Measuring the performance of markers for guiding treatment decisions
Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value,...
Uložené v:
| Vydané v: | Annals of internal medicine Ročník 154; číslo 4; s. 253 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
15.02.2011
|
| Predmet: | |
| ISSN: | 1539-3704, 1539-3704 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers. |
|---|---|
| AbstractList | Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers. Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers.Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize adverse outcomes for patients. Existing statistical methods for evaluating a treatment selection marker include assessing its prognostic value, evaluating treatment effects in patients with a restricted range of marker values, and testing for a statistical interaction between marker value and treatment. These methods are inadequate, because they give misleading measures of performance that do not answer key clinical questions about how the marker might help patients choose treatment, how treatment decisions should be made on the basis of a continuous marker measurement, what effect using the marker to select treatment would have on the population, or what proportion of patients would have treatment changes on the basis of marker measurement. Marker-by-treatment predictiveness curves are proposed as a more useful aid to answering these clinically relevant questions, because they illustrate treatment effects as a function of marker value, outcomes when using or not using the marker to select treatment, and the proportion of patients for whom treatment recommendations change after marker measurement. Randomized therapeutic clinical trials, in which entry criteria and treatment regimens are not restricted by the marker, are also proposed as the basis for constructing the curves and evaluating and comparing markers. |
| Author | Bossuyt, Patrick M Barlow, William E Pepe, Margaret S Janes, Holly |
| Author_xml | – sequence: 1 givenname: Holly surname: Janes fullname: Janes, Holly email: hjanes@fhcrc.org organization: Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA. hjanes@fhcrc.org – sequence: 2 givenname: Margaret S surname: Pepe fullname: Pepe, Margaret S – sequence: 3 givenname: Patrick M surname: Bossuyt fullname: Bossuyt, Patrick M – sequence: 4 givenname: William E surname: Barlow fullname: Barlow, William E |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21320940$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj8tOwzAQRS1URB_wC8i7rgzjR5xkicpTKmLTfWTH4xJInGInC_6eAEViNVdzz4x0lmQW-oCErDlc5VLoawCQTBW8ZDxTTDEBnIPgGbCpAX1CFjyTJZM5qNm_PCfLlN6-jwtRnJG54FJAqWBBbp_RpDE2YU-HV6QHjL6PnQk10t7TzsR3jIlOO7ofG_eDRTRDh2GgDusmNX1I5-TUmzbhxXGuyO7-brd5ZNuXh6fNzZbVKuMD84o7J5y1tfeF8LmweelUbZT3WoMF6VE4BdpKabQythAIVkujVMkdR7Ei69-3h9h_jJiGqmtSjW1rAvZjqoqMlzITeT6Rl0dytB266hCbSeWz-vMWX98mX40 |
| CitedBy_id | crossref_primary_10_1093_eurheartj_ehw172 crossref_primary_10_2147_JIR_S545499 crossref_primary_10_1111_1754_9485_13035 crossref_primary_10_1158_1078_0432_CCR_12_1206 crossref_primary_10_1038_s41598_020_79237_7 crossref_primary_10_3322_caac_20135 crossref_primary_10_1016_j_ejca_2024_114159 crossref_primary_10_7326_M19_3010 crossref_primary_10_1002_sim_10218 crossref_primary_10_1016_j_amjcard_2011_10_056 crossref_primary_10_1200_JCO_2015_61_1459 crossref_primary_10_1002_gepi_20634 crossref_primary_10_1177_1740774514557725 crossref_primary_10_1177_0272989X17749829 crossref_primary_10_1177_17407745231169692 crossref_primary_10_1002_sim_7608 crossref_primary_10_1200_JCO_19_00761 crossref_primary_10_1038_s41598_017_07358_7 crossref_primary_10_1002_pst_2002 crossref_primary_10_1177_1758835920927838 crossref_primary_10_1371_journal_pone_0222183 crossref_primary_10_1016_j_ejogrb_2016_04_024 crossref_primary_10_1007_s12265_013_9470_3 crossref_primary_10_1111_biom_12392 crossref_primary_10_1111_biom_12191 crossref_primary_10_1515_ijb_2012_0052 crossref_primary_10_1016_j_cca_2013_09_043 crossref_primary_10_1177_1740774515580126 crossref_primary_10_1016_j_tube_2017_11_009 crossref_primary_10_1158_1078_0432_CCR_20_4300 crossref_primary_10_1177_0272989X13493147 crossref_primary_10_1093_humrep_dew287 crossref_primary_10_1111_aogs_13664 crossref_primary_10_1186_s40425_015_0086_9 crossref_primary_10_1371_journal_pone_0190261 crossref_primary_10_1111_biom_12179 crossref_primary_10_1002_sim_7938 crossref_primary_10_1177_0962280214535370 crossref_primary_10_1080_01621459_2013_770705 crossref_primary_10_1177_0962280218804569 crossref_primary_10_1097_EJA_0b013e32834d9474 crossref_primary_10_1002_sim_6564 crossref_primary_10_1093_humupd_dmz029 crossref_primary_10_1146_annurev_clinpsy_050817_084746 crossref_primary_10_1177_1177271920946715 crossref_primary_10_1146_annurev_statistics_031017_100609 crossref_primary_10_1200_JCO_2015_65_2289 crossref_primary_10_1016_S0140_6736_13_61151_4 crossref_primary_10_1002_pst_1728 crossref_primary_10_1016_S2213_8587_19_30087_7 crossref_primary_10_3390_diagnostics11050767 crossref_primary_10_1097_AOG_0b013e31822641f5 crossref_primary_10_1080_10543406_2017_1379532 crossref_primary_10_1093_neuonc_noz090 crossref_primary_10_1007_s11606_011_1899_y crossref_primary_10_1016_j_jclinepi_2013_07_015 crossref_primary_10_1093_biostatistics_kxu037 crossref_primary_10_1111_biom_12322 crossref_primary_10_1093_jnci_djv157 crossref_primary_10_1007_s11538_019_00640_x crossref_primary_10_1177_1740774513497541 crossref_primary_10_1002_sim_6138 crossref_primary_10_1177_0962280218821394 crossref_primary_10_1016_j_siny_2012_10_006 crossref_primary_10_1002_bimj_201800370 crossref_primary_10_1158_2159_8290_CD_12_0196 crossref_primary_10_3390_biom13101499 crossref_primary_10_1007_s00439_011_0986_9 crossref_primary_10_1093_humupd_dmt035 crossref_primary_10_1093_jnci_djy141 crossref_primary_10_1016_j_cct_2017_08_004 crossref_primary_10_1186_s12874_017_0451_0 crossref_primary_10_7326_M23_3250 crossref_primary_10_1080_10408363_2025_2453148 crossref_primary_10_1186_s12911_018_0619_5 crossref_primary_10_1515_ijb_2016_0064 crossref_primary_10_1093_biostatistics_kxaa018 crossref_primary_10_1186_s40425_016_0179_0 crossref_primary_10_18632_oncotarget_6121 crossref_primary_10_1002_uog_15855 crossref_primary_10_1186_s12916_019_1345_2 crossref_primary_10_1177_1352458519849513 crossref_primary_10_1111_biom_12752 crossref_primary_10_1038_nrurol_2011_224 crossref_primary_10_1002_bimj_201900171 crossref_primary_10_1002_sim_9412 crossref_primary_10_1136_bmjopen_2013_004188 crossref_primary_10_1155_2015_670691 crossref_primary_10_1186_s12885_015_1552_y crossref_primary_10_3414_ME16_01_0019 crossref_primary_10_1016_j_cct_2019_04_015 crossref_primary_10_1186_s12874_020_01145_1 crossref_primary_10_1200_JCO_2012_42_8532 crossref_primary_10_1177_0962280218788099 crossref_primary_10_2337_dbi20_0002 crossref_primary_10_1111_j_1541_0420_2011_01722_x |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.7326/0003-4819-154-4-201102150-00006 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1539-3704 |
| ExternalDocumentID | 21320940 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01CA152089 – fundername: NCI NIH HHS grantid: R01 CA152089 |
| GroupedDBID | --- ..I .55 .GJ .XZ 08G 23M 2WC 354 36B 39C 4.4 53G 5GY 5RE 5RS 6J9 7X7 8F7 AAKAS AAQQT AARDX AAWTL ABBLC ABCQX ABJNI ABOCM ABPMR ACGFO ACGFS ADZCM AEGXH AENEX AFCHL AFFNX AHMBA AI. AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BENPR BZLQD C45 CGR CUY CVF E3Z EBS ECM EIF EJD EMB EMOBN EX3 F5P H13 H~9 IH2 J5H K-O L7B M5~ MV1 NPM OBH OCB OFXIZ OGEVE OHH OHT OVD OVIDX P2P RWL RXW SJN SV3 TAE TEORI TPH TR2 TWZ VH1 VVN WH7 WOQ WOW X6Y X7M YFH YOC ZY1 ~H1 7X8 |
| ID | FETCH-LOGICAL-c451t-f41dd2dbbcff82f72b79d4ca4ff660b03fe2d406b33a64ab82e0b63a4491d1e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 108 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000287310000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1539-3704 |
| IngestDate | Fri Sep 05 07:17:39 EDT 2025 Mon Jul 21 05:56:33 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-f41dd2dbbcff82f72b79d4ca4ff660b03fe2d406b33a64ab82e0b63a4491d1e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 21320940 |
| PQID | 851935277 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_851935277 pubmed_primary_21320940 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-02-15 |
| PublicationDateYYYYMMDD | 2011-02-15 |
| PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Annals of internal medicine |
| PublicationTitleAlternate | Ann Intern Med |
| PublicationYear | 2011 |
| SSID | ssj0003828 |
| Score | 2.3747668 |
| Snippet | Treatment selection markers, sometimes called predictive markers, are factors that help clinicians select therapies that maximize good outcomes and minimize... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 253 |
| SubjectTerms | Biomarkers Clinical Protocols - standards Decision Making Humans Randomized Controlled Trials as Topic - methods Randomized Controlled Trials as Topic - standards Treatment Outcome |
| Title | Measuring the performance of markers for guiding treatment decisions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/21320940 https://www.proquest.com/docview/851935277 |
| Volume | 154 |
| WOSCitedRecordID | wos000287310000017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAooqF96O85AGJySK1L3E8IQRUDLTqUKFuUWzHqANNaVp-P2cnpRNiYMlgxZJ1ubvvyz18hNzIyGphbUj9cwYmBpYr_EtRMU8ExFzaUETz9ioHg3Q8VsOmNqdqyipXPjE4alsaHyO_Sz3VwL3yfvbJ_NAon1xtJmhskpZAJuOVWo7Xl4WLNIxWRZtWaEcRtMkt-giJhMX3LwgGiIYMKQQDFmAQ0S90WUfJ73QzwE5v758H3ie7Dd-kD7WCHJCNYnpI2v0mo35EnvohSIgARpEK0tm6j4CWjn744p15RXGNvi8nNry2Kk2ntpnPUx2TUe959PjCmskKzEDcXTAHXWu51do4l3InuZbKgsnBuSSJdCRcwS1CvRYiTyDXKS8inYgcQHVtt-AnZGtaToszQsGBShNlkOVw0DzVPEfCYWKpkToZ0B1CV9LJUHF9NiKfFuWyyn7k0yGntYSzWX3BRsZ9X7eC6PzvzRdkp47ycvySl6Tl0GiLK7JtvhaTan4dFAKfg2H_G5ObvKs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+performance+of+markers+for+guiding+treatment+decisions&rft.jtitle=Annals+of+internal+medicine&rft.au=Janes%2C+Holly&rft.au=Pepe%2C+Margaret+S&rft.au=Bossuyt%2C+Patrick+M&rft.au=Barlow%2C+William+E&rft.date=2011-02-15&rft.eissn=1539-3704&rft.volume=154&rft.issue=4&rft.spage=253&rft_id=info:doi/10.7326%2F0003-4819-154-4-201102150-00006&rft_id=info%3Apmid%2F21320940&rft_id=info%3Apmid%2F21320940&rft.externalDocID=21320940 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-3704&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-3704&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-3704&client=summon |