Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks

•Two approaches to detect retinal layers in rat OCT images are presented.•One approach is based on classical image processing and the other on deep learning.•Both methods significantly outperform a commercial image segmentation software.•Deep-learning-based method obtains promising results on unseen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine Jg. 198; S. 105788
Hauptverfasser: Morales, Sandra, Colomer, Adrián, Mossi, José M., del Amor, Rocío, Woldbye, David, Klemp, Kristian, Larsen, Michael, Naranjo, Valery
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 01.01.2021
Schlagworte:
ISSN:0169-2607, 1872-7565, 1872-7565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Two approaches to detect retinal layers in rat OCT images are presented.•One approach is based on classical image processing and the other on deep learning.•Both methods significantly outperform a commercial image segmentation software.•Deep-learning-based method obtains promising results on unseen databases.•A new rat OCT database with expert-reviewed segmentations is publicly available. Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 µm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 µm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.
AbstractList •Two approaches to detect retinal layers in rat OCT images are presented.•One approach is based on classical image processing and the other on deep learning.•Both methods significantly outperform a commercial image segmentation software.•Deep-learning-based method obtains promising results on unseen databases.•A new rat OCT database with expert-reviewed segmentations is publicly available. Background and Objective: Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. Methods: One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. Results: After a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 µm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 µm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Conclusions: Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.
Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented. One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture. After a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 µm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 µm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons. Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.
Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented.BACKGROUND AND OBJECTIVEOptical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of great relevance to study possible toxic effect of drugs and other treatments before human trials. In this paper, two different approaches to detect the most significant retinal layers in a rat OCT image are presented.One approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture.METHODSOne approach is based on a combination of local horizontal intensity profiles along with a new proposed variant of watershed transformation and the other is built upon an encoder-decoder convolutional network architecture.After a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 µm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 µm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons.RESULTSAfter a wide validation, an averaged absolute distance error of 3.77 ± 2.59 and 1.90 ± 0.91 µm is achieved by both approaches, respectively, on a batch of the rat OCT database. After a second test of the deep-learning-based method using an unseen batch of the database, an averaged absolute distance error of 2.67 ± 1.25 µm is obtained. The rat OCT database used in this paper is made publicly available to facilitate further comparisons.Based on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.CONCLUSIONSBased on the obtained results, it was demonstrated the competitiveness of the first approach since outperforms the commercial Insight image segmentation software (Phoenix Research Labs) as well as its utility to generate labelled images for validation purposes speeding significantly up the ground truth generation process. Regarding the second approach, the deep-learning-based method improves the results achieved by the more conventional method and also by other state-of-the-art techniques. In addition, it was verified that the results of the proposed network can be generalized to new rat OCT images.
ArticleNumber 105788
Author Klemp, Kristian
Larsen, Michael
Colomer, Adrián
Mossi, José M.
Naranjo, Valery
Morales, Sandra
del Amor, Rocío
Woldbye, David
Author_xml – sequence: 1
  givenname: Sandra
  surname: Morales
  fullname: Morales, Sandra
  email: sanmomar@i3b.upv.es
  organization: Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
– sequence: 2
  givenname: Adrián
  surname: Colomer
  fullname: Colomer, Adrián
  organization: Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
– sequence: 3
  givenname: José M.
  surname: Mossi
  fullname: Mossi, José M.
  organization: ITEAM Research Institute, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
– sequence: 4
  givenname: Rocío
  surname: del Amor
  fullname: del Amor, Rocío
  organization: Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
– sequence: 5
  givenname: David
  surname: Woldbye
  fullname: Woldbye, David
  organization: Laboratory of Neural Plasticity, Department of Neuroscience, University of Copenhagen, Denmark
– sequence: 6
  givenname: Kristian
  surname: Klemp
  fullname: Klemp, Kristian
  organization: Dept. of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Copenhagen, Denmark
– sequence: 7
  givenname: Michael
  surname: Larsen
  fullname: Larsen, Michael
  organization: Dept. of Ophthalmology, Rigshospitalet-Glostrup, Glostrup, Copenhagen, Denmark
– sequence: 8
  givenname: Valery
  surname: Naranjo
  fullname: Naranjo, Valery
  organization: Instituto de Investigación e Innovación en Bioingeniería, I3B, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33130492$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u3CAURlGVqpmkfYEuKlZVN55ibDBE3VSj_kkjRarSNbLxJWLCwBRwKr99cZ12kUW6ugKdcwXfd4HOfPCA0OuabGtS8_eHrT6ehi0ldLlgnRDP0KYWHa06xtkZ2hRIVpST7hxdpHQghFDG-At03jR1Q1pJNyh8h2x977DrZ4g4we0RfO6zDR5bj2MYyxFf726wPfa3kK7wPuiCW5_BJ5tnfIrBWAcJv8Vmcm7GOvj74KZlRQE9TPHPyL9CvEsv0XPTuwSvHuYl-vH5083ua7W__vJt93Ff6ZbVuQIgoxklwGia0bRUCtKDltA1RhohGZOccw285XRoejADDLoTICQwOQgOzSV6t-4tz_s5QcrqaJMG53oPYUqKtowLJoQkBX3zgE7DEUZ1iuWrcVZ_QyoAXQEdQ0oRzD-kJmppQh3U0oRamlBrE0USjyRt11xz7K17Wv2wqlACurcQVdIWvIbRRtBZjcE-rV890rWz3pbW7mD-n_wbgKS5wA
CitedBy_id crossref_primary_10_3390_sym15020287
crossref_primary_10_3390_s23104737
crossref_primary_10_3390_s21238027
crossref_primary_10_3390_bioengineering10040407
crossref_primary_10_1016_j_cmpb_2024_108229
crossref_primary_10_1016_j_bspc_2021_102946
crossref_primary_10_1038_s41597_024_04259_z
crossref_primary_10_3103_S1060992X24700589
crossref_primary_10_1080_02713683_2025_2537284
Cites_doi 10.1364/BOE.4.001133
10.1371/journal.pone.0181059
10.1364/BOE.8.002732
10.1109/TMI.2012.2225152
10.1364/OE.17.023719
10.1109/TMI.2010.2087390
10.1109/TBME.2010.2055057
10.1109/TMI.2009.2016958
10.1109/TPAMI.2016.2644615
10.1109/TPAMI.2016.2572683
10.1364/BOE.10.003987
10.1364/BOE.5.000348
10.1364/BOE.4.002712
10.1002/jbio.201500239
10.1364/BOE.8.003627
10.1364/OE.18.019413
ContentType Journal Article
Copyright 2020
Copyright © 2020. Published by Elsevier B.V.
Copyright_xml – notice: 2020
– notice: Copyright © 2020. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2020.105788
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 33130492
10_1016_j_cmpb_2020_105788
S0169260720316217
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c451t-ee0dfd9eedf3df42980aec9e73f9f89559666ce6462b3aefbebc78e89e59b86e3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598417100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 01:03:41 EDT 2025
Thu Apr 03 07:09:34 EDT 2025
Tue Nov 18 22:25:03 EST 2025
Sat Nov 29 07:22:48 EST 2025
Fri Feb 23 02:48:17 EST 2024
Tue Oct 14 19:31:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Rodent OCT
Intensity profile
Rat OCT
Optical coherence tomography
Convolutional neural networks
Layer segmentation
Language English
License Copyright © 2020. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-ee0dfd9eedf3df42980aec9e73f9f89559666ce6462b3aefbebc78e89e59b86e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0169260720316217
PMID 33130492
PQID 2456858890
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2456858890
pubmed_primary_33130492
crossref_primary_10_1016_j_cmpb_2020_105788
crossref_citationtrail_10_1016_j_cmpb_2020_105788
elsevier_sciencedirect_doi_10_1016_j_cmpb_2020_105788
elsevier_clinicalkey_doi_10_1016_j_cmpb_2020_105788
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Ong, Luo, Lee, Chia, Galvao, Metzger, Gifford, Chin, Ali (bib0007) 2020; vol. 11313
Lu, l. Cheung, Liu, Lim, s. Leung, Wong (bib0020) 2010; 57
Chiu, Li, Nicholas, Toth, Izatt, Farsiu (bib0008) 2010; 18
Dufour, Ceklic, Abdillahi, Schroder, Dzanet, Wolf-Schnurrbusch, Kowal (bib0009) 2013; 32
Srinivasan, Heflin, Izatt, Arshavsky, Farsiu (bib0029) 2014; 5
Roy, Conjeti, Sheet, Katouzian, Navab, Wachinger (bib0026) 2017
del Amor, Morales, Colomer, Mossi, Woldbye, Klemp, Larsen, Naranjo (bib0001) 2019
Nair, Hinton (bib0023) 2010
Roy, Conjeti, Karri, Sheet, Katouzian, Wachinger, Navab (bib0025) 2017; 8
He, Carass, Yun, Zhao, Jedynak, Solomon, Saidha, Calabresi, Prince (bib0013) 2017
Ioffe, Szegedy (bib0014) 2015
Kugelman, Alonso-Caneiro, Read, Hamwood, Vincent, Chen, Collins (bib0017) 2019; 9
Antony, Abràmoff, Harper, Jeong, Sohn, Kwon, Kardon, Garvin (bib0002) 2013; 4
Liu, Fu, Pan, Liu, Hu, Liu, Zhang (bib0019) 2018
Ruan, Xue, Li, Liu, Lu, Chen, Liu, Niu, Li (bib0027) 2019; 10
Lang, Carass, Hauser, Sotirchos, Calabresi, Ying, Prince (bib0018) 2013; 4
Shelhamer, Long, Darrell (bib0028) 2017; 39
Pekala, Joshi, Freund, Bressler, DeBuc, Burlina (bib0024) 2018
Fang, Cunefare, Wang, Guymer, Li, Farsiu (bib0010) 2017; 8
Yazdanpanah, Hamarneh, Smith, Sarunic (bib0031) 2011; 30
Mishra, Wong, Bizheva, Clausi (bib0021) 2009; 17
Beucher, Meyer (bib0006) 1993; 34
Jing, Boglarka, Erika, Palya, Mark, E., Cabrera (bib0015) 2016; 9
Bertalmio, Bertozzi, Sapiro (bib0005) 2001; vol. 1
Badrinarayanan, Kendall, Cipolla (bib0004) 2017; 39
Kiaee, Fahimi, Rabbani (bib0016) 2018
Vedaldi, Lenc (bib0030) 2015
Gopinath, Rangrej, Sivaswamy (bib0012) 2017
Antony, Kim, Lang, Carass, Prince, Zack (bib0003) 2017; 12
Morales, Colomer, Mossi, del Amor, Woldbye, Klemp, Larsen, Naranjo (bib0022) 2020
Garvin, Abramoff, Wu, Russell, Burns, Sonka (bib0011) 2009; 28
Lang (10.1016/j.cmpb.2020.105788_bib0018) 2013; 4
Kugelman (10.1016/j.cmpb.2020.105788_bib0017) 2019; 9
Roy (10.1016/j.cmpb.2020.105788_bib0025) 2017; 8
Antony (10.1016/j.cmpb.2020.105788_bib0002) 2013; 4
del Amor (10.1016/j.cmpb.2020.105788_bib0001) 2019
Garvin (10.1016/j.cmpb.2020.105788_bib0011) 2009; 28
Antony (10.1016/j.cmpb.2020.105788_bib0003) 2017; 12
Dufour (10.1016/j.cmpb.2020.105788_bib0009) 2013; 32
Ruan (10.1016/j.cmpb.2020.105788_bib0027) 2019; 10
Vedaldi (10.1016/j.cmpb.2020.105788_bib0030) 2015
He (10.1016/j.cmpb.2020.105788_bib0013) 2017
Roy (10.1016/j.cmpb.2020.105788_bib0026) 2017
Srinivasan (10.1016/j.cmpb.2020.105788_bib0029) 2014; 5
Nair (10.1016/j.cmpb.2020.105788_bib0023) 2010
Chen (10.1016/j.cmpb.2020.105788_bib0007) 2020; vol. 11313
Jing (10.1016/j.cmpb.2020.105788_bib0015) 2016; 9
Yazdanpanah (10.1016/j.cmpb.2020.105788_bib0031) 2011; 30
Morales (10.1016/j.cmpb.2020.105788_bib0022) 2020
Beucher (10.1016/j.cmpb.2020.105788_bib0006) 1993; 34
Shelhamer (10.1016/j.cmpb.2020.105788_bib0028) 2017; 39
Lu (10.1016/j.cmpb.2020.105788_bib0020) 2010; 57
Mishra (10.1016/j.cmpb.2020.105788_bib0021) 2009; 17
Badrinarayanan (10.1016/j.cmpb.2020.105788_bib0004) 2017; 39
Gopinath (10.1016/j.cmpb.2020.105788_bib0012) 2017
Pekala (10.1016/j.cmpb.2020.105788_bib0024) 2018
Kiaee (10.1016/j.cmpb.2020.105788_bib0016) 2018
Liu (10.1016/j.cmpb.2020.105788_sbref0019) 2018
Bertalmio (10.1016/j.cmpb.2020.105788_sbref0005) 2001; vol. 1
Ioffe (10.1016/j.cmpb.2020.105788_bib0014) 2015
Chiu (10.1016/j.cmpb.2020.105788_bib0008) 2010; 18
Fang (10.1016/j.cmpb.2020.105788_bib0010) 2017; 8
References_xml – volume: 18
  start-page: 19413
  year: 2010
  end-page: 19428
  ident: bib0008
  article-title: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation
  publication-title: Opt. Express
– year: 2018
  ident: bib0019
  article-title: Automated layer segmentation of retinal optical coherence tomography images using a deep feature enhanced structured random forests classifier
  publication-title: IEEE Journal of Biomedical and Health Informatics
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0023
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proceedings of the 27th International Conference on International Conference on Machine Learning
– volume: 17
  start-page: 23719
  year: 2009
  end-page: 23728
  ident: bib0021
  article-title: Intra-retinal layer segmentation in optical coherence tomography images
  publication-title: Opt. Express
– year: 2019
  ident: bib0001
  article-title: Towards automatic glaucoma assessment: an encoder-decoder CNN for retinal layer segmentation in rodent OCT images
  publication-title: Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO)
– volume: 57
  start-page: 2605
  year: 2010
  end-page: 2608
  ident: bib0020
  article-title: Automated layer segmentation of optical coherence tomography images
  publication-title: IEEE Trans. Biom. Eng.
– volume: 34
  start-page: 433
  year: 1993
  end-page: 481
  ident: bib0006
  article-title: The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing
  publication-title: Opt. Eng.
– start-page: 202
  year: 2017
  end-page: 209
  ident: bib0013
  article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs
  publication-title: Fetal, Infant and Ophthalmic Medical Image Analysis
– volume: 9
  start-page: 478
  year: 2016
  end-page: 489
  ident: bib0015
  article-title: Performance evaluation of automated segmentation software on optical coherence tomography volume data
  publication-title: J. Biophotonics
– volume: 8
  start-page: 3627
  year: 2017
  end-page: 3642
  ident: bib0025
  article-title: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
  publication-title: Biomed. Opt. Express
– volume: 4
  start-page: 1133
  year: 2013
  end-page: 1152
  ident: bib0018
  article-title: Retinal layer segmentation of macular OCT images using boundary classification
  publication-title: Biomed. Opt. Express
– start-page: 105788
  year: 2020
  ident: bib0022
  article-title: Data for: Retinal layer segmentation in rodent OCT images: local intensity profiles & fully convolutional neural networks, Mendeley Data, V1
  publication-title: Comput. Methods Programs Biomed.
– year: 2015
  ident: bib0030
  article-title: Matconvnet – convolutional neural networks for MATLAB
  publication-title: Proceeding of the ACM Int. Conf. on Multimedia
– year: 2017
  ident: bib0012
  article-title: A deep learning framework for segmentation of retinal layers from OCT images
  publication-title: CoRR
– start-page: 2795
  year: 2018
  end-page: 2799
  ident: bib0016
  article-title: Intra-retinal layer segmentation of optical coherence tomography using 3d fully convolutional networks
  publication-title: 2018 25th IEEE International Conference on Image Processing (ICIP)
– volume: 9
  year: 2019
  ident: bib0017
  article-title: Automatic choroidal segmentation in OCT images using supervised deep learning methods
  publication-title: Sci. Rep.
– volume: 10
  start-page: 3987
  year: 2019
  end-page: 4002
  ident: bib0027
  article-title: Multi-phase level set algorithm based on fully convolutional networks (FCN-MLS) for retinal layer segmentation in SD-OCT images with central serous chorioretinopathy (CSC)
  publication-title: Biomed. Opt. Express
– volume: vol. 1
  year: 2001
  ident: bib0005
  article-title: Navier-Stokes, fluid dynamics, and image and video inpainting
  publication-title: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001
– volume: vol. 11313
  start-page: 821
  year: 2020
  end-page: 825
  ident: bib0007
  article-title: Comparison of training strategies for the segmentation of retina layers in optical coherence tomography images of rodent eyes using convolutional neural networks
  publication-title: Medical Imaging 2020: Image Processing
– volume: 8
  start-page: 2732
  year: 2017
  end-page: 2744
  ident: bib0010
  article-title: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
  publication-title: Biomed. Opt. Express
– volume: 12
  start-page: 1
  year: 2017
  end-page: 17
  ident: bib0003
  article-title: Automated segmentation of mouse OCT volumes (ASiMOV): validation & clinical study of a light damage model
  publication-title: PLOS ONE
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0004
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: bib0028
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
– volume: 5
  start-page: 348
  year: 2014
  end-page: 365
  ident: bib0029
  article-title: Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology
  publication-title: Biomed. Opt. Express
– volume: 32
  start-page: 531
  year: 2013
  end-page: 543
  ident: bib0009
  article-title: Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints
  publication-title: IEEE Trans. Med. Imaging
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0014
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the 32Nd International Conference on International Conference on Machine Learning - Volume 37
– year: 2018
  ident: bib0024
  article-title: Deep learning based retinal OCT segmentation
  publication-title: CoRR
– start-page: 231
  year: 2017
  end-page: 239
  ident: bib0026
  article-title: Error corrective boosting for learning fully convolutional networks with limited data
  publication-title: Medical Image Computing and Computer-Assisted Intervention - MICCAI 2017
– volume: 30
  start-page: 484
  year: 2011
  end-page: 496
  ident: bib0031
  article-title: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach
  publication-title: IEEE Trans. Med. Imaging
– volume: 4
  start-page: 2712
  year: 2013
  end-page: 2728
  ident: bib0002
  article-title: A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes
  publication-title: Biomed. Opt. Express
– volume: 28
  start-page: 1436
  year: 2009
  end-page: 1447
  ident: bib0011
  article-title: Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images
  publication-title: IEEE Trans. Med. Imaging
– volume: 4
  start-page: 1133
  issue: 7
  year: 2013
  ident: 10.1016/j.cmpb.2020.105788_bib0018
  article-title: Retinal layer segmentation of macular OCT images using boundary classification
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.001133
– year: 2015
  ident: 10.1016/j.cmpb.2020.105788_bib0030
  article-title: Matconvnet – convolutional neural networks for MATLAB
– volume: 12
  start-page: 1
  issue: 8
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0003
  article-title: Automated segmentation of mouse OCT volumes (ASiMOV): validation & clinical study of a light damage model
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0181059
– volume: 34
  start-page: 433
  year: 1993
  ident: 10.1016/j.cmpb.2020.105788_bib0006
  article-title: The morphological approach to segmentation: the watershed transformation. Mathematical morphology in image processing
  publication-title: Opt. Eng.
– volume: 8
  start-page: 2732
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0010
  article-title: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.002732
– start-page: 202
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0013
  article-title: Towards topological correct segmentation of macular OCT from cascaded FCNs
– volume: 32
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2020.105788_bib0009
  article-title: Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2225152
– volume: 17
  start-page: 23719
  issue: 26
  year: 2009
  ident: 10.1016/j.cmpb.2020.105788_bib0021
  article-title: Intra-retinal layer segmentation in optical coherence tomography images
  publication-title: Opt. Express
  doi: 10.1364/OE.17.023719
– volume: 30
  start-page: 484
  issue: 2
  year: 2011
  ident: 10.1016/j.cmpb.2020.105788_bib0031
  article-title: Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2087390
– volume: vol. 11313
  start-page: 821
  year: 2020
  ident: 10.1016/j.cmpb.2020.105788_bib0007
  article-title: Comparison of training strategies for the segmentation of retina layers in optical coherence tomography images of rodent eyes using convolutional neural networks
– year: 2018
  ident: 10.1016/j.cmpb.2020.105788_sbref0019
  article-title: Automated layer segmentation of retinal optical coherence tomography images using a deep feature enhanced structured random forests classifier
  publication-title: IEEE Journal of Biomedical and Health Informatics
– volume: 57
  start-page: 2605
  issue: 10
  year: 2010
  ident: 10.1016/j.cmpb.2020.105788_bib0020
  article-title: Automated layer segmentation of optical coherence tomography images
  publication-title: IEEE Trans. Biom. Eng.
  doi: 10.1109/TBME.2010.2055057
– start-page: 807
  year: 2010
  ident: 10.1016/j.cmpb.2020.105788_bib0023
  article-title: Rectified linear units improve restricted boltzmann machines
– volume: 28
  start-page: 1436
  issue: 9
  year: 2009
  ident: 10.1016/j.cmpb.2020.105788_bib0011
  article-title: Automated 3-d intraretinal layer segmentation of macular spectral-domain optical coherence tomography images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2016958
– start-page: 2795
  year: 2018
  ident: 10.1016/j.cmpb.2020.105788_bib0016
  article-title: Intra-retinal layer segmentation of optical coherence tomography using 3d fully convolutional networks
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0004
  article-title: SegNet: a deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 231
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0026
  article-title: Error corrective boosting for learning fully convolutional networks with limited data
– year: 2019
  ident: 10.1016/j.cmpb.2020.105788_bib0001
  article-title: Towards automatic glaucoma assessment: an encoder-decoder CNN for retinal layer segmentation in rodent OCT images
– start-page: 448
  year: 2015
  ident: 10.1016/j.cmpb.2020.105788_bib0014
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0028
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach.Intell.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 10
  start-page: 3987
  issue: 8
  year: 2019
  ident: 10.1016/j.cmpb.2020.105788_bib0027
  article-title: Multi-phase level set algorithm based on fully convolutional networks (FCN-MLS) for retinal layer segmentation in SD-OCT images with central serous chorioretinopathy (CSC)
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.10.003987
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.cmpb.2020.105788_sbref0005
  article-title: Navier-Stokes, fluid dynamics, and image and video inpainting
– year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0012
  article-title: A deep learning framework for segmentation of retinal layers from OCT images
  publication-title: CoRR
– start-page: 105788
  year: 2020
  ident: 10.1016/j.cmpb.2020.105788_bib0022
  article-title: Data for: Retinal layer segmentation in rodent OCT images: local intensity profiles & fully convolutional neural networks, Mendeley Data, V1
  publication-title: Comput. Methods Programs Biomed.
– volume: 5
  start-page: 348
  issue: 2
  year: 2014
  ident: 10.1016/j.cmpb.2020.105788_bib0029
  article-title: Automatic segmentation of up to ten layer boundaries in SD-OCT images of the mouse retina with and without missing layers due to pathology
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.000348
– volume: 9
  issue: 13298
  year: 2019
  ident: 10.1016/j.cmpb.2020.105788_bib0017
  article-title: Automatic choroidal segmentation in OCT images using supervised deep learning methods
  publication-title: Sci. Rep.
– year: 2018
  ident: 10.1016/j.cmpb.2020.105788_bib0024
  article-title: Deep learning based retinal OCT segmentation
  publication-title: CoRR
– volume: 4
  start-page: 2712
  issue: 12
  year: 2013
  ident: 10.1016/j.cmpb.2020.105788_bib0002
  article-title: A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.4.002712
– volume: 9
  start-page: 478
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2020.105788_bib0015
  article-title: Performance evaluation of automated segmentation software on optical coherence tomography volume data
  publication-title: J. Biophotonics
  doi: 10.1002/jbio.201500239
– volume: 8
  start-page: 3627
  issue: 8
  year: 2017
  ident: 10.1016/j.cmpb.2020.105788_bib0025
  article-title: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.003627
– volume: 18
  start-page: 19413
  issue: 18
  year: 2010
  ident: 10.1016/j.cmpb.2020.105788_bib0008
  article-title: Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019413
SSID ssj0002556
Score 2.3599942
Snippet •Two approaches to detect retinal layers in rat OCT images are presented.•One approach is based on classical image processing and the other on deep...
Optical coherence tomography (OCT) is a useful technique to monitor retinal layer state both in humans and animal models. Automated OCT analysis in rats is of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105788
SubjectTerms Animals
Convolutional neural networks
Intensity profile
Layer segmentation
Neural Networks, Computer
Optical coherence tomography
Rat OCT
Rats
Retina - diagnostic imaging
Rodent OCT
Rodentia
Software
Tomography, Optical Coherence
Title Retinal layer segmentation in rodent OCT images: Local intensity profiles & fully convolutional neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260720316217
https://dx.doi.org/10.1016/j.cmpb.2020.105788
https://www.ncbi.nlm.nih.gov/pubmed/33130492
https://www.proquest.com/docview/2456858890
Volume 198
WOSCitedRecordID wos000598417100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DiFeJr7pgMlIiJcqVRI3ic1bNYYA0YGgSH2LbMdBndqkartp-9P47zh_pe1QB3vgpa0S23Jzv5zPvt_dIfQadhhhKWMZlJJx2KBIEQgi40BEcUgEk2nSF6bYRHZ6Ssdj9rXV-uVjYS6mWVXRy0s2_6-ihmsgbB06ewtxN4PCBfgNQodPEDt8_pPgv-kgZnjwU36lMzWrnzMXXmQ4jaAvtff_y_GoO5mBLjGMuM96QTOZIypD0XCFvJcGF_qA_sqw0920oanOgmm-DId8uWnh-jIRrjb10mUiMCwww721Af9bDv2hThNg9dV3aL5Ys4dANbvyLoNiMTFe_ahad4MX2rkxrMO_O-z5m4UC7M1qRx-X5v67evOQI442DjncuWfKAth6ZVuK29avdqpXFyy2FQL_WBXsAcVZT87mogfD2-rGtvF2Cu5rS2NDWPRcuLNcj5HrMXI7xh7aj7OE0TbaH3w8GX9qzACd280mlrczdxFbllx4fSa7rKJdux5j_YzuowO3bcEDC7cHqKWqh-ju0MnxEaod6rBBHd5EHZ5U2KIOA-qwRd1bbDCHG8xhjzn8BhvE4S3EYYs47BH3GP14fzI6_hC4Wh6B7CfRKlAqLMqCgUVWkqIEI4iGXEmmMlKykuo0iLCPlirtp7EgXJVCCZlRRZlKmKCpIk9Qu6or9QxhzlUa8yTO4Kn2M5FykqahioqkoIVkIe-gyD_LXLpE97reyjTfLcUO6jZ95jbNy42tiRdR7gOYYcnNAW839kqaXs68tWbrX_u98ijIQfdrhx6vVH2-zDVpgSaUsrCDnlp4NLMnJNIe9PjwVv_sObq3fv1eoPZqca5eojvyYjVZLo7QXjamRw7ovwHDTd07
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retinal+layer+segmentation+in+rodent+OCT+images%3A+Local+intensity+profiles+%26+fully+convolutional+neural+networks&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Morales%2C+Sandra&rft.au=Colomer%2C+Adri%C3%A1n&rft.au=Mossi%2C+Jos%C3%A9+M.&rft.au=del+Amor%2C+Roc%C3%ADo&rft.date=2021-01-01&rft.issn=0169-2607&rft.volume=198&rft.spage=105788&rft_id=info:doi/10.1016%2Fj.cmpb.2020.105788&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2020_105788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon