Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing

Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic m...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics Vol. 74; pp. 50 - 56
Main Authors: Yates, Keegan M., Untaroiu, Costin D.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 06.06.2018
Elsevier Limited
Subjects:
ISSN:0021-9290, 1873-2380, 1873-2380
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Statistical shape analysis was conducted on 15 pairs (left and right) of human kidneys. It was shown that the left and right kidney were significantly different in size and shape. In addition, several common modes of kidney variation were identified using statistical shape analysis. Semi-automatic mesh morphing techniques have been developed to efficiently create subject specific meshes from a template mesh with a similar geometry. Subject specific meshes as well as probabilistic kidney meshes were created from a template mesh. Mesh quality remained about the same as the template mesh while only taking a fraction of the time to create the mesh from scratch or morph with manually identified landmarks. This technique can help enhance the quality of information gathered from experimental testing with subject specific meshes as well as help to more efficiently predict injury by creating models with the mean shape as well as models at the extremes for each principal component.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0021-9290
1873-2380
1873-2380
DOI:10.1016/j.jbiomech.2018.04.016