Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides
The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to th...
Uložené v:
| Vydané v: | Current biology Ročník 28; číslo 7; s. 1137 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
England
02.04.2018
|
| Predmet: | |
| ISSN: | 1879-0445, 1879-0445 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health. |
|---|---|
| AbstractList | The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health. The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health. |
| Author | Zimmer, Christoph T Zaworra, Marion Nauen, Ralf Benting, Jürgen Singh, Kumar Saurabh Reid, Rebecca Davies, T G Emyr Homem, Rafael A Kor, Laura Randall, Emma Troczka, Bartlomiej J Manjon, Cristina Beadle, Katherine Williamson, Martin S Hertlein, Gillian Lueke, Bettina Bass, Chris Kohler, Maxie Field, Linda M |
| Author_xml | – sequence: 1 givenname: Cristina surname: Manjon fullname: Manjon, Cristina organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany – sequence: 2 givenname: Bartlomiej J surname: Troczka fullname: Troczka, Bartlomiej J organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 3 givenname: Marion surname: Zaworra fullname: Zaworra, Marion organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms University Bonn, 53115 Bonn, Germany – sequence: 4 givenname: Katherine surname: Beadle fullname: Beadle, Katherine organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK – sequence: 5 givenname: Emma surname: Randall fullname: Randall, Emma organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK – sequence: 6 givenname: Gillian surname: Hertlein fullname: Hertlein, Gillian organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany – sequence: 7 givenname: Kumar Saurabh surname: Singh fullname: Singh, Kumar Saurabh organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK – sequence: 8 givenname: Christoph T surname: Zimmer fullname: Zimmer, Christoph T organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK – sequence: 9 givenname: Rafael A surname: Homem fullname: Homem, Rafael A organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 10 givenname: Bettina surname: Lueke fullname: Lueke, Bettina organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany – sequence: 11 givenname: Rebecca surname: Reid fullname: Reid, Rebecca organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 12 givenname: Laura surname: Kor fullname: Kor, Laura organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 13 givenname: Maxie surname: Kohler fullname: Kohler, Maxie organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany – sequence: 14 givenname: Jürgen surname: Benting fullname: Benting, Jürgen organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany – sequence: 15 givenname: Martin S surname: Williamson fullname: Williamson, Martin S organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 16 givenname: T G Emyr surname: Davies fullname: Davies, T G Emyr organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 17 givenname: Linda M surname: Field fullname: Field, Linda M organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK – sequence: 18 givenname: Chris surname: Bass fullname: Bass, Chris email: c.bass@exeter.ac.uk organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK. Electronic address: c.bass@exeter.ac.uk – sequence: 19 givenname: Ralf surname: Nauen fullname: Nauen, Ralf email: ralf.nauen@bayer.com organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany. Electronic address: ralf.nauen@bayer.com |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29576476$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAYRS1URB_wA1iQR5YE23HsZITyqlRggIoxcpzP4CqxS-xU6r-niCIx3TscXemeKRo57wChc0pSSqi4Wqd6qFNGaJESlhKeH6EJLWSZEM7z0b8-RtMQ1oRQVpTiBI1ZmUvBpZig95Xr1Rba1roPHD8BP_kW9NCqHt9ChL6zTrkYsDf4BgC_ggs22q2NOxw9fgbvrPbROm8bvHABdLTaNhBO0bFRbYCzQ87Q6v7ubf6YLF8eFvPrZaJ5TmNiMpBAyoLUuWI1yFoqQ0wpjCm05k2uuQTIVSaYzDNmamANME0zVtdUUM3ZDF3-7m56_zVAiFVng97_UQ78EKofOULwkrI9enFAh7qDptr0tlP9rvqTwb4BbgVlZw |
| CitedBy_id | crossref_primary_10_1016_j_cois_2020_10_011 crossref_primary_10_1016_j_pestbp_2021_104775 crossref_primary_10_1146_annurev_pharmtox_010818_021747 crossref_primary_10_1016_j_scitotenv_2020_140819 crossref_primary_10_1038_s41598_021_86293_0 crossref_primary_10_1007_s10646_020_02223_2 crossref_primary_10_1038_s41598_020_73125_w crossref_primary_10_1016_j_cbpc_2021_109112 crossref_primary_10_1016_j_pestbp_2024_106205 crossref_primary_10_1007_s44297_023_00012_x crossref_primary_10_1080_00218839_2021_1962123 crossref_primary_10_3390_agronomy14050989 crossref_primary_10_1016_j_ecoenv_2019_110100 crossref_primary_10_3389_fgene_2019_01000 crossref_primary_10_1016_j_pestbp_2019_02_001 crossref_primary_10_4039_tce_2021_5 crossref_primary_10_1016_j_pestbp_2020_02_011 crossref_primary_10_1146_annurev_animal_020518_115045 crossref_primary_10_3389_finsc_2022_844957 crossref_primary_10_1016_j_pestbp_2025_106399 crossref_primary_10_1093_jisesa_iey069 crossref_primary_10_3390_ijms222111835 crossref_primary_10_1038_s41598_023_36232_y crossref_primary_10_1038_s41576_020_0216_1 crossref_primary_10_3389_fsufs_2022_847003 crossref_primary_10_1002_ps_6061 crossref_primary_10_1038_s41559_019_1011_2 crossref_primary_10_1186_s12915_025_02169_z crossref_primary_10_1016_j_envpol_2024_125129 crossref_primary_10_3390_insects13020184 crossref_primary_10_1002_nadc_20184082026 crossref_primary_10_1002_etc_5771 crossref_primary_10_1007_s12562_020_01467_5 crossref_primary_10_1016_j_chemosphere_2020_127848 crossref_primary_10_1007_s11356_022_21362_z crossref_primary_10_1016_j_envpol_2022_119562 crossref_primary_10_3389_fphys_2021_659440 crossref_primary_10_3390_d13060228 crossref_primary_10_1002_ps_8371 crossref_primary_10_1080_00218839_2019_1686575 crossref_primary_10_1371_journal_pone_0285167 crossref_primary_10_1016_j_scitotenv_2021_145588 crossref_primary_10_1016_j_jmgm_2022_108177 crossref_primary_10_1016_j_ecoenv_2018_06_064 crossref_primary_10_1007_s10646_019_02070_w crossref_primary_10_1016_j_ecoenv_2021_112247 crossref_primary_10_3390_ijerph17093290 crossref_primary_10_1016_j_pestbp_2025_106296 crossref_primary_10_1177_0192623319877154 crossref_primary_10_1146_annurev_ento_011118_111847 crossref_primary_10_3389_fmicb_2020_00868 crossref_primary_10_3390_insects12040357 crossref_primary_10_1016_j_ecoenv_2020_111268 crossref_primary_10_3390_ijms242015435 crossref_primary_10_1186_s12864_019_6397_3 crossref_primary_10_1038_s41598_019_39701_5 crossref_primary_10_1016_j_jhazmat_2023_132605 crossref_primary_10_3389_fchem_2022_1019573 crossref_primary_10_1038_s41598_025_10558_1 crossref_primary_10_1111_imb_12765 crossref_primary_10_3390_insects15110839 crossref_primary_10_1016_j_ibmb_2019_103247 crossref_primary_10_1007_s13592_025_01180_1 crossref_primary_10_3389_fphys_2023_1114488 crossref_primary_10_3389_fgene_2021_665927 crossref_primary_10_1002_etc_5045 crossref_primary_10_1016_j_scitotenv_2018_09_112 crossref_primary_10_1371_journal_pone_0200041 crossref_primary_10_3390_biology14081076 crossref_primary_10_1016_j_jhazmat_2019_03_042 crossref_primary_10_1073_pnas_2003667117 crossref_primary_10_2903_j_efsa_2022_7030 crossref_primary_10_3389_fenvs_2020_588380 crossref_primary_10_2903_j_efsa_2022_7031 crossref_primary_10_1016_j_jclepro_2025_145116 crossref_primary_10_1002_etc_4886 crossref_primary_10_1016_j_pestbp_2022_105051 crossref_primary_10_1002_ps_6706 crossref_primary_10_15446_abc_v28n3_92972 crossref_primary_10_1146_annurev_ento_040320_074933 crossref_primary_10_3390_ijms222111921 crossref_primary_10_1016_j_pestbp_2023_105377 crossref_primary_10_1016_j_pestbp_2024_105890 crossref_primary_10_1016_j_chemosphere_2020_128974 crossref_primary_10_31677_2072_6724_2023_69_4_253_271 crossref_primary_10_3390_insects15010054 crossref_primary_10_1038_s41598_023_48818_7 crossref_primary_10_1186_s12864_022_08436_5 crossref_primary_10_3390_insects11110753 crossref_primary_10_1002_ece3_70256 crossref_primary_10_1016_j_pestbp_2023_105483 crossref_primary_10_1016_j_ibmb_2019_05_006 crossref_primary_10_3390_insects12070572 crossref_primary_10_1002_ps_5501 crossref_primary_10_1016_j_scitotenv_2022_161074 crossref_primary_10_1016_j_pestbp_2022_105186 crossref_primary_10_1371_journal_pone_0228933 crossref_primary_10_1016_j_etap_2025_104680 crossref_primary_10_1016_j_scitotenv_2024_172378 crossref_primary_10_1146_annurev_ento_070621_061328 crossref_primary_10_1007_s13744_023_01109_2 crossref_primary_10_1038_s41598_019_55534_8 crossref_primary_10_1111_imb_12796 crossref_primary_10_1111_mec_16049 crossref_primary_10_1093_jee_toad032 crossref_primary_10_1016_j_envpol_2022_120842 crossref_primary_10_1016_j_scitotenv_2023_163820 crossref_primary_10_1007_s13592_022_00909_6 crossref_primary_10_1016_j_chemosphere_2019_02_105 crossref_primary_10_1111_jen_13363 crossref_primary_10_3390_ijms26157487 crossref_primary_10_7554_eLife_68268 crossref_primary_10_1038_s41598_020_66118_2 crossref_primary_10_1016_j_pestbp_2023_105356 crossref_primary_10_1016_j_ecoenv_2022_113242 crossref_primary_10_1016_j_ecoenv_2023_115499 crossref_primary_10_1016_j_pestbp_2023_105339 crossref_primary_10_1016_j_scitotenv_2021_151280 crossref_primary_10_1016_j_envpol_2025_126421 crossref_primary_10_3390_toxics12010018 crossref_primary_10_55446_IJE_2023_1578 crossref_primary_10_1016_j_etap_2024_104613 crossref_primary_10_1007_s11356_020_11338_2 crossref_primary_10_1016_j_etap_2024_104614 crossref_primary_10_1007_s10646_025_02904_w crossref_primary_10_1007_s13744_018_0651_2 crossref_primary_10_1007_s11356_023_28940_9 crossref_primary_10_1016_j_ecoenv_2022_114101 crossref_primary_10_1371_journal_pone_0206625 crossref_primary_10_1016_j_pestbp_2020_104674 crossref_primary_10_1016_j_jprot_2018_12_022 crossref_primary_10_1002_ps_5494 crossref_primary_10_1016_j_scitotenv_2022_155216 crossref_primary_10_1016_j_scitotenv_2024_170174 crossref_primary_10_1016_j_envint_2020_106372 crossref_primary_10_1007_s10646_018_1940_6 crossref_primary_10_1016_j_ibmb_2022_103796 crossref_primary_10_1016_j_ecoenv_2023_115719 crossref_primary_10_1016_j_ibmb_2023_103958 crossref_primary_10_1111_1751_7915_13579 crossref_primary_10_3389_fphys_2023_1114403 crossref_primary_10_1016_j_cois_2018_09_009 crossref_primary_10_1016_j_pestbp_2019_07_018 crossref_primary_10_1126_science_abf7482 crossref_primary_10_1016_j_cbpc_2023_109613 crossref_primary_10_1016_j_scitotenv_2021_145170 crossref_primary_10_3390_insects16040372 crossref_primary_10_1016_j_chemosphere_2021_129923 crossref_primary_10_1016_j_cub_2018_05_061 crossref_primary_10_1111_1365_2656_13375 crossref_primary_10_1016_j_envpol_2024_124568 crossref_primary_10_1111_mec_15047 crossref_primary_10_1016_j_ecoenv_2023_114505 crossref_primary_10_1111_mec_16811 crossref_primary_10_1002_ps_5829 crossref_primary_10_1038_s41598_019_50255_4 crossref_primary_10_1007_s11756_021_00684_2 crossref_primary_10_3390_insects10080233 crossref_primary_10_1007_s10592_022_01488_w crossref_primary_10_1080_10937404_2025_2478969 crossref_primary_10_1016_j_envpol_2024_123901 crossref_primary_10_1038_s41598_022_22239_4 crossref_primary_10_1016_j_chemosphere_2022_137396 crossref_primary_10_1016_j_pestbp_2021_105005 crossref_primary_10_1016_j_cbpc_2023_109601 crossref_primary_10_1016_j_envpol_2020_115297 crossref_primary_10_1016_j_pestbp_2025_106451 crossref_primary_10_1016_j_scitotenv_2022_159518 crossref_primary_10_1080_00218839_2019_1675337 crossref_primary_10_1016_j_cois_2024_101161 crossref_primary_10_1093_ee_nvac026 crossref_primary_10_1146_annurev_ento_040323_020625 crossref_primary_10_1016_j_envpol_2025_126990 crossref_primary_10_1073_pnas_2205850119 crossref_primary_10_1007_s10340_025_01913_2 crossref_primary_10_1016_j_tree_2019_12_012 crossref_primary_10_1016_j_ibmb_2023_103934 crossref_primary_10_1016_j_envpol_2020_115581 crossref_primary_10_1038_s42003_021_02336_2 crossref_primary_10_1371_journal_pone_0277455 crossref_primary_10_1016_j_ibmb_2020_103486 crossref_primary_10_1016_j_jhazmat_2022_130304 crossref_primary_10_1111_eva_13625 crossref_primary_10_1007_s10646_020_02162_y crossref_primary_10_3390_insects11100664 crossref_primary_10_1016_j_cub_2018_03_013 crossref_primary_10_3390_genes15081001 crossref_primary_10_1002_biuz_201910675 crossref_primary_10_1371_journal_pone_0220703 crossref_primary_10_1002_tox_24224 crossref_primary_10_3390_w16081082 crossref_primary_10_1093_jee_toab043 crossref_primary_10_1016_j_envpol_2023_121451 crossref_primary_10_3390_ijms24065899 crossref_primary_10_1093_jee_toaf192 crossref_primary_10_1073_pnas_2011828117 crossref_primary_10_1073_pnas_2308685120 crossref_primary_10_3389_finsc_2022_936826 crossref_primary_10_1007_s10709_024_00220_5 crossref_primary_10_1016_j_chemosphere_2023_141089 crossref_primary_10_1016_j_pestbp_2025_106300 crossref_primary_10_1093_jee_toz292 crossref_primary_10_3390_insects10010018 crossref_primary_10_1080_00218839_2025_2560702 crossref_primary_10_1007_s10886_024_01495_w crossref_primary_10_1016_j_pestbp_2023_105410 crossref_primary_10_1016_j_pestbp_2020_104562 crossref_primary_10_1007_s10646_022_02520_y crossref_primary_10_1002_etc_4939 crossref_primary_10_1016_j_pestbp_2022_105219 crossref_primary_10_1371_journal_pone_0243364 crossref_primary_10_1242_jeb_230870 crossref_primary_10_1371_journal_pone_0214702 crossref_primary_10_1016_j_jmgm_2022_108257 crossref_primary_10_1016_j_pestbp_2019_04_014 crossref_primary_10_1111_mec_70042 crossref_primary_10_2903_j_efsa_2023_7989 crossref_primary_10_1111_mec_15361 crossref_primary_10_3390_insects11120829 crossref_primary_10_1002_ps_6558 crossref_primary_10_1016_j_ibmb_2025_104260 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cub.2018.02.045 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1879-0445 |
| ExternalDocumentID | 29576476 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: 15076182 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/OS/CP/000001 |
| GroupedDBID | --- --K -DZ -~X 0R~ 1RT 1~5 2WC 4.4 457 4G. 53G 5GY 62- 6J9 7-5 AAEDT AAEDW AAFWJ AAKRW AALRI AAMRU AAVLU AAXUO AAYWO ABDGV ABJNI ABMAC ACGFO ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AENEX AEUPX AEXQZ AFPUW AFTJW AGCQF AGHSJ AGKMS AGUBO AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP AZFZN BAWUL CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EFKBS EIF EJD F5P FCP FDB FIRID IHE IXB J1W JIG LX5 M3Z M41 NPM O-L O9- OK1 P2P RIG ROL RPZ SCP SDG SES SSZ TR2 7X8 |
| ID | FETCH-LOGICAL-c451t-f3e7e0980b5a2be7b7af0f96ff8cc4d5c47ee5a3627532fbe2de2c132bb161c42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 250 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428961300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1879-0445 |
| IngestDate | Thu Oct 02 04:12:52 EDT 2025 Mon Jul 21 06:05:14 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | bumble bee acetamiprid pesticide neonicotinoids thiacloprid P450 CYP9Q honeybee imidacloprid |
| Language | English |
| License | Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-f3e7e0980b5a2be7b7af0f96ff8cc4d5c47ee5a3627532fbe2de2c132bb161c42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5887109 |
| PMID | 29576476 |
| PQID | 2018664912 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2018664912 pubmed_primary_29576476 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-02 |
| PublicationDateYYYYMMDD | 2018-04-02 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Current biology |
| PublicationTitleAlternate | Curr Biol |
| PublicationYear | 2018 |
| References | 29738731 - Curr Biol. 2018 May 7;28(9):R560-R562. doi: 10.1016/j.cub.2018.03.013 |
| References_xml | – reference: 29738731 - Curr Biol. 2018 May 7;28(9):R560-R562. doi: 10.1016/j.cub.2018.03.013 |
| SSID | ssj0012896 |
| Score | 2.6436346 |
| Snippet | The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1137 |
| SubjectTerms | Animals Bees - drug effects Bees - metabolism Bees - physiology Cytochrome P-450 Enzyme System - drug effects Insecticides - toxicity Neonicotinoids - toxicity |
| Title | Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29576476 https://www.proquest.com/docview/2018664912 |
| Volume | 28 |
| WOSCitedRecordID | wos000428961300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBaaNN0057E16KHLQsq7q006QR6aVbbFfz3ZtKW9SIIXkp7KJRhOpnJ9-X7CLkK7BLHCzXymOS5x5mfeBLwcA7Y-0AyX3HpzCZEmsazWTLtNtzqjlbZ10RXqAujcI_cDukozcaTgF3P3z10jUJ0tbPQWCWD0LYymNVitkQR7DDhThfFAgEAHvWopuN3qYVEZlfsJDt59HuH6Vaa8fZ_v3GHbHU9Jr1pk2KXrEC1RzZa18mvffL2WqHnkBPjprb_o5PeIpfe_yDHUKPpLQB9Rop76zFBG0NTQDFd05SVKQv6VNVYMVVZQH1AXscPL3ePXuev4CkeBY2nQxDgJ7Evo5xJEFLk2tfJSOtYKV5EiguAKA9RyDhkWgIrgCk7vkpp-0TF2SFZq0wFx4TqJFBR7gcgtOCxDqUouM0NEWjECVk8JJd9xDKbvwhK5BWYRZ0tYzYkR23Ys3krtJGxxE5DXIxO_vD2KdnEB0eqYWdkoO3fC-dkXX02Zf1x4RLDXtPp5Bun48Oz |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+the+Molecular+Determinants+of+Bee+Sensitivity+to+Neonicotinoid+Insecticides&rft.jtitle=Current+biology&rft.au=Manjon%2C+Cristina&rft.au=Troczka%2C+Bartlomiej+J&rft.au=Zaworra%2C+Marion&rft.au=Beadle%2C+Katherine&rft.date=2018-04-02&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=28&rft.issue=7&rft.spage=1137&rft_id=info:doi/10.1016%2Fj.cub.2018.02.045&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-0445&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-0445&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-0445&client=summon |