cd2a09967da86ebca2095e83db36354e413ad428eb969f3981f496823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7584-0632
PMID 28926148
PQID 1964554357
PQPubID 31465
PageCount 13
ParticipantIDs proquest_miscellaneous_2010205911
proquest_miscellaneous_1940598352
proquest_journals_1964554357
pubmed_primary_28926148
crossref_citationtrail_10_1111_mec_14356
crossref_primary_10_1111_mec_14356
wiley_primary_10_1111_mec_14356_MEC14356
PublicationCentury 2000
PublicationDate November 2017
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology
PublicationTitleAlternate Mol Ecol
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2013; 4
2009; 43
2015; 30
2003; 13
2011; 98
2008; 105
2004; 2
2007; 73
2012; 15
2012; 13
2007; 32
2012; 326
1998; 151
2012; 10
1998; 393
2014; 5
2010; 26
2010; 1
2013; 16
2001
2013; 11
2013; 10
1984; 11
2013; 97
2000; 405
2007; 8
2005; 71
2014; 95
2011; 27
2014; 7
2005; 39
2006; 441
2015; 13
2015; 6
2007; 446
2011; 2
2015; 3
2017; 25
2006; 7
2016; 18
2009; 26
2015; 350
2010; 44
2015; 25
2013; 37
2007; 317
2012; 3
2016; 2
2012; 157
2006; 40
2009; 75
2006; 87
2015; 22
2008; 89
2009; 7
2008; 42
2007; 41
2014; 39
2012; 6
2005; 15
2010; 91
2012; 46
1992; 61
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Chao A. (e_1_2_9_13_1) 1984; 11
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 26
  start-page: 1641
  year: 2009
  end-page: 1650
  article-title: FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix
  publication-title: Molecular Biology and Evolution
– volume: 32
  start-page: 2296
  year: 2007
  end-page: 2304
  article-title: Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)
  publication-title: International Journal of Hydrogen Energy
– volume: 16
  start-page: 140
  year: 2013
  end-page: 150
  article-title: Understanding diversity‐stability relationships: towards a unified model of portfolio effects
  publication-title: Ecology Letters
– volume: 18
  start-page: 205
  year: 2016
  end-page: 218
  article-title: Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation
  publication-title: Environmental Microbiology
– volume: 37
  start-page: 112
  year: 2013
  end-page: 129
  article-title: Insights into the resistance and resilience of the soil microbial community
  publication-title: FEMS Microbiology Reviews
– volume: 44
  start-page: 7729
  year: 2010
  end-page: 7735
  article-title: Geochip‐Based Functional Gene Analysis of Anodophilic Communities in Microbial Electrolysis Cells under Different Operational Modes
  publication-title: Environmental Science & Technology
– volume: 2
  start-page: 95
  year: 2004
  end-page: 108
  article-title: Bacterial biofilms: from the natural environment to infectious diseases
  publication-title: Nature Reviews Microbiology
– volume: 39
  start-page: 4317
  year: 2005
  end-page: 4320
  article-title: Electrochemically assisted microbial production of hydrogen from acetate
  publication-title: Environmental Science & Technology
– volume: 13
  start-page: 113
  year: 2012
  article-title: Molecular ecological network analyses
  publication-title: BMC Bioinformatics
– volume: 7
  start-page: 103
  year: 2014
  end-page: 112
  article-title: Community variability in aphid parasitoids versus predators in response to agricultural intensification
  publication-title: Insect Conservation and Diversity
– year: 2001
– volume: 350
  start-page: 507
  year: 2015
  end-page: 508
  article-title: A unified initiative to harness Earth's microbiomes
  publication-title: Science
– volume: 2
  start-page: 15027
  year: 2016
  article-title: Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms
  publication-title: NPJ Biofilms and Microbiomes
– volume: 89
  start-page: 2172
  year: 2008
  end-page: 2180
  article-title: Perturbations alter community convergence, divergence, and formation of multiple community states
  publication-title: Ecology
– volume: 441
  start-page: 629
  year: 2006
  end-page: 632
  article-title: Biodiversity and ecosystem stability in a decade‐long grassland experiment
  publication-title: Nature
– volume: 97
  start-page: 6979
  year: 2013
  end-page: 6989
  article-title: Production of hydrogen from domestic wastewater in a pilot‐scale microbial electrolysis cell
  publication-title: Applied Microbiology and Biotechnology
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 13
  start-page: 133
  year: 2015
  end-page: 146
  article-title: Marine microbial community dynamics and their ecological interpretation
  publication-title: Nature Reviews Microbiology
– volume: 18
  start-page: 1863
  year: 2016
  end-page: 1874
  article-title: Transient dynamics of competitive exclusion in microbial communities
  publication-title: Environmental Microbiology
– volume: 151
  start-page: 264
  year: 1998
  end-page: 276
  article-title: The statistical inevitability of stability‐diversity relationships in community ecology
  publication-title: American Naturalist
– volume: 405
  start-page: 228
  year: 2000
  end-page: 233
  article-title: The diversity‐stability debate
  publication-title: Nature
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  article-title: Introducing mothur: Open‐Source, Platform‐Independent, Community‐Supported Software for Describing and Comparing Microbial Communities
  publication-title: Applied and Environmental Microbiology
– volume: 18
  start-page: 1805
  year: 2016
  end-page: 1816
  article-title: Determinants of bacterial communities in Canadian agroforestry systems
  publication-title: Environmental Microbiology
– volume: 25
  start-page: 217
  year: 2017
  end-page: 228
  article-title: Disentangling Interactions in the Microbiome: A Network Perspective
  publication-title: Trends in Microbiology
– volume: 326
  start-page: 69
  year: 2012
  end-page: 75
  article-title: Interactions of bacteria with different mechanisms for chitin degradation result in the formation of a mixed‐species biofilm
  publication-title: FEMS Microbiology Letters
– volume: 3
  start-page: MB‐0009‐2014
  year: 2015
  article-title: Mechanisms of Competition in Biofilm Communities
  publication-title: Microbiology Spectrum
– volume: 11
  start-page: 337
  year: 2013
  end-page: 348
  article-title: Going local: technologies for exploring bacterial microenvironments
  publication-title: Nature Reviews Microbiology
– volume: 73
  start-page: 1576
  year: 2007
  end-page: 1585
  article-title: Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities
  publication-title: Applied and Environmental Microbiology
– volume: 393
  start-page: 440
  year: 1998
  end-page: 442
  article-title: Collective dynamics of ‘small‐world’ networks
  publication-title: Nature
– volume: 446
  start-page: E6
  year: 2007
  end-page: E7
  article-title: Ecology: Diversity and stability in plant communities
  publication-title: Nature
– volume: 317
  start-page: 58
  year: 2007
  end-page: 62
  article-title: Stability and diversity of ecosystems
  publication-title: Science
– volume: 7
  start-page: 375
  year: 2009
  end-page: 381
  article-title: Exoelectrogenic bacteria that power microbial fuel cells
  publication-title: Nature Reviews Microbiology
– volume: 91
  start-page: 756
  year: 2010
  end-page: 766
  article-title: Nonnative grass litter enhances grazing arthropod assemblages by increasing native shrub growth
  publication-title: Ecology
– volume: 40
  start-page: 5172
  year: 2006
  end-page: 5180
  article-title: Microbial Fuel Cells—Challenges and Applications
  publication-title: Environmental Science & Technology
– volume: 91
  start-page: 2213
  year: 2010
  end-page: 2220
  article-title: General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding
  publication-title: Ecology
– volume: 1
  start-page: e00169
  year: 2010
  end-page: 00110
  article-title: Functional molecular ecological networks
  publication-title: mBio
– volume: 6
  start-page: 343
  year: 2012
  end-page: 351
  article-title: Using network analysis to explore co‐occurrence patterns in soil microbial communities
  publication-title: ISME Journal
– volume: 26
  start-page: 266
  year: 2010
  end-page: 267
  article-title: PyNAST: a flexible tool for aligning sequences to a template alignment
  publication-title: Bioinformatics
– volume: 5
  start-page: 219
  year: 2014
  article-title: Deciphering microbial interactions and detecting keystone species with co‐occurrence networks
  publication-title: Frontiers in Microbiology
– volume: 7
  start-page: 371
  year: 2006
  article-title: UniFrac ‐ An online tool for comparing microbial community diversity in a phylogenetic context
  publication-title: BMC Bioinformatics
– volume: 61
  start-page: 1
  year: 1992
  end-page: 10
  article-title: Conservation Evaluation and Phylogenetic Diversity
  publication-title: Biological Conservation
– volume: 15
  start-page: 1397
  year: 2012
  end-page: 1405
  article-title: Biodiversity effects on ecosystem functioning change along environmental stress gradients
  publication-title: Ecology Letters
– volume: 22
  start-page: 11446
  year: 2015
  end-page: 11455
  article-title: Assessment of total bacterial cells in extended aeration activated sludge plants using flow cytometry as a microbial monitoring tool
  publication-title: Environmental Science and Pollution Research
– volume: 43
  start-page: 7971
  year: 2009
  end-page: 7976
  article-title: Fate of H2 in an Upflow Single‐Chamber Microbial Electrolysis Cell Using a Metal‐Catalyst‐Free Cathode
  publication-title: Environmental Science & Technology
– volume: 2
  start-page: e00122
  year: 2011
  end-page: 00111
  article-title: Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2
  publication-title: mBio
– volume: 6
  start-page: 280
  year: 2015
  article-title: A framework for quantifying the magnitude and variability of community responses to global change drivers
  publication-title: Ecosphere
– volume: 95
  start-page: 173
  year: 2014
  end-page: 184
  article-title: Multiple diversity‐stability mechanisms enhance population and community stability in aquatic food webs
  publication-title: Ecology
– volume: 71
  start-page: 8228
  year: 2005
  end-page: 8235
  article-title: UniFrac: a new phylogenetic method for comparing microbial communities
  publication-title: Applied and Environmental Microbiology
– volume: 39
  start-page: 696
  year: 2014
  end-page: 709
  article-title: Community divergence in a tropical forest following a severe cyclone
  publication-title: Austral Ecology
– volume: 8
  start-page: 299
  year: 2007
  article-title: Constructing gene co‐expression networks and predicting functions of unknown genes by random matrix theory
  publication-title: BMC Bioinformatics
– volume: 26
  start-page: 1463
  year: 2010
  end-page: 1464
  article-title: Picante: R tools for integrating phylogenies and ecology
  publication-title: Bioinformatics
– volume: 46
  start-page: 2425
  year: 2012
  end-page: 2434
  article-title: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H‐2 production from waste activated sludge
  publication-title: Water Research
– volume: 39
  start-page: 4222
  year: 2014
  end-page: 4233
  article-title: Metagenomic‐based analysis of biofilm communities for electrohydrogenesis: From wastewater to hydrogen
  publication-title: International Journal of Hydrogen Energy
– volume: 15
  start-page: 1515
  year: 2005
  end-page: 1534
  article-title: Determinants of postfire recovery and succession in Mediterranean‐climate shrublands of California
  publication-title: Ecological Applications
– volume: 87
  start-page: 2058
  year: 2006
  end-page: 2067
  article-title: Scale‐dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie
  publication-title: Ecology
– volume: 10
  start-page: 538
  year: 2012
  end-page: 550
  article-title: Microbial interactions: from networks to models
  publication-title: Nature Reviews Microbiology
– volume: 11
  start-page: 265
  year: 1984
  end-page: 270
  article-title: Nonparametric‐Estimation of the Number of Classes in a Population
  publication-title: Scandinavian Journal of Statistics
– volume: 16
  start-page: 617
  year: 2013
  end-page: 625
  article-title: Predicting ecosystem stability from community composition and biodiversity
  publication-title: Ecology Letters
– volume: 5
  start-page: e01536
  year: 2014
  end-page: 01514
  article-title: Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides
  publication-title: mBio
– volume: 10
  start-page: 39
  year: 2012
  end-page: 50
  article-title: Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal
  publication-title: Nature Reviews Microbiology
– volume: 4
  start-page: e00584
  year: 2013
  end-page: 00512
  article-title: Stochastic Assembly Leads to Alternative Communities with Distinct Functions in a Bioreactor Microbial Community
  publication-title: mBio
– volume: 105
  start-page: 11512
  issue: Suppl 1
  year: 2008
  end-page: 11519
  article-title: Resistance, resilience, and redundancy in microbial communities
  publication-title: Proceedings of the National Academy of Sciences of the USA
– volume: 16
  start-page: 106
  year: 2013
  end-page: 115
  article-title: Biodiversity and ecosystem stability: a synthesis of underlying mechanisms
  publication-title: Ecology Letters
– volume: 13
  start-page: 2498
  year: 2003
  end-page: 2504
  article-title: Cytoscape: A software environment for integrated models of biomolecular interaction networks
  publication-title: Genome Research
– volume: 30
  start-page: 503
  year: 2015
  end-page: 506
  article-title: What do you mean, ‘resilient’?
  publication-title: Trends in Ecology & Evolution
– volume: 41
  start-page: 3341
  year: 2007
  end-page: 3346
  article-title: Graphite fiber brush anodes for increased power production in air‐cathode microbial fuel cells
  publication-title: Environmental Science & Technology
– volume: 16
  start-page: 128
  year: 2013
  end-page: 139
  article-title: Microbial community responses to anthropogenically induced environmental change: towards a systems approach
  publication-title: Ecology Letters
– volume: 98
  start-page: 152
  year: 2011
  end-page: 153
  article-title: Btrim: A fast, lightweight adapter and quality trimming program for next‐generation sequencing technologies
  publication-title: Genomics
– volume: 6
  start-page: 1182
  year: 2015
  article-title: A network‐based approach to disturbance transmission through microbial interactions
  publication-title: Frontiers in Microbiology
– volume: 42
  start-page: 3401
  year: 2008
  end-page: 3406
  article-title: Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
  publication-title: Environmental Science & Technology
– volume: 157
  start-page: 628
  year: 2012
  end-page: 632
  article-title: Characterization of microbial communities during anode biofilm reformation in a two‐chambered microbial electrolysis cell (MEC)
  publication-title: Journal of Biotechnology
– volume: 18
  start-page: 87
  year: 2016
  end-page: 99
  article-title: Disturbance opens recruitment sites for bacterial colonization in activated sludge
  publication-title: Environmental Microbiology
– volume: 6
  start-page: 7989
  year: 2015
  article-title: High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands
  publication-title: Nature Communications
– volume: 3
  start-page: 417
  year: 2012
  article-title: Fundamentals of microbial community resistance and resilience
  publication-title: Frontiers in Microbiology
– volume: 10
  start-page: 996
  year: 2013
  end-page: 998
  article-title: UPARSE: highly accurate OTU sequences from microbial amplicon reads
  publication-title: Nature Methods
– volume: 25
  start-page: 662
  year: 2015
  end-page: 672
  article-title: Spatial heterogeneity increases diversity and stability in grassland bird communities
  publication-title: Ecological Applications
– volume: 11
  start-page: 265
  year: 1984
  ident: e_1_2_9_13_1
  article-title: Nonparametric‐Estimation of the Number of Classes in a Population
  publication-title: Scandinavian Journal of Statistics
– ident: e_1_2_9_59_1
  doi: 10.1038/nrmicro2695
– ident: e_1_2_9_8_1
  doi: 10.3389/fmicb.2014.00219
– ident: e_1_2_9_16_1
  doi: 10.1186/1471-2105-13-113
– ident: e_1_2_9_77_1
  doi: 10.1128/mBio.00584-12
– ident: e_1_2_9_11_1
  doi: 10.1021/es8001822
– ident: e_1_2_9_6_1
  doi: 10.1111/1462-2920.12986
– ident: e_1_2_9_55_1
  doi: 10.1093/bioinformatics/btr507
– ident: e_1_2_9_70_1
  doi: 10.1016/j.ijhydene.2014.01.001
– ident: e_1_2_9_56_1
  doi: 10.1515/9780691206912
– ident: e_1_2_9_35_1
  doi: 10.1111/j.1574-6968.2011.02435.x
– ident: e_1_2_9_17_1
  doi: 10.1111/1462-2920.12981
– ident: e_1_2_9_12_1
  doi: 10.1093/bioinformatics/btp636
– ident: e_1_2_9_36_1
  doi: 10.1890/04-1005
– ident: e_1_2_9_54_1
  doi: 10.1186/1471-2105-8-299
– ident: e_1_2_9_61_1
  doi: 10.1093/molbev/msp077
– ident: e_1_2_9_63_1
  doi: 10.1038/npjbiofilms.2015.27
– ident: e_1_2_9_3_1
  doi: 10.1126/science.aac8480
– ident: e_1_2_9_75_1
  doi: 10.1128/mBio.00122-11
– ident: e_1_2_9_42_1
  doi: 10.1021/es050244p
– ident: e_1_2_9_41_1
  doi: 10.1021/es900204j
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijhydene.2007.02.035
– ident: e_1_2_9_33_1
  doi: 10.3389/fmicb.2015.01182
– ident: e_1_2_9_58_1
  doi: 10.1038/35012234
– ident: e_1_2_9_10_1
  doi: 10.1111/ele.12109
– ident: e_1_2_9_5_1
  doi: 10.1890/ES15-00317.1
– ident: e_1_2_9_29_1
  doi: 10.1007/s00253-012-4456-7
– ident: e_1_2_9_9_1
  doi: 10.1038/nature05749
– ident: e_1_2_9_39_1
  doi: 10.1038/ncomms8989
– ident: e_1_2_9_57_1
  doi: 10.1111/ele.12088
– ident: e_1_2_9_66_1
  doi: 10.1101/gr.1239303
– ident: e_1_2_9_72_1
  doi: 10.1038/30918
– ident: e_1_2_9_51_1
  doi: 10.1186/1471-2105-7-371
– ident: e_1_2_9_4_1
  doi: 10.1073/pnas.0801925105
– ident: e_1_2_9_20_1
  doi: 10.1890/12-1406.1
– ident: e_1_2_9_22_1
  doi: 10.1016/0006-3207(92)91201-3
– ident: e_1_2_9_47_1
  doi: 10.1021/es0627592
– ident: e_1_2_9_45_1
  doi: 10.1038/nrmicro2113
– ident: e_1_2_9_14_1
  doi: 10.1128/mBio.01536-14
– ident: e_1_2_9_30_1
  doi: 10.1016/j.tree.2015.06.010
– ident: e_1_2_9_60_1
  doi: 10.1111/aec.12133
– ident: e_1_2_9_71_1
  doi: 10.1111/1462-2920.12824
– ident: e_1_2_9_37_1
  doi: 10.1093/bioinformatics/btq166
– ident: e_1_2_9_65_1
  doi: 10.3389/fmicb.2012.00417
– ident: e_1_2_9_48_1
  doi: 10.1111/ele.12073
– ident: e_1_2_9_24_1
  doi: 10.1038/nrmicro3417
– ident: e_1_2_9_27_1
  doi: 10.1038/nrmicro821
– ident: e_1_2_9_53_1
  doi: 10.1016/j.watres.2012.02.005
– ident: e_1_2_9_74_1
  doi: 10.1890/09-0147.1
– ident: e_1_2_9_38_1
  doi: 10.1016/j.ygeno.2011.05.009
– ident: e_1_2_9_50_1
  doi: 10.1128/AEM.01996-06
– ident: e_1_2_9_31_1
  doi: 10.1890/07-1228.1
– ident: e_1_2_9_46_1
  doi: 10.1021/es062644y
– ident: e_1_2_9_26_1
  doi: 10.1111/j.1574-6976.2012.00343.x
– ident: e_1_2_9_64_1
  doi: 10.1128/AEM.01541-09
– ident: e_1_2_9_21_1
  doi: 10.1038/nmeth.2604
– ident: e_1_2_9_32_1
  doi: 10.1890/14-1067.1
– ident: e_1_2_9_52_1
  doi: 10.1128/AEM.71.12.8228-8235.2005
– ident: e_1_2_9_76_1
  doi: 10.1128/mBio.00169-10
– ident: e_1_2_9_73_1
  doi: 10.1038/nrmicro3010
– ident: e_1_2_9_49_1
  doi: 10.1111/1462-2920.13058
– ident: e_1_2_9_7_1
  doi: 10.1038/ismej.2011.119
– ident: e_1_2_9_15_1
  doi: 10.1890/0012-9658(2006)87[2058:SIOFAG]2.0.CO;2
– ident: e_1_2_9_69_1
  doi: 10.1038/nature04742
– ident: e_1_2_9_19_1
  doi: 10.1086/286117
– ident: e_1_2_9_25_1
  doi: 10.1111/icad.12037
– ident: e_1_2_9_40_1
  doi: 10.1016/j.tim.2016.11.008
– ident: e_1_2_9_43_1
  doi: 10.1021/es100608a
– ident: e_1_2_9_23_1
  doi: 10.1038/nrmicro2832
– ident: e_1_2_9_68_1
  doi: 10.1111/ele.12019
– ident: e_1_2_9_62_1
  doi: 10.1128/microbiolspec.MB-0009-2014
– ident: e_1_2_9_67_1
  doi: 10.1111/j.1461-0248.2012.01863.x
– ident: e_1_2_9_34_1
  doi: 10.1126/science.1133258
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jbiotec.2011.09.010
– ident: e_1_2_9_2_1
  doi: 10.1007/s11356-015-4372-3
– ident: e_1_2_9_28_1
  doi: 10.1890/09-1162.1
SSID ssj0013255
Score 2.6675777
Snippet The relationship between biodiversity and ecosystem stability is poorly understood in microbial communities. Biofilm communities in small bioreactors called...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6170
SubjectTerms Bacteria - classification
Biodiversity
Bioelectric Energy Sources
biofilm
biofilm community
Biofilms
Bioreactors
Bioreactors - microbiology
Competition
Ecological function
Ecological monitoring
Ecosystem stability
Ecosystems
Electrolysis
Electrolytic cells
environmental disturbance
Geobacter
Hydrogen-Ion Concentration
Methanobrevibacter
Microbial activity
microbial communities
microbial diversity
microbial electrolysis cells
Microorganisms
Network analysis
pH effects
Recovery of function
Recovery time
Resilience
RNA, Ribosomal, 16S - genetics
species competition
Stability
Title Biodiversity and species competition regulate the resilience of microbial biofilm community
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmec.14356
https://www.ncbi.nlm.nih.gov/pubmed/28926148
https://www.proquest.com/docview/1964554357
https://www.proquest.com/docview/1940598352
https://www.proquest.com/docview/2010205911
Volume 26
WOSCitedRecordID wos000415362500022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1365-294X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013255
  issn: 0962-1083
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-atIO9bN131jaoow998YglV5bYU8kS-pCFMZoS6IORZRkCiTOSdJD_fnfyBw1dYNA3f5xtWb7T_c46_Q7gQsY925NZFkTaiYAY6QIVqTygcqsu6gkjPRPT3Sgej9V0qn8ewLd6LUzJD9H8cCPL8OM1GbhJ14-MfOHsV3L2sgWHHPX2qg2H338NJ6NHkwi-6CmCdI6jjRIVsRAl8jQX77qjJxhzF7J6nzN8_azWHsOrCmqy61I33sCBK97Ci7L45Ba3Bp6wevsO7vFYVudnMFNkjNZfYgjNrEfVPquLrcqq9Y4hZMSd9WzuRwW2zNli5umc8GHpjEqAL-hCWney2b6HyXBw278JqqILgaVq4xiY5uivwthm3CB6lHFmlKSMKY5gzCmRpQIxSuTQ-ZkMYxeXaqlzoVWYR1oqLj5Au1gW7hOw0EjntEgR89nIaZU6o0ObhjoVHO_pOnBZ931iK0ZyKowxT-rIBHst8b3WgS-N6O-ShuNfQqf1B0wqS1wnRDiGkElcxR04b06jDdHEiCnc8oFkELZqwqL7ZShrgKNUGHbgY6kcTUswaOVEqIov5HVgfxOTH4O-3_j8_6In8JITlvALIE-hvVk9uDM4sn82s_WqC614qrqV6v8FQloDyQ
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB480Rfvo56r-OBLpMnGzS74ItqiWIuIiuBDSDYbKLSptFXov3dmc6CoIPiWY5JsNjM732xmvwE4EkFd10WSOL4y3CFGOkf6MnWo3Krx6zwSlonpqRW02_L5Wd1NwFm5Fibnh6gm3Mgy7HhNBk4T0p-svGf0CXl7MQnTPqoR6vf05X3zsfXpL4Kteooo3cPhRvKCWYgyeaqLv_qjbyDzK2a1Tqe5-L_mLsFCATbZea4dyzBhshWYzctPjnGrYSmrx6vwgseSMkODRVnCaAUmBtFMW1xt87rYIK9bbxiCRtwZdrp2XGD9lPU6ltAJHxZ3qAh4jy6klSej8Ro8NhsPF1dOUXbB0VRvHEPTFD2WG-jEixA_iiCJpKCcKQ_hmJE8iTmiFN-g-4sSjF5MrIRKuZJu6ishPb4OU1k_M5vA3EgYo3iMqE_7RsnYRMrVsati7uE9TQ2Oy84PdcFJTqUxumEZm2CvhbbXanBYib7mRBw_Ce2UXzAsbHEYEuUYgiZ-GtTgoDqNVkS_RqLM9N9IBoGrIjT6uwzlDXgo5bo12Mi1o2oJhq0eUariC1kl-L2J4W3jwm5s_V10H-auHm5bYeu6fbMN8x4hC7sccgemRoM3swsz-n3UGQ72Cgv4ALBlBtE
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5BGdNeNjYY6wbDQzzwEtTEwbGlvUzQiolSoQkmJB6ixL5IlWiK2jKp__3unB8CbUiT9pY0l8ZxfL7vkvP3ARyopGd7yrkgNigDZqQLdKyLgOVWMe7JTHkmpp_DZDTSNzfmcgW-NmthKn6I9oUbe4afr9nB8d4Vj7x8gvaIo71ahbWYRWQ6sHb6Y3A9fPQVwaueEkqPaLrRsmYW4kqe9uSn8egPkPkUs_qgM3jzf83dgNc12BTfqtHxFlawfAfrlfzkkrb6nrJ6uQm39JtrKjREVjrBKzApiRbW42pf1yVmlW49CgKNtDMf3_l5QUwLMRl7Qie6WD5mEfAJn8grTxbLLbge9K9OzoJadiGwrDdOqWlBEStMrIsywo8qcZlWXDMVERxDLV0uCaXESOEvc5S9YG6UKaTRYREbpSP5HjrltMQPIMJMIRqZE-qzMRqdY2ZCm4cmlxH9J3bhsOn81Nac5CyNcZc2uQn1Wup7rQv7rel9RcTxN6Od5gmmtS_OU6YcI9Akj5MufGkPkxfxp5GsxOkD2xBwNYxGn7fhuoGIrMKwC9vV6GhbQmlrxJSqdEN-EDzfxPSif-I3Pv676R68vDwdpMPvo_NP8CpiYOFXQ-5AZzF7wF14YX8txvPZ59oBfgMwzwZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodiversity+and+species+competition+regulate+the+resilience+of+microbial+biofilm+community&rft.jtitle=Molecular+ecology&rft.au=Feng%2C+Kai&rft.au=Zhang%2C+Zhaojing&rft.au=Cai%2C+Weiwei&rft.au=Liu%2C+Wenzong&rft.date=2017-11-01&rft.issn=0962-1083&rft.eissn=1365-294X&rft.volume=26&rft.issue=21&rft.spage=6170&rft.epage=6182&rft_id=info:doi/10.1111%2Fmec.14356&rft.externalDBID=10.1111%252Fmec.14356&rft.externalDocID=MEC14356
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-1083&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-1083&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-1083&client=summon