Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides

The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Current biology Ročník 28; číslo 7; s. 1137
Hlavní autori: Manjon, Cristina, Troczka, Bartlomiej J, Zaworra, Marion, Beadle, Katherine, Randall, Emma, Hertlein, Gillian, Singh, Kumar Saurabh, Zimmer, Christoph T, Homem, Rafael A, Lueke, Bettina, Reid, Rebecca, Kor, Laura, Kohler, Maxie, Benting, Jürgen, Williamson, Martin S, Davies, T G Emyr, Field, Linda M, Bass, Chris, Nauen, Ralf
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 02.04.2018
Predmet:
ISSN:1879-0445, 1879-0445
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
AbstractList The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.
Author Zimmer, Christoph T
Zaworra, Marion
Nauen, Ralf
Benting, Jürgen
Singh, Kumar Saurabh
Reid, Rebecca
Davies, T G Emyr
Homem, Rafael A
Kor, Laura
Randall, Emma
Troczka, Bartlomiej J
Manjon, Cristina
Beadle, Katherine
Williamson, Martin S
Hertlein, Gillian
Lueke, Bettina
Bass, Chris
Kohler, Maxie
Field, Linda M
Author_xml – sequence: 1
  givenname: Cristina
  surname: Manjon
  fullname: Manjon, Cristina
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
– sequence: 2
  givenname: Bartlomiej J
  surname: Troczka
  fullname: Troczka, Bartlomiej J
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 3
  givenname: Marion
  surname: Zaworra
  fullname: Zaworra, Marion
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany; Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms University Bonn, 53115 Bonn, Germany
– sequence: 4
  givenname: Katherine
  surname: Beadle
  fullname: Beadle, Katherine
  organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
– sequence: 5
  givenname: Emma
  surname: Randall
  fullname: Randall, Emma
  organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
– sequence: 6
  givenname: Gillian
  surname: Hertlein
  fullname: Hertlein, Gillian
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
– sequence: 7
  givenname: Kumar Saurabh
  surname: Singh
  fullname: Singh, Kumar Saurabh
  organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
– sequence: 8
  givenname: Christoph T
  surname: Zimmer
  fullname: Zimmer, Christoph T
  organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK
– sequence: 9
  givenname: Rafael A
  surname: Homem
  fullname: Homem, Rafael A
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 10
  givenname: Bettina
  surname: Lueke
  fullname: Lueke, Bettina
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
– sequence: 11
  givenname: Rebecca
  surname: Reid
  fullname: Reid, Rebecca
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 12
  givenname: Laura
  surname: Kor
  fullname: Kor, Laura
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 13
  givenname: Maxie
  surname: Kohler
  fullname: Kohler, Maxie
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
– sequence: 14
  givenname: Jürgen
  surname: Benting
  fullname: Benting, Jürgen
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany
– sequence: 15
  givenname: Martin S
  surname: Williamson
  fullname: Williamson, Martin S
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 16
  givenname: T G Emyr
  surname: Davies
  fullname: Davies, T G Emyr
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 17
  givenname: Linda M
  surname: Field
  fullname: Field, Linda M
  organization: Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, UK
– sequence: 18
  givenname: Chris
  surname: Bass
  fullname: Bass, Chris
  email: c.bass@exeter.ac.uk
  organization: College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, UK. Electronic address: c.bass@exeter.ac.uk
– sequence: 19
  givenname: Ralf
  surname: Nauen
  fullname: Nauen, Ralf
  email: ralf.nauen@bayer.com
  organization: Bayer AG, Crop Science Division, Alfred Nobel-Strasse 50, 40789 Monheim, Germany. Electronic address: ralf.nauen@bayer.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29576476$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAYRS1URB_wA1iQR5YE23HsZITyqlRggIoxcpzP4CqxS-xU6r-niCIx3TscXemeKRo57wChc0pSSqi4Wqd6qFNGaJESlhKeH6EJLWSZEM7z0b8-RtMQ1oRQVpTiBI1ZmUvBpZig95Xr1Rba1roPHD8BP_kW9NCqHt9ChL6zTrkYsDf4BgC_ggs22q2NOxw9fgbvrPbROm8bvHABdLTaNhBO0bFRbYCzQ87Q6v7ubf6YLF8eFvPrZaJ5TmNiMpBAyoLUuWI1yFoqQ0wpjCm05k2uuQTIVSaYzDNmamANME0zVtdUUM3ZDF3-7m56_zVAiFVng97_UQ78EKofOULwkrI9enFAh7qDptr0tlP9rvqTwb4BbgVlZw
CitedBy_id crossref_primary_10_1016_j_cois_2020_10_011
crossref_primary_10_1016_j_pestbp_2021_104775
crossref_primary_10_1146_annurev_pharmtox_010818_021747
crossref_primary_10_1016_j_scitotenv_2020_140819
crossref_primary_10_1038_s41598_021_86293_0
crossref_primary_10_1007_s10646_020_02223_2
crossref_primary_10_1038_s41598_020_73125_w
crossref_primary_10_1016_j_cbpc_2021_109112
crossref_primary_10_1016_j_pestbp_2024_106205
crossref_primary_10_1007_s44297_023_00012_x
crossref_primary_10_1080_00218839_2021_1962123
crossref_primary_10_3390_agronomy14050989
crossref_primary_10_1016_j_ecoenv_2019_110100
crossref_primary_10_3389_fgene_2019_01000
crossref_primary_10_1016_j_pestbp_2019_02_001
crossref_primary_10_4039_tce_2021_5
crossref_primary_10_1016_j_pestbp_2020_02_011
crossref_primary_10_1146_annurev_animal_020518_115045
crossref_primary_10_3389_finsc_2022_844957
crossref_primary_10_1016_j_pestbp_2025_106399
crossref_primary_10_1093_jisesa_iey069
crossref_primary_10_3390_ijms222111835
crossref_primary_10_1038_s41598_023_36232_y
crossref_primary_10_1038_s41576_020_0216_1
crossref_primary_10_3389_fsufs_2022_847003
crossref_primary_10_1002_ps_6061
crossref_primary_10_1038_s41559_019_1011_2
crossref_primary_10_1186_s12915_025_02169_z
crossref_primary_10_1016_j_envpol_2024_125129
crossref_primary_10_3390_insects13020184
crossref_primary_10_1002_nadc_20184082026
crossref_primary_10_1002_etc_5771
crossref_primary_10_1007_s12562_020_01467_5
crossref_primary_10_1016_j_chemosphere_2020_127848
crossref_primary_10_1007_s11356_022_21362_z
crossref_primary_10_1016_j_envpol_2022_119562
crossref_primary_10_3389_fphys_2021_659440
crossref_primary_10_3390_d13060228
crossref_primary_10_1002_ps_8371
crossref_primary_10_1080_00218839_2019_1686575
crossref_primary_10_1371_journal_pone_0285167
crossref_primary_10_1016_j_scitotenv_2021_145588
crossref_primary_10_1016_j_jmgm_2022_108177
crossref_primary_10_1016_j_ecoenv_2018_06_064
crossref_primary_10_1007_s10646_019_02070_w
crossref_primary_10_1016_j_ecoenv_2021_112247
crossref_primary_10_3390_ijerph17093290
crossref_primary_10_1016_j_pestbp_2025_106296
crossref_primary_10_1177_0192623319877154
crossref_primary_10_1146_annurev_ento_011118_111847
crossref_primary_10_3389_fmicb_2020_00868
crossref_primary_10_3390_insects12040357
crossref_primary_10_1016_j_ecoenv_2020_111268
crossref_primary_10_3390_ijms242015435
crossref_primary_10_1186_s12864_019_6397_3
crossref_primary_10_1038_s41598_019_39701_5
crossref_primary_10_1016_j_jhazmat_2023_132605
crossref_primary_10_3389_fchem_2022_1019573
crossref_primary_10_1038_s41598_025_10558_1
crossref_primary_10_1111_imb_12765
crossref_primary_10_3390_insects15110839
crossref_primary_10_1016_j_ibmb_2019_103247
crossref_primary_10_1007_s13592_025_01180_1
crossref_primary_10_3389_fphys_2023_1114488
crossref_primary_10_3389_fgene_2021_665927
crossref_primary_10_1002_etc_5045
crossref_primary_10_1016_j_scitotenv_2018_09_112
crossref_primary_10_1371_journal_pone_0200041
crossref_primary_10_3390_biology14081076
crossref_primary_10_1016_j_jhazmat_2019_03_042
crossref_primary_10_1073_pnas_2003667117
crossref_primary_10_2903_j_efsa_2022_7030
crossref_primary_10_3389_fenvs_2020_588380
crossref_primary_10_2903_j_efsa_2022_7031
crossref_primary_10_1016_j_jclepro_2025_145116
crossref_primary_10_1002_etc_4886
crossref_primary_10_1016_j_pestbp_2022_105051
crossref_primary_10_1002_ps_6706
crossref_primary_10_15446_abc_v28n3_92972
crossref_primary_10_1146_annurev_ento_040320_074933
crossref_primary_10_3390_ijms222111921
crossref_primary_10_1016_j_pestbp_2023_105377
crossref_primary_10_1016_j_pestbp_2024_105890
crossref_primary_10_1016_j_chemosphere_2020_128974
crossref_primary_10_31677_2072_6724_2023_69_4_253_271
crossref_primary_10_3390_insects15010054
crossref_primary_10_1038_s41598_023_48818_7
crossref_primary_10_1186_s12864_022_08436_5
crossref_primary_10_3390_insects11110753
crossref_primary_10_1002_ece3_70256
crossref_primary_10_1016_j_pestbp_2023_105483
crossref_primary_10_1016_j_ibmb_2019_05_006
crossref_primary_10_3390_insects12070572
crossref_primary_10_1002_ps_5501
crossref_primary_10_1016_j_scitotenv_2022_161074
crossref_primary_10_1016_j_pestbp_2022_105186
crossref_primary_10_1371_journal_pone_0228933
crossref_primary_10_1016_j_etap_2025_104680
crossref_primary_10_1016_j_scitotenv_2024_172378
crossref_primary_10_1146_annurev_ento_070621_061328
crossref_primary_10_1007_s13744_023_01109_2
crossref_primary_10_1038_s41598_019_55534_8
crossref_primary_10_1111_imb_12796
crossref_primary_10_1111_mec_16049
crossref_primary_10_1093_jee_toad032
crossref_primary_10_1016_j_envpol_2022_120842
crossref_primary_10_1016_j_scitotenv_2023_163820
crossref_primary_10_1007_s13592_022_00909_6
crossref_primary_10_1016_j_chemosphere_2019_02_105
crossref_primary_10_1111_jen_13363
crossref_primary_10_3390_ijms26157487
crossref_primary_10_7554_eLife_68268
crossref_primary_10_1038_s41598_020_66118_2
crossref_primary_10_1016_j_pestbp_2023_105356
crossref_primary_10_1016_j_ecoenv_2022_113242
crossref_primary_10_1016_j_ecoenv_2023_115499
crossref_primary_10_1016_j_pestbp_2023_105339
crossref_primary_10_1016_j_scitotenv_2021_151280
crossref_primary_10_1016_j_envpol_2025_126421
crossref_primary_10_3390_toxics12010018
crossref_primary_10_55446_IJE_2023_1578
crossref_primary_10_1016_j_etap_2024_104613
crossref_primary_10_1007_s11356_020_11338_2
crossref_primary_10_1016_j_etap_2024_104614
crossref_primary_10_1007_s10646_025_02904_w
crossref_primary_10_1007_s13744_018_0651_2
crossref_primary_10_1007_s11356_023_28940_9
crossref_primary_10_1016_j_ecoenv_2022_114101
crossref_primary_10_1371_journal_pone_0206625
crossref_primary_10_1016_j_pestbp_2020_104674
crossref_primary_10_1016_j_jprot_2018_12_022
crossref_primary_10_1002_ps_5494
crossref_primary_10_1016_j_scitotenv_2022_155216
crossref_primary_10_1016_j_scitotenv_2024_170174
crossref_primary_10_1016_j_envint_2020_106372
crossref_primary_10_1007_s10646_018_1940_6
crossref_primary_10_1016_j_ibmb_2022_103796
crossref_primary_10_1016_j_ecoenv_2023_115719
crossref_primary_10_1016_j_ibmb_2023_103958
crossref_primary_10_1111_1751_7915_13579
crossref_primary_10_3389_fphys_2023_1114403
crossref_primary_10_1016_j_cois_2018_09_009
crossref_primary_10_1016_j_pestbp_2019_07_018
crossref_primary_10_1126_science_abf7482
crossref_primary_10_1016_j_cbpc_2023_109613
crossref_primary_10_1016_j_scitotenv_2021_145170
crossref_primary_10_3390_insects16040372
crossref_primary_10_1016_j_chemosphere_2021_129923
crossref_primary_10_1016_j_cub_2018_05_061
crossref_primary_10_1111_1365_2656_13375
crossref_primary_10_1016_j_envpol_2024_124568
crossref_primary_10_1111_mec_15047
crossref_primary_10_1016_j_ecoenv_2023_114505
crossref_primary_10_1111_mec_16811
crossref_primary_10_1002_ps_5829
crossref_primary_10_1038_s41598_019_50255_4
crossref_primary_10_1007_s11756_021_00684_2
crossref_primary_10_3390_insects10080233
crossref_primary_10_1007_s10592_022_01488_w
crossref_primary_10_1080_10937404_2025_2478969
crossref_primary_10_1016_j_envpol_2024_123901
crossref_primary_10_1038_s41598_022_22239_4
crossref_primary_10_1016_j_chemosphere_2022_137396
crossref_primary_10_1016_j_pestbp_2021_105005
crossref_primary_10_1016_j_cbpc_2023_109601
crossref_primary_10_1016_j_envpol_2020_115297
crossref_primary_10_1016_j_pestbp_2025_106451
crossref_primary_10_1016_j_scitotenv_2022_159518
crossref_primary_10_1080_00218839_2019_1675337
crossref_primary_10_1016_j_cois_2024_101161
crossref_primary_10_1093_ee_nvac026
crossref_primary_10_1146_annurev_ento_040323_020625
crossref_primary_10_1016_j_envpol_2025_126990
crossref_primary_10_1073_pnas_2205850119
crossref_primary_10_1007_s10340_025_01913_2
crossref_primary_10_1016_j_tree_2019_12_012
crossref_primary_10_1016_j_ibmb_2023_103934
crossref_primary_10_1016_j_envpol_2020_115581
crossref_primary_10_1038_s42003_021_02336_2
crossref_primary_10_1371_journal_pone_0277455
crossref_primary_10_1016_j_ibmb_2020_103486
crossref_primary_10_1016_j_jhazmat_2022_130304
crossref_primary_10_1111_eva_13625
crossref_primary_10_1007_s10646_020_02162_y
crossref_primary_10_3390_insects11100664
crossref_primary_10_1016_j_cub_2018_03_013
crossref_primary_10_3390_genes15081001
crossref_primary_10_1002_biuz_201910675
crossref_primary_10_1371_journal_pone_0220703
crossref_primary_10_1002_tox_24224
crossref_primary_10_3390_w16081082
crossref_primary_10_1093_jee_toab043
crossref_primary_10_1016_j_envpol_2023_121451
crossref_primary_10_3390_ijms24065899
crossref_primary_10_1093_jee_toaf192
crossref_primary_10_1073_pnas_2011828117
crossref_primary_10_1073_pnas_2308685120
crossref_primary_10_3389_finsc_2022_936826
crossref_primary_10_1007_s10709_024_00220_5
crossref_primary_10_1016_j_chemosphere_2023_141089
crossref_primary_10_1016_j_pestbp_2025_106300
crossref_primary_10_1093_jee_toz292
crossref_primary_10_3390_insects10010018
crossref_primary_10_1080_00218839_2025_2560702
crossref_primary_10_1007_s10886_024_01495_w
crossref_primary_10_1016_j_pestbp_2023_105410
crossref_primary_10_1016_j_pestbp_2020_104562
crossref_primary_10_1007_s10646_022_02520_y
crossref_primary_10_1002_etc_4939
crossref_primary_10_1016_j_pestbp_2022_105219
crossref_primary_10_1371_journal_pone_0243364
crossref_primary_10_1242_jeb_230870
crossref_primary_10_1371_journal_pone_0214702
crossref_primary_10_1016_j_jmgm_2022_108257
crossref_primary_10_1016_j_pestbp_2019_04_014
crossref_primary_10_1111_mec_70042
crossref_primary_10_2903_j_efsa_2023_7989
crossref_primary_10_1111_mec_15361
crossref_primary_10_3390_insects11120829
crossref_primary_10_1002_ps_6558
crossref_primary_10_1016_j_ibmb_2025_104260
ContentType Journal Article
Copyright Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cub.2018.02.045
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1879-0445
ExternalDocumentID 29576476
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: 15076182
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/OS/CP/000001
GroupedDBID ---
--K
-DZ
-~X
0R~
1RT
1~5
2WC
4.4
457
4G.
53G
5GY
62-
6J9
7-5
AAEDT
AAEDW
AAFWJ
AAKRW
AALRI
AAMRU
AAVLU
AAXUO
AAYWO
ABDGV
ABJNI
ABMAC
ACGFO
ACGFS
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AENEX
AEUPX
AEXQZ
AFPUW
AFTJW
AGCQF
AGHSJ
AGKMS
AGUBO
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
AZFZN
BAWUL
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBS
ECM
EFKBS
EIF
EJD
F5P
FCP
FDB
FIRID
IHE
IXB
J1W
JIG
LX5
M3Z
M41
NPM
O-L
O9-
OK1
P2P
RIG
ROL
RPZ
SCP
SDG
SES
SSZ
TR2
7X8
ID FETCH-LOGICAL-c451t-f3e7e0980b5a2be7b7af0f96ff8cc4d5c47ee5a3627532fbe2de2c132bb161c42
IEDL.DBID 7X8
ISICitedReferencesCount 250
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000428961300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1879-0445
IngestDate Thu Oct 02 04:12:52 EDT 2025
Mon Jul 21 06:05:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords bumble bee
acetamiprid
pesticide
neonicotinoids
thiacloprid
P450
CYP9Q
honeybee
imidacloprid
Language English
License Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-f3e7e0980b5a2be7b7af0f96ff8cc4d5c47ee5a3627532fbe2de2c132bb161c42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5887109
PMID 29576476
PQID 2018664912
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2018664912
pubmed_primary_29576476
PublicationCentury 2000
PublicationDate 2018-04-02
PublicationDateYYYYMMDD 2018-04-02
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-02
  day: 02
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Current biology
PublicationTitleAlternate Curr Biol
PublicationYear 2018
References 29738731 - Curr Biol. 2018 May 7;28(9):R560-R562. doi: 10.1016/j.cub.2018.03.013
References_xml – reference: 29738731 - Curr Biol. 2018 May 7;28(9):R560-R562. doi: 10.1016/j.cub.2018.03.013
SSID ssj0012896
Score 2.6436346
Snippet The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1137
SubjectTerms Animals
Bees - drug effects
Bees - metabolism
Bees - physiology
Cytochrome P-450 Enzyme System - drug effects
Insecticides - toxicity
Neonicotinoids - toxicity
Title Unravelling the Molecular Determinants of Bee Sensitivity to Neonicotinoid Insecticides
URI https://www.ncbi.nlm.nih.gov/pubmed/29576476
https://www.proquest.com/docview/2018664912
Volume 28
WOSCitedRecordID wos000428961300030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qKnjx_VhfRPBaaNN0057E16KHLQsq7q006QR6aVbbFfz3ZtKW9SIIXkp7KJRhOpnJ9-X7CLkK7BLHCzXymOS5x5mfeBLwcA7Y-0AyX3HpzCZEmsazWTLtNtzqjlbZ10RXqAujcI_cDukozcaTgF3P3z10jUJ0tbPQWCWD0LYymNVitkQR7DDhThfFAgEAHvWopuN3qYVEZlfsJDt59HuH6Vaa8fZ_v3GHbHU9Jr1pk2KXrEC1RzZa18mvffL2WqHnkBPjprb_o5PeIpfe_yDHUKPpLQB9Rop76zFBG0NTQDFd05SVKQv6VNVYMVVZQH1AXscPL3ePXuev4CkeBY2nQxDgJ7Evo5xJEFLk2tfJSOtYKV5EiguAKA9RyDhkWgIrgCk7vkpp-0TF2SFZq0wFx4TqJFBR7gcgtOCxDqUouM0NEWjECVk8JJd9xDKbvwhK5BWYRZ0tYzYkR23Ys3krtJGxxE5DXIxO_vD2KdnEB0eqYWdkoO3fC-dkXX02Zf1x4RLDXtPp5Bun48Oz
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unravelling+the+Molecular+Determinants+of+Bee+Sensitivity+to+Neonicotinoid+Insecticides&rft.jtitle=Current+biology&rft.au=Manjon%2C+Cristina&rft.au=Troczka%2C+Bartlomiej+J&rft.au=Zaworra%2C+Marion&rft.au=Beadle%2C+Katherine&rft.date=2018-04-02&rft.issn=1879-0445&rft.eissn=1879-0445&rft.volume=28&rft.issue=7&rft.spage=1137&rft_id=info:doi/10.1016%2Fj.cub.2018.02.045&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1879-0445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1879-0445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1879-0445&client=summon