Measuring the performance of markers for guiding treatment decisions

Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Annals of internal medicine Ročník 154; číslo 4; s. 253
Hlavní autori: Janes, Holly, Pepe, Margaret S, Bossuyt, Patrick M, Barlow, William E
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 15.02.2011
Predmet:
ISSN:1539-3704, 1539-3704
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers.
AbstractList Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers.
Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers.Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers.
Author Bossuyt, Patrick M
Barlow, William E
Pepe, Margaret S
Janes, Holly
Author_xml – sequence: 1
  givenname: Holly
  surname: Janes
  fullname: Janes, Holly
  email: hjanes@fhcrc.org
  organization: Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. hjanes@fhcrc.org
– sequence: 2
  givenname: Margaret S
  surname: Pepe
  fullname: Pepe, Margaret S
– sequence: 3
  givenname: Patrick M
  surname: Bossuyt
  fullname: Bossuyt, Patrick M
– sequence: 4
  givenname: William E
  surname: Barlow
  fullname: Barlow, William E
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21320940$$D View this record in MEDLINE/PubMed
BookMark eNpNj8tOwzAQRS1URB_wC8i7rgzjR5xkicpTKmLTfWTH4xJInGInC_6eAEViNVdzz4x0lmQW-oCErDlc5VLoawCQTBW8ZDxTTDEBnIPgGbCpAX1CFjyTJZM5qNm_PCfLlN6-jwtRnJG54FJAqWBBbp_RpDE2YU-HV6QHjL6PnQk10t7TzsR3jIlOO7ofG_eDRTRDh2GgDusmNX1I5-TUmzbhxXGuyO7-brd5ZNuXh6fNzZbVKuMD84o7J5y1tfeF8LmweelUbZT3WoMF6VE4BdpKabQythAIVkujVMkdR7Ei69-3h9h_jJiGqmtSjW1rAvZjqoqMlzITeT6Rl0dytB266hCbSeWz-vMWX98mX40
CitedBy_id crossref_primary_10_1093_eurheartj_ehw172
crossref_primary_10_2147_JIR_S545499
crossref_primary_10_1111_1754_9485_13035
crossref_primary_10_1158_1078_0432_CCR_12_1206
crossref_primary_10_1038_s41598_020_79237_7
crossref_primary_10_3322_caac_20135
crossref_primary_10_1016_j_ejca_2024_114159
crossref_primary_10_7326_M19_3010
crossref_primary_10_1002_sim_10218
crossref_primary_10_1016_j_amjcard_2011_10_056
crossref_primary_10_1200_JCO_2015_61_1459
crossref_primary_10_1002_gepi_20634
crossref_primary_10_1177_1740774514557725
crossref_primary_10_1177_0272989X17749829
crossref_primary_10_1177_17407745231169692
crossref_primary_10_1002_sim_7608
crossref_primary_10_1200_JCO_19_00761
crossref_primary_10_1038_s41598_017_07358_7
crossref_primary_10_1002_pst_2002
crossref_primary_10_1177_1758835920927838
crossref_primary_10_1371_journal_pone_0222183
crossref_primary_10_1016_j_ejogrb_2016_04_024
crossref_primary_10_1007_s12265_013_9470_3
crossref_primary_10_1111_biom_12392
crossref_primary_10_1111_biom_12191
crossref_primary_10_1515_ijb_2012_0052
crossref_primary_10_1016_j_cca_2013_09_043
crossref_primary_10_1177_1740774515580126
crossref_primary_10_1016_j_tube_2017_11_009
crossref_primary_10_1158_1078_0432_CCR_20_4300
crossref_primary_10_1177_0272989X13493147
crossref_primary_10_1093_humrep_dew287
crossref_primary_10_1111_aogs_13664
crossref_primary_10_1186_s40425_015_0086_9
crossref_primary_10_1371_journal_pone_0190261
crossref_primary_10_1111_biom_12179
crossref_primary_10_1002_sim_7938
crossref_primary_10_1177_0962280214535370
crossref_primary_10_1080_01621459_2013_770705
crossref_primary_10_1177_0962280218804569
crossref_primary_10_1097_EJA_0b013e32834d9474
crossref_primary_10_1002_sim_6564
crossref_primary_10_1093_humupd_dmz029
crossref_primary_10_1146_annurev_clinpsy_050817_084746
crossref_primary_10_1177_1177271920946715
crossref_primary_10_1146_annurev_statistics_031017_100609
crossref_primary_10_1200_JCO_2015_65_2289
crossref_primary_10_1016_S0140_6736_13_61151_4
crossref_primary_10_1002_pst_1728
crossref_primary_10_1016_S2213_8587_19_30087_7
crossref_primary_10_3390_diagnostics11050767
crossref_primary_10_1097_AOG_0b013e31822641f5
crossref_primary_10_1080_10543406_2017_1379532
crossref_primary_10_1093_neuonc_noz090
crossref_primary_10_1007_s11606_011_1899_y
crossref_primary_10_1016_j_jclinepi_2013_07_015
crossref_primary_10_1093_biostatistics_kxu037
crossref_primary_10_1111_biom_12322
crossref_primary_10_1093_jnci_djv157
crossref_primary_10_1007_s11538_019_00640_x
crossref_primary_10_1177_1740774513497541
crossref_primary_10_1002_sim_6138
crossref_primary_10_1177_0962280218821394
crossref_primary_10_1016_j_siny_2012_10_006
crossref_primary_10_1002_bimj_201800370
crossref_primary_10_1158_2159_8290_CD_12_0196
crossref_primary_10_3390_biom13101499
crossref_primary_10_1007_s00439_011_0986_9
crossref_primary_10_1093_humupd_dmt035
crossref_primary_10_1093_jnci_djy141
crossref_primary_10_1016_j_cct_2017_08_004
crossref_primary_10_1186_s12874_017_0451_0
crossref_primary_10_7326_M23_3250
crossref_primary_10_1080_10408363_2025_2453148
crossref_primary_10_1186_s12911_018_0619_5
crossref_primary_10_1515_ijb_2016_0064
crossref_primary_10_1093_biostatistics_kxaa018
crossref_primary_10_1186_s40425_016_0179_0
crossref_primary_10_18632_oncotarget_6121
crossref_primary_10_1002_uog_15855
crossref_primary_10_1186_s12916_019_1345_2
crossref_primary_10_1177_1352458519849513
crossref_primary_10_1111_biom_12752
crossref_primary_10_1038_nrurol_2011_224
crossref_primary_10_1002_bimj_201900171
crossref_primary_10_1002_sim_9412
crossref_primary_10_1136_bmjopen_2013_004188
crossref_primary_10_1155_2015_670691
crossref_primary_10_1186_s12885_015_1552_y
crossref_primary_10_3414_ME16_01_0019
crossref_primary_10_1016_j_cct_2019_04_015
crossref_primary_10_1186_s12874_020_01145_1
crossref_primary_10_1200_JCO_2012_42_8532
crossref_primary_10_1177_0962280218788099
crossref_primary_10_2337_dbi20_0002
crossref_primary_10_1111_j_1541_0420_2011_01722_x
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.7326/0003-4819-154-4-201102150-00006
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1539-3704
ExternalDocumentID 21320940
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01CA152089
– fundername: NCI NIH HHS
  grantid: R01 CA152089
GroupedDBID ---
..I
.55
.GJ
.XZ
08G
23M
2WC
354
36B
39C
4.4
53G
5GY
5RE
5RS
6J9
7X7
8F7
AAKAS
AAQQT
AARDX
AAWTL
ABBLC
ABCQX
ABJNI
ABOCM
ABPMR
ACGFO
ACGFS
ADZCM
AEGXH
AENEX
AFCHL
AFFNX
AHMBA
AI.
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BENPR
BZLQD
C45
CGR
CUY
CVF
E3Z
EBS
ECM
EIF
EJD
EMB
EMOBN
EX3
F5P
H13
H~9
IH2
J5H
K-O
L7B
M5~
MV1
NPM
OBH
OCB
OFXIZ
OGEVE
OHH
OHT
OVD
OVIDX
P2P
RWL
RXW
SJN
SV3
TAE
TEORI
TPH
TR2
TWZ
VH1
VVN
WH7
WOQ
WOW
X6Y
X7M
YFH
YOC
ZY1
~H1
7X8
ID FETCH-LOGICAL-c451t-f41dd2dbbcff82f72b79d4ca4ff660b03fe2d406b33a64ab82e0b63a4491d1e2
IEDL.DBID 7X8
ISICitedReferencesCount 108
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287310000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1539-3704
IngestDate Fri Sep 05 07:17:39 EDT 2025
Mon Jul 21 05:56:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-f41dd2dbbcff82f72b79d4ca4ff660b03fe2d406b33a64ab82e0b63a4491d1e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21320940
PQID 851935277
PQPubID 23479
ParticipantIDs proquest_miscellaneous_851935277
pubmed_primary_21320940
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Annals of internal medicine
PublicationTitleAlternate Ann Intern Med
PublicationYear 2011
SSID ssj0003828
Score 2.3747668
Snippet Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 253
SubjectTerms Biomarkers
Clinical Protocols - standards
Decision Making
Humans
Randomized Controlled Trials as Topic - methods
Randomized Controlled Trials as Topic - standards
Treatment Outcome
Title Measuring the performance of markers for guiding treatment decisions
URI https://www.ncbi.nlm.nih.gov/pubmed/21320940
https://www.proquest.com/docview/851935277
Volume 154
WOSCitedRecordID wos000287310000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAooqF96O85AGJySK1L3E8IQRUDLTqUKFuUWzHqANNaVp-P2cnpRNiYMlgxZJ1ubvvyz18hNzIyGphbUj9cwYmBpYr_EtRMU8ExFzaUETz9ioHg3Q8VsOmNqdqyipXPjE4alsaHyO_Sz3VwL3yfvbJ_NAon1xtJmhskpZAJuOVWo7Xl4WLNIxWRZtWaEcRtMkt-giJhMX3LwgGiIYMKQQDFmAQ0S90WUfJ73QzwE5v758H3ie7Dd-kD7WCHJCNYnpI2v0mo35EnvohSIgARpEK0tm6j4CWjn744p15RXGNvi8nNry2Kk2ntpnPUx2TUe959PjCmskKzEDcXTAHXWu51do4l3InuZbKgsnBuSSJdCRcwS1CvRYiTyDXKS8inYgcQHVtt-AnZGtaToszQsGBShNlkOVw0DzVPEfCYWKpkToZ0B1CV9LJUHF9NiKfFuWyyn7k0yGntYSzWX3BRsZ9X7eC6PzvzRdkp47ycvySl6Tl0GiLK7JtvhaTan4dFAKfg2H_G5ObvKs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+performance+of+markers+for+guiding+treatment+decisions&rft.jtitle=Annals+of+internal+medicine&rft.au=Janes%2C+Holly&rft.au=Pepe%2C+Margaret+S&rft.au=Bossuyt%2C+Patrick+M&rft.au=Barlow%2C+William+E&rft.date=2011-02-15&rft.eissn=1539-3704&rft.volume=154&rft.issue=4&rft.spage=253&rft_id=info:doi/10.7326%2F0003-4819-154-4-201102150-00006&rft_id=info%3Apmid%2F21320940&rft_id=info%3Apmid%2F21320940&rft.externalDocID=21320940
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-3704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-3704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-3704&client=summon