Personalized brain network models for assessing structure–function relationships

[Display omitted] •Personalized brain network models combine brain structure with mathematical modeling.•Construction of models involves multiple different strategies and assumptions.•Computational models allow performance of in silico experiments otherwise impossible.•Models aide in the development...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in neurobiology Jg. 52; S. 42 - 47
Hauptverfasser: Bansal, Kanika, Nakuci, Johan, Muldoon, Sarah Feldt
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.10.2018
ISSN:0959-4388, 1873-6882, 1873-6882
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] •Personalized brain network models combine brain structure with mathematical modeling.•Construction of models involves multiple different strategies and assumptions.•Computational models allow performance of in silico experiments otherwise impossible.•Models aide in the development of personalized medical treatment strategies. Many recent efforts in computational modeling of macro-scale brain dynamics have begun to take a data-driven approach by incorporating structural and/or functional information derived from subject data. Here, we discuss recent work using personalized brain network models to study structure–function relationships in human brains. We describe the steps necessary to build such models and show how this computational approach can provide previously unobtainable information through the ability to perform virtual experiments. Finally, we present examples of how personalized brain network models can be used to gain insight into the effects of local stimulation and improve surgical outcomes in epilepsy.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:0959-4388
1873-6882
1873-6882
DOI:10.1016/j.conb.2018.04.014