Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of t...
Saved in:
| Published in: | Journal of biomechanics Vol. 72; pp. 71 - 80 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Elsevier Ltd
27.04.2018
Elsevier Limited |
| Subjects: | |
| ISSN: | 0021-9290, 1873-2380, 1873-2380 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°). |
|---|---|
| AbstractList | The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R
) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°). The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°). The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°).The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°). |
| Author | de Zee, M. Pedersen, P.H. Jensen, K.K. Dzialo, C.M. Simonsen, C.W. Andersen, M.S. |
| Author_xml | – sequence: 1 givenname: C.M. surname: Dzialo fullname: Dzialo, C.M. email: cdz@mp.aau.dk organization: Department of Materials and Production, Aalborg University, Fibigerstræde 16, DK-9220 Aalborg, Denmark – sequence: 2 givenname: P.H. surname: Pedersen fullname: Pedersen, P.H. organization: Department of Orthopedic Surgery, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark – sequence: 3 givenname: C.W. surname: Simonsen fullname: Simonsen, C.W. organization: Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark – sequence: 4 givenname: K.K. surname: Jensen fullname: Jensen, K.K. organization: Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark – sequence: 5 givenname: M. surname: de Zee fullname: de Zee, M. organization: Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D, DK-9220 Aalborg, Denmark – sequence: 6 givenname: M.S. surname: Andersen fullname: Andersen, M.S. organization: Department of Materials and Production, Aalborg University, Fibigerstræde 16, DK-9220 Aalborg, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29567307$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd1q3DAQhU1JaTZpXyEIetMbuyPZa9lQSkOatoGUQH-uhSyNtnJlayPZS_MMfelqd7M3e5OCYEB858zMmbPsZPQjZtkFhYICrd_2Rd9ZP6D6VTCgTQGsgJI9yxa04WXOygZOsgUAo3nLWjjNzmLsAYBXvH2RnbJ2WfMS-CL7-xE36Px6wHEictRkI53VcrJ-JN4QSeLc9aimPK5RWWMVGfzGjqtc_rGRTDYNYXDwQTrSe5s8Bq_RkTkmhnz9drPzvL77TuwgV9s_PYdtkeR-ltHmcUq9FHHzuMKX2XMjXcRXj_U8-_np-sfVl_z27vPN1eVtrqolnfLOSFOB0em1Km3R8ZbXgE2HvGqlKbnCxlBDJRjgS6Z1JSVqVvEaW0BZlufZm73vOvj7GeMkBhsVOidH9HMU20CBlmUNCX19hPZ-DmOaLlGMNcBqqBN18UjN3YBarEPaNjyIQ8wJeLcHVPAxBjRC2WkX8hSkdYKC2F5V9OJw1d0QAphIV03y-kh-6PCk8MNeiCnOjcUgorI4KtQ2pKMK7e3TFu-PLJSzo1XS_caH_zH4B0sA1xU |
| CitedBy_id | crossref_primary_10_1016_j_medengphy_2019_08_001 crossref_primary_10_1016_j_medengphy_2022_103871 crossref_primary_10_1038_s41598_024_78618_6 crossref_primary_10_1007_s11831_022_09757_0 crossref_primary_10_1016_j_jbiomech_2021_110781 crossref_primary_10_3390_app10207255 crossref_primary_10_1007_s10237_020_01398_1 crossref_primary_10_1007_s10237_019_01245_y crossref_primary_10_1016_j_jbiomech_2025_112845 crossref_primary_10_3389_fbioe_2022_904012 crossref_primary_10_3390_s20030673 |
| Cites_doi | 10.1115/1.4025692 10.1097/00003086-199811000-00016 10.1016/j.jbiomech.2013.03.014 10.1115/1.4038741 10.1109/10.102791 10.1016/j.jbiomech.2017.01.030 10.1016/j.jbspin.2012.09.018 10.1016/j.clinbiomech.2014.04.014 10.1115/1.1392310 10.1016/j.jbiomech.2012.02.010 10.1016/S0021-9290(98)00119-5 10.1038/s41598-017-17228-x 10.1016/j.jbiomech.2012.01.011 10.1115/1.4029258 10.1080/10255840802459412 10.1080/02533839.2014.904474 10.1016/j.jbiomech.2013.10.015 10.1016/j.jbiomech.2016.12.018 10.1002/jor.21203 10.1016/j.jbiomech.2012.05.040 10.1055/s-0035-1558858 10.1115/1.3138397 10.1038/s41598-017-04390-5 10.1007/s00264-012-1512-y 10.1302/0301-620X.82B8.0821189 10.1016/S0021-9290(98)00158-4 10.1080/10255842.2014.899588 10.1016/j.jbiomech.2010.06.010 10.1115/1.4026358 10.1080/10255840903077352 10.1115/1.4023320 10.1016/j.jbiomech.2017.01.015 10.1016/j.jbiomech.2015.09.040 10.1002/jor.20488 10.1002/jor.20844 10.1016/j.jbiomech.2015.01.010 10.1016/j.jbiomech.2004.02.042 10.1016/j.clinbiomech.2006.10.003 10.1016/S0021-9290(02)00276-2 10.1016/0021-9290(95)00017-C 10.1007/s11044-011-9286-3 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. 2018. Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. – notice: 2018. Elsevier Ltd |
| DBID | AAYXX CITATION NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.jbiomech.2018.02.032 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Research Library Prep |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 80 |
| ExternalDocumentID | 29567307 10_1016_j_jbiomech_2018_02_032 S0021929018301386 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | United States--US |
| GeographicLocations_xml | – name: United States--US |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- ~HD 3V. AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR .GJ 29J 53G 9DU AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFFHD AFJKZ AGHFR AGQPQ AI. AIGII APXCP ASPBG AVWKF AZFZN CITATION EBD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RPZ SAE SEW VH1 WUQ XOL XPP ZGI ALIPV NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO |
| ID | FETCH-LOGICAL-c451t-bfaf40fd0fd9c730b79760e8be749af37ce8f1f1a0f0752dd4aaed2476e90ea33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430889400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Sun Sep 28 11:44:38 EDT 2025 Sat Nov 29 14:19:17 EST 2025 Wed Feb 19 02:32:53 EST 2025 Tue Nov 18 21:18:07 EST 2025 Sat Nov 29 07:28:41 EST 2025 Fri Feb 23 02:49:46 EST 2024 Tue Oct 14 19:30:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | EOS imaging Secondary joint kinematics Musculoskeletal knee model Magnetic resonance imaging Tibiofemoral joint |
| Language | English |
| License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-bfaf40fd0fd9c730b79760e8be749af37ce8f1f1a0f0752dd4aaed2476e90ea33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 29567307 |
| PQID | 2022802606 |
| PQPubID | 1226346 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2018013360 proquest_journals_2022802606 pubmed_primary_29567307 crossref_citationtrail_10_1016_j_jbiomech_2018_02_032 crossref_primary_10_1016_j_jbiomech_2018_02_032 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_02_032 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_02_032 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-27 |
| PublicationDateYYYYMMDD | 2018-04-27 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-27 day: 27 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Qi, Hosseini, Tsai, Li, Rubash, Li (b0180) 2013; 46 Mootanah, Imhauser, Reisse, Carpanen, Walker, Koff, Lenhoff, Rozbruch, Fragomen, Kirane, Rozbruch, Dewan, Cheah, Dowell, Hillstrom (b0160) 2014 Habachi, Moissenet, Duprey, Cheze, Dumas (b0095) 2015; 655–667 Wilson, Feikes, Connor (b0215) 1998; 31 Brito da Luz, Modenese, Sancisi, Mills, Kennedy, Beck, Lloyd (b0025) 2017; 53 Anderson, Pandy (b0015) 2001; 123 Zeng, Ma, Lin, Huang, Huang, Zhang, Mao (b0240) 2017; 7 Clément, Dumas, Hagemeister, de Guise (b0035) 2015; 48 Thelen, Won Choi, Schmitz (b0200) 2014; 136 Tsai, Lung (b0205) 2014; 37 Hast, Piazza (b0105) 2013; 135 Richard, Cappozzo, Dumas (b0185) 2017; 62 Wu, Cavanagh (b0220) 1995; 28 Smith, Vignos, Lenhart, Kaiser (b0195) 2017; 138 Halonen, Dzialo, Mannisi, Venäläinen, Zee, Andersen (b0100) 2017; 7 Dennis, Mahfouz, Komistek, Hoff (b0045) 2005; 38 Illés, Somoskeöy (b0110) 2012 Maxwell, Delaney, Planer (b0145) 2013; 53 Wybier, Bossard (b0225) 2013 Duprey, Chèze, Dumas (b0060) 2009; 12 Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (b0080) 2015; 48 Kiapour, Kiapour, Kaul, Quatman, Wordeman, Hewett, Demetropoulos, Goel (b0120) 2013; 136 Moissenet, Chèze, Dumas (b0150) 2014; 47 Marra, Strzelczak, Heesterbeek, van de Groes, Janssen, Koopman, Wymenga, Verdonschot (b0135) 2017 Iwaki, Pinskerova, Freeman (b0115) 2000; 82 Klein Horsman, Koopman, van der Helm, Prosé, Veeger (b0125) 2007; 22 Duprey, Cheze, Dumas (b0055) 2010; 43 Moro-oka, Hamai, Miura, Shimoto, Higaki, Fregly, Iwamoto, Banks (b0165) 2008; 26 Begon, Andersen, Dumas (b0020) 2018 Farrokhi, Voycheck, Klatt, Gustafson, Tashman, Fitzgerald (b0065) 2014; 29 Adouni, Shirazi-Adl, Shirazi (b0005) 2012; 45 Delp, Loan, Hoy, Zajac, Topp, Rosen (b0040) 1990; 37 Yue, Varadarajan, Moynihan, Liu, Rubash, Li (b0230) 2011; 29 Parra, Chatterjee, Soligo (b0170) 2012; 45 Guess, Stylianou, Kia (b0090) 2014; 136 Churchill, Incavo, Johnson, Beynnon (b0030) 1998 Grood, Suntay (b0085) 1983; 105 Smith, Lenhart, Thelen, Kaiser, Vignos (b0190) 2016; 29 Moissenet, Chèze, Dumas (b0155) 2012; 28 Zeighami, Dumas, Kanhonou, Hagemeister, Lavoie, de Guise, Aissaoui (b0235) 2017; 53 Feikes, Connor, Zavatsky (b0070) 2003; 36 Fregly (b0075) 2007; 29 Andersen, Damsgaard, Rasmussen (b0010) 2009; 12 Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot, Andersen (b0140) 2015; 137 Varadarajan, Gill, Freiberg, Rubash, Li (b0210) 2009; 27 Donnelly, Lloyd, Elliott, Reinbolt (b0050) 2012; 45 Lu, O’Connor (b0130) 1999; 32 Zeighami (10.1016/j.jbiomech.2018.02.032_b0235) 2017; 53 Richard (10.1016/j.jbiomech.2018.02.032_b0185) 2017; 62 Illés (10.1016/j.jbiomech.2018.02.032_b0110) 2012 Zeng (10.1016/j.jbiomech.2018.02.032_b0240) 2017; 7 Duprey (10.1016/j.jbiomech.2018.02.032_b0060) 2009; 12 Thelen (10.1016/j.jbiomech.2018.02.032_b0200) 2014; 136 Andersen (10.1016/j.jbiomech.2018.02.032_b0010) 2009; 12 Habachi (10.1016/j.jbiomech.2018.02.032_b0095) 2015; 655–667 Yue (10.1016/j.jbiomech.2018.02.032_b0230) 2011; 29 Grood (10.1016/j.jbiomech.2018.02.032_b0085) 1983; 105 Adouni (10.1016/j.jbiomech.2018.02.032_b0005) 2012; 45 Varadarajan (10.1016/j.jbiomech.2018.02.032_b0210) 2009; 27 Anderson (10.1016/j.jbiomech.2018.02.032_b0015) 2001; 123 Marra (10.1016/j.jbiomech.2018.02.032_b0140) 2015; 137 Tsai (10.1016/j.jbiomech.2018.02.032_b0205) 2014; 37 Begon (10.1016/j.jbiomech.2018.02.032_b0020) 2018 Smith (10.1016/j.jbiomech.2018.02.032_b0190) 2016; 29 Farrokhi (10.1016/j.jbiomech.2018.02.032_b0065) 2014; 29 Mootanah (10.1016/j.jbiomech.2018.02.032_b0160) 2014 Wilson (10.1016/j.jbiomech.2018.02.032_b0215) 1998; 31 Churchill (10.1016/j.jbiomech.2018.02.032_b0030) 1998 Gasparutto (10.1016/j.jbiomech.2018.02.032_b0080) 2015; 48 Kiapour (10.1016/j.jbiomech.2018.02.032_b0120) 2013; 136 Brito da Luz (10.1016/j.jbiomech.2018.02.032_b0025) 2017; 53 Moissenet (10.1016/j.jbiomech.2018.02.032_b0155) 2012; 28 Delp (10.1016/j.jbiomech.2018.02.032_b0040) 1990; 37 Maxwell (10.1016/j.jbiomech.2018.02.032_b0145) 2013; 53 Hast (10.1016/j.jbiomech.2018.02.032_b0105) 2013; 135 Duprey (10.1016/j.jbiomech.2018.02.032_b0055) 2010; 43 Feikes (10.1016/j.jbiomech.2018.02.032_b0070) 2003; 36 Halonen (10.1016/j.jbiomech.2018.02.032_b0100) 2017; 7 Wu (10.1016/j.jbiomech.2018.02.032_b0220) 1995; 28 Lu (10.1016/j.jbiomech.2018.02.032_b0130) 1999; 32 Iwaki (10.1016/j.jbiomech.2018.02.032_b0115) 2000; 82 Qi (10.1016/j.jbiomech.2018.02.032_b0180) 2013; 46 Marra (10.1016/j.jbiomech.2018.02.032_b0135) 2017 Donnelly (10.1016/j.jbiomech.2018.02.032_b0050) 2012; 45 Smith (10.1016/j.jbiomech.2018.02.032_b0195) 2017; 138 Clément (10.1016/j.jbiomech.2018.02.032_b0035) 2015; 48 Moro-oka (10.1016/j.jbiomech.2018.02.032_b0165) 2008; 26 Klein Horsman (10.1016/j.jbiomech.2018.02.032_b0125) 2007; 22 Moissenet (10.1016/j.jbiomech.2018.02.032_b0150) 2014; 47 Parra (10.1016/j.jbiomech.2018.02.032_b0170) 2012; 45 Dennis (10.1016/j.jbiomech.2018.02.032_b0045) 2005; 38 Fregly (10.1016/j.jbiomech.2018.02.032_b0075) 2007; 29 Guess (10.1016/j.jbiomech.2018.02.032_b0090) 2014; 136 Wybier (10.1016/j.jbiomech.2018.02.032_b0225) 2013 |
| References_xml | – volume: 136 start-page: 1 year: 2014 end-page: 9 ident: b0090 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. – volume: 31 start-page: 1127 year: 1998 end-page: 1136 ident: b0215 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech. – volume: 137 start-page: 20904 year: 2015 ident: b0140 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. – volume: 46 start-page: 1576 year: 2013 end-page: 1582 ident: b0180 article-title: In vivo kinematics of the knee during weight bearing high flexion publication-title: J. Biomech. – volume: 123 start-page: 381 year: 2001 end-page: 390 ident: b0015 article-title: Dynamic optimization of human walking publication-title: J. Biomech. Eng. – volume: 105 start-page: 136 year: 1983 end-page: 144 ident: b0085 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. – volume: 135 start-page: 21013 year: 2013 ident: b0105 article-title: Dual-joint modeling for estimation of total knee replacement contact forces during locomotion publication-title: J. Biomech. Eng. – year: 2012 ident: b0110 article-title: The EOS publication-title: Int. Orthop. – volume: 45 start-page: 2149 year: 2012 end-page: 2156 ident: b0005 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. – volume: 136 start-page: 11002 year: 2013 ident: b0120 article-title: Finite element model of the knee for investigation of injury mechanisms: development and validation publication-title: J. Biomech. Eng. – volume: 29 start-page: 629 year: 2014 end-page: 635 ident: b0065 article-title: Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability publication-title: Clin. Biomech. – volume: 29 start-page: 99 year: 2016 end-page: 106 ident: b0190 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J. Knee Surgeryournal Knee Surg. – volume: 53 start-page: 1689 year: 2013 end-page: 1699 ident: b0145 article-title: Stats: designing experiments Ch9-10 publication-title: J. Chem. Inf. Model. – volume: 12 start-page: 105 year: 2009 end-page: 106 ident: b0060 article-title: A constraint-based approach to model the lower limb: preliminary results for running motions publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 82 start-page: 1189 year: 2000 end-page: 1195 ident: b0115 article-title: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee publication-title: J. Bone Joint Surg. Br. – year: 2018 ident: b0020 article-title: Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review publication-title: J. Biomech. Eng. – volume: 138 start-page: 1 year: 2017 end-page: 10 ident: b0195 article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement publication-title: J. Biomech. Eng. – volume: 53 start-page: 45 year: 2017 end-page: 55 ident: b0025 article-title: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models publication-title: J. Biomech. – volume: 37 start-page: 757 year: 1990 end-page: 767 ident: b0040 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. – volume: 12 start-page: 371 year: 2009 end-page: 384 ident: b0010 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 38 start-page: 241 year: 2005 end-page: 253 ident: b0045 article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics publication-title: J. Biomech. – volume: 28 start-page: 125 year: 2012 end-page: 141 ident: b0155 article-title: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions publication-title: Multibody Syst. Dyn. – volume: 29 start-page: 40 year: 2011 end-page: 46 ident: b0230 article-title: Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty publication-title: J. Orthop. Res. – volume: 47 start-page: 50 year: 2014 end-page: 58 ident: b0150 article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait publication-title: J. Biomech. – volume: 53 start-page: 178 year: 2017 end-page: 184 ident: b0235 article-title: Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysis publication-title: J. Biomech. – volume: 32 start-page: 129 year: 1999 end-page: 134 ident: b0130 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J. Biomech. – volume: 36 start-page: 125 year: 2003 end-page: 129 ident: b0070 article-title: A constraint-based approach to modelling the mobility of the human knee joint publication-title: J. Biomech. – volume: 26 start-page: 428 year: 2008 end-page: 434 ident: b0165 article-title: Dynamic activity dependence of in vivo normal knee kinematics publication-title: J. Orthop. Res. – volume: 37 start-page: 899 year: 2014 end-page: 914 ident: b0205 article-title: Two-phase optimized inverse kinematics for motion replication of real human models publication-title: J. Chinese Inst. Eng. – year: 2013 ident: b0225 article-title: Musculoskeletal imaging in progress: the EOS imaging system publication-title: Jt. Bone Spine – volume: 48 start-page: 1141 year: 2015 end-page: 1146 ident: b0080 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. – volume: 7 start-page: 17396 year: 2017 ident: b0100 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage – combined musculoskeletal modelling and finite element analysis publication-title: Sci. Rep. – start-page: 111 year: 1998 end-page: 118 ident: b0030 article-title: The transepicondylar axis approximates the optimal flexion axis of the knee publication-title: Clin. Orthop. Relat. Res. – volume: 45 start-page: 1491 year: 2012 end-page: 1497 ident: b0050 article-title: Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk publication-title: J. Biomech. – volume: 62 start-page: 95 year: 2017 end-page: 101 ident: b0185 article-title: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation publication-title: J. Biomech. – volume: 48 start-page: 3796 year: 2015 end-page: 3802 ident: b0035 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. – volume: 22 start-page: 239 year: 2007 end-page: 247 ident: b0125 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. – volume: 27 start-page: 871 year: 2009 end-page: 878 ident: b0210 article-title: Gender differences in trochlear groove orientation and rotational kinematics of human knees publication-title: J. Orthop. Res. – volume: 28 start-page: 1257 year: 1995 end-page: 1261 ident: b0220 article-title: ISB recommendations in the reporting for standardization of kinematic data publication-title: J Biomech. – volume: 655–667 year: 2015 ident: b0095 article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model publication-title: Med. Biol. Eng. Comput. – year: 2014 ident: b0160 article-title: Development and verification of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis publication-title: Comput. Methods Biomech. Biomed. Eng. – volume: 29 start-page: 997 year: 2007 end-page: 1003 ident: b0075 article-title: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation publication-title: IEEE Trans. Med. Imaging – volume: 43 start-page: 2858 year: 2010 end-page: 2862 ident: b0055 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: J. Biomech. – volume: 136 start-page: 21033 year: 2014 ident: b0200 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. – start-page: 1 year: 2017 end-page: 9 ident: b0135 article-title: Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study publication-title: Knee Surgery, Sport. Traumatol. Arthrosc. – volume: 45 start-page: 1103 year: 2012 end-page: 1107 ident: b0170 article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions publication-title: J. Biomech. – volume: 7 start-page: 4080 year: 2017 ident: b0240 article-title: Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system publication-title: Sci. Rep. – volume: 136 start-page: 11002 year: 2013 ident: 10.1016/j.jbiomech.2018.02.032_b0120 article-title: Finite element model of the knee for investigation of injury mechanisms: development and validation publication-title: J. Biomech. Eng. doi: 10.1115/1.4025692 – start-page: 111 year: 1998 ident: 10.1016/j.jbiomech.2018.02.032_b0030 article-title: The transepicondylar axis approximates the optimal flexion axis of the knee publication-title: Clin. Orthop. Relat. Res. doi: 10.1097/00003086-199811000-00016 – volume: 46 start-page: 1576 year: 2013 ident: 10.1016/j.jbiomech.2018.02.032_b0180 article-title: In vivo kinematics of the knee during weight bearing high flexion publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.03.014 – year: 2018 ident: 10.1016/j.jbiomech.2018.02.032_b0020 article-title: Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review publication-title: J. Biomech. Eng. doi: 10.1115/1.4038741 – volume: 37 start-page: 757 year: 1990 ident: 10.1016/j.jbiomech.2018.02.032_b0040 article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.102791 – volume: 62 start-page: 95 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0185 article-title: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.030 – year: 2013 ident: 10.1016/j.jbiomech.2018.02.032_b0225 article-title: Musculoskeletal imaging in progress: the EOS imaging system publication-title: Jt. Bone Spine doi: 10.1016/j.jbspin.2012.09.018 – volume: 29 start-page: 629 year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0065 article-title: Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2014.04.014 – volume: 123 start-page: 381 year: 2001 ident: 10.1016/j.jbiomech.2018.02.032_b0015 article-title: Dynamic optimization of human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.1392310 – volume: 45 start-page: 1491 year: 2012 ident: 10.1016/j.jbiomech.2018.02.032_b0050 article-title: Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.02.010 – volume: 31 start-page: 1127 year: 1998 ident: 10.1016/j.jbiomech.2018.02.032_b0215 article-title: Ligaments and articular contact guide passive knee flexion publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00119-5 – volume: 7 start-page: 17396 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0100 article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage – combined musculoskeletal modelling and finite element analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17228-x – volume: 45 start-page: 1103 year: 2012 ident: 10.1016/j.jbiomech.2018.02.032_b0170 article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.01.011 – volume: 137 start-page: 20904 year: 2015 ident: 10.1016/j.jbiomech.2018.02.032_b0140 article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty publication-title: J. Biomech. Eng. doi: 10.1115/1.4029258 – volume: 12 start-page: 371 year: 2009 ident: 10.1016/j.jbiomech.2018.02.032_b0010 article-title: Kinematic analysis of over-determinate biomechanical systems publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840802459412 – volume: 136 start-page: 1 issue: 021032 year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0090 article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait publication-title: J. Biomech. Eng. – volume: 37 start-page: 899 year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0205 article-title: Two-phase optimized inverse kinematics for motion replication of real human models publication-title: J. Chinese Inst. Eng. doi: 10.1080/02533839.2014.904474 – volume: 47 start-page: 50 year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0150 article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.015 – volume: 29 start-page: 997 year: 2007 ident: 10.1016/j.jbiomech.2018.02.032_b0075 article-title: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation publication-title: IEEE Trans. Med. Imaging – volume: 53 start-page: 45 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0025 article-title: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2016.12.018 – volume: 29 start-page: 40 year: 2011 ident: 10.1016/j.jbiomech.2018.02.032_b0230 article-title: Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty publication-title: J. Orthop. Res. doi: 10.1002/jor.21203 – volume: 45 start-page: 2149 year: 2012 ident: 10.1016/j.jbiomech.2018.02.032_b0005 article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2012.05.040 – volume: 655–667 year: 2015 ident: 10.1016/j.jbiomech.2018.02.032_b0095 article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model publication-title: Med. Biol. Eng. Comput. – start-page: 1 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0135 article-title: Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study publication-title: Knee Surgery, Sport. Traumatol. Arthrosc. – volume: 29 start-page: 99 year: 2016 ident: 10.1016/j.jbiomech.2018.02.032_b0190 article-title: Influence of ligament properties on tibiofemoral mechanics in walking publication-title: J. Knee Surgeryournal Knee Surg. doi: 10.1055/s-0035-1558858 – volume: 105 start-page: 136 year: 1983 ident: 10.1016/j.jbiomech.2018.02.032_b0085 article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee publication-title: J. Biomech. Eng. doi: 10.1115/1.3138397 – volume: 7 start-page: 4080 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0240 article-title: Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system publication-title: Sci. Rep. doi: 10.1038/s41598-017-04390-5 – year: 2012 ident: 10.1016/j.jbiomech.2018.02.032_b0110 article-title: The EOSTM imaging system and its uses in daily orthopaedic practice publication-title: Int. Orthop. doi: 10.1007/s00264-012-1512-y – volume: 82 start-page: 1189 year: 2000 ident: 10.1016/j.jbiomech.2018.02.032_b0115 article-title: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee publication-title: J. Bone Joint Surg. Br. doi: 10.1302/0301-620X.82B8.0821189 – volume: 32 start-page: 129 year: 1999 ident: 10.1016/j.jbiomech.2018.02.032_b0130 article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints publication-title: J. Biomech. doi: 10.1016/S0021-9290(98)00158-4 – year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0160 article-title: Development and verification of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255842.2014.899588 – volume: 43 start-page: 2858 year: 2010 ident: 10.1016/j.jbiomech.2018.02.032_b0055 article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.06.010 – volume: 53 start-page: 1689 year: 2013 ident: 10.1016/j.jbiomech.2018.02.032_b0145 article-title: Stats: designing experiments Ch9-10 publication-title: J. Chem. Inf. Model. – volume: 136 start-page: 21033 year: 2014 ident: 10.1016/j.jbiomech.2018.02.032_b0200 article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking publication-title: J. Biomech. Eng. doi: 10.1115/1.4026358 – volume: 12 start-page: 105 year: 2009 ident: 10.1016/j.jbiomech.2018.02.032_b0060 article-title: A constraint-based approach to model the lower limb: preliminary results for running motions publication-title: Comput. Methods Biomech. Biomed. Eng. doi: 10.1080/10255840903077352 – volume: 135 start-page: 21013 year: 2013 ident: 10.1016/j.jbiomech.2018.02.032_b0105 article-title: Dual-joint modeling for estimation of total knee replacement contact forces during locomotion publication-title: J. Biomech. Eng. doi: 10.1115/1.4023320 – volume: 53 start-page: 178 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0235 article-title: Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysis publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2017.01.015 – volume: 48 start-page: 3796 year: 2015 ident: 10.1016/j.jbiomech.2018.02.032_b0035 article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.09.040 – volume: 26 start-page: 428 year: 2008 ident: 10.1016/j.jbiomech.2018.02.032_b0165 article-title: Dynamic activity dependence of in vivo normal knee kinematics publication-title: J. Orthop. Res. doi: 10.1002/jor.20488 – volume: 27 start-page: 871 year: 2009 ident: 10.1016/j.jbiomech.2018.02.032_b0210 article-title: Gender differences in trochlear groove orientation and rotational kinematics of human knees publication-title: J. Orthop. Res. doi: 10.1002/jor.20844 – volume: 48 start-page: 1141 year: 2015 ident: 10.1016/j.jbiomech.2018.02.032_b0080 article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.01.010 – volume: 38 start-page: 241 year: 2005 ident: 10.1016/j.jbiomech.2018.02.032_b0045 article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.02.042 – volume: 22 start-page: 239 year: 2007 ident: 10.1016/j.jbiomech.2018.02.032_b0125 article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2006.10.003 – volume: 36 start-page: 125 year: 2003 ident: 10.1016/j.jbiomech.2018.02.032_b0070 article-title: A constraint-based approach to modelling the mobility of the human knee joint publication-title: J. Biomech. doi: 10.1016/S0021-9290(02)00276-2 – volume: 28 start-page: 1257 year: 1995 ident: 10.1016/j.jbiomech.2018.02.032_b0220 article-title: ISB recommendations in the reporting for standardization of kinematic data publication-title: J Biomech. doi: 10.1016/0021-9290(95)00017-C – volume: 138 start-page: 1 issue: 021017 year: 2017 ident: 10.1016/j.jbiomech.2018.02.032_b0195 article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement publication-title: J. Biomech. Eng. – volume: 28 start-page: 125 year: 2012 ident: 10.1016/j.jbiomech.2018.02.032_b0155 article-title: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-011-9286-3 |
| SSID | ssj0007479 |
| Score | 2.3393183 |
| Snippet | The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 71 |
| SubjectTerms | Calibration EOS imaging Iterative methods Kinematics Knee Magnetic resonance imaging Musculoskeletal knee model NMR Nuclear magnetic resonance Radiation dosage Researchers Secondary joint kinematics Standard deviation Tibiofemoral joint Translations X-rays |
| Title | Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018301386 https://dx.doi.org/10.1016/j.jbiomech.2018.02.032 https://www.ncbi.nlm.nih.gov/pubmed/29567307 https://www.proquest.com/docview/2022802606 https://www.proquest.com/docview/2018013360 |
| Volume | 72 |
| WOSCitedRecordID | wos000430889400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1873-2380 dateEnd: 20251008 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7YVkQfvGy1Xa3LCOJbbDJJdpInqbJFH3a7VIV9CzOZGcnSTdpmV_Q3-Kc9Z3JxX2oFIQRCOIeEfDnzzbkCvE60UpqTe8lI5UXpOPVkSD9ebHNtqWG6aoZNiNksWSzSeetwq9u0ys4mOkOtq5x85LRJ5wk1wBq_u7zyaGoURVfbERo7sEddEkKXujfvLTFS5TbFI_CQBvhbFcLLt0tX3-4CEkHi-naG_KbF6Sby6Rah00f_-_iP4WFLP9lJg5cncMeUA9g_KXHrvfrJ3jCXEOo87QN4sNWrcAD3pm0Ufh9-bWUaMVlqhmgtmtlMrLJMsnqjyL3jURknpSKxlfNbePJHUTMqUqksJfjigyyrAnW4cTyMUvC_sen5J6dzcvaZFSs3Q4k1tZSo-Goj68KjIihUeoF2yjyFr6eTLx8-eu1QBy-P4mDtKStt5FuNR5qjeVECCZFvEmVElEobitwkNrCB9C2yGa51JKXRPBJjk_pGhuEz2C2r0hwCs9yksYp9nRod-WEsE6V9wyOtxlLzwAwh7r5mlrcdz2nwxkXWpbYtsw4FGaEg83mGKBjCcS932fT8uFVCdGDJuopWtMEZLku3Sqa9ZMt5Gi7zT7JHHday1vLU2R-gDeFVfxttBgWCZGmqTe10IPUPx_4QDho89y_KccOMn0U8_7vyF3CftFBcjYsj2F1fb8xLuJt_Xxf19Qh2xEK4czKCvfeT2fwcr6b8bOR-0N8OgkIU |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE48Eh5BAosEnAz2Bs_DwhV0KpRm1BBkXrb7np3kaPGbusE6G_gv_AbmVnbIZdSLj0g-WbNyI957cw3MwAvUq2U5pReMlJ5YRZnnhyQ4kU215YGpqtm2UQyHqcHB9neCvzqemEIVtnZRGeodZVTjpwO6TylAVjxu-MTj7ZGUXW1W6HRiMWOOfuOR7b67fAD_t-XnG9t7r_f9tqtAl4eRsHMU1ba0LcaryxH-VYJemTfpMokYSbtIMlNagMbSN-iO-Vah1IazcMkNplvJCVA0eRfwTCCpw4quLew_Biat5CSwMOww1_qSJ68nrh-elcACVI3J3TAz3OG5wW7zult3f7fPtcduNWG12yj0Ye7sGLKHqxtlHJWTc_YK-YAr66S0IObS7MYe3Bt1KIM1uDnEpKKyVIz1Mai2T3FKsskq-eK0lcetakS1IpNXV7Gkz-KmlETTmUJwIwPMqkK5OHWDTFqMfjKRp-Gjufmx8-smLodUazpFUXGJ3NZFx41eSHTI7TD5h58uZTvdR9Wy6o0D4FZbrJIRb7OjA79QSRTpX3DQ61iqXlg-hB10iPydqI7LRY5Eh10byI6qRMkdcLnAqWuD28WdMfNTJMLKZJOOEXXsYs-RqDbvZAyW1C2MV0Tq_0T7Xon26K1rLX4I9h9eL64jTaRCl2yNNW8djzwaDOI_T48aPRn8aI8i2L8LcmjvzN_Bte390e7Ync43nkMN4gj1RB5sg6rs9O5eQJX82-zoj596kwAg8PLVqLfytidwg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBVVw4JHyCBRYJOBmam_8PCBU0UZEpSHiIfW27Hp3kaPGbusE6G_gH_HrmFnbIZdSLj0g-WbNyI957cw3MwDPUq2U5pReMlJ5YRZnnhyQ4kU215YGpqtm2UQyHqeHh9lkDX51vTAEq-xsojPUusopR06HdJ7SAKx427awiMnu8PXxiUcbpKjS2q3TaERk35x9x-Nb_Wq0i__6OefDvU9v3nrthgEvD6Ng7ikrbehbjVeWo6yrBL2zb1JlkjCTdpDkJrWBDaRv0bVyrUMpjeZhEpvMN5KSoWj-ryQ0tNzBBidLL4BhegsvCTwMQfyV7uTpy6nrrXfFkCB1M0MH_DzHeF7g6xzg8Ob__OluwY027GY7jZ7chjVT9mBzp5TzanbGXjAHhHUVhh5cX5nR2IONgxZ9sAk_VxBWTJaaoZYWzU4qVlkmWb1QlNbyqH2VIFhs5vI1nvxR1IyacypLwGZ8kGlVIA-3hohR68FXdvBh5Hjuvf_IipnbHcWaHlJkfLKQdeFR8xcyPUL7bO7A50v5XndhvaxKcx-Y5SaLVOTrzOjQH0QyVdo3PNQqlpoHpg9RJ0kibye908KRI9FB-qaik0BBEih8LlAC-7C9pDtuZp1cSJF0giq6Tl70PQLd8YWU2ZKyjfWaGO6faLc6ORetxa3FHyHvw9PlbbSVVACTpakWteOBR55B7PfhXqNLyxflWRTjb0ke_J35E9hA3RHvRuP9h3CNGFJpkSdbsD4_XZhHcDX_Ni_q08fOGjD4ctk69Bvmn6Z_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+subject-specific+moving-axis+tibiofemoral+joint+model+using+MRI+and+EOS+imaging+during+a+quasi-static+lunge&rft.jtitle=Journal+of+biomechanics&rft.au=Dzialo%2C+C+M&rft.au=Pedersen%2C+P+H&rft.au=Simonsen%2C+C+W&rft.au=Jensen%2C+K+K&rft.date=2018-04-27&rft.eissn=1873-2380&rft.volume=72&rft.spage=71&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.02.032&rft_id=info%3Apmid%2F29567307&rft.externalDocID=29567307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |