A novel swarm intelligence optimization approach: sparrow search algorithm

In this paper, a novel swarm optimization approach, namely sparrow search algorithm (SSA), is proposed inspired by the group wisdom, foraging and anti-predation behaviours of sparrows. Experiments on 19 benchmark functions are conducted to test the performance of the SSA and its performance is compa...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Systems science & control engineering Ročník 8; číslo 1; s. 22 - 34
Hlavní autori: Xue, Jiankai, Shen, Bo
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Macclesfield Taylor & Francis 01.01.2020
Taylor & Francis Ltd
Taylor & Francis Group
Predmet:
ISSN:2164-2583, 2164-2583
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, a novel swarm optimization approach, namely sparrow search algorithm (SSA), is proposed inspired by the group wisdom, foraging and anti-predation behaviours of sparrows. Experiments on 19 benchmark functions are conducted to test the performance of the SSA and its performance is compared with other algorithms such as grey wolf optimizer (GWO), gravitational search algorithm (GSA), and particle swarm optimization (PSO). Simulation results show that the proposed SSA is superior over GWO, PSO and GSA in terms of accuracy, convergence speed, stability and robustness. Finally, the effectiveness of the proposed SSA is demonstrated in two practical engineering examples.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2164-2583
2164-2583
DOI:10.1080/21642583.2019.1708830