Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge

The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics Vol. 72; pp. 71 - 80
Main Authors: Dzialo, C.M., Pedersen, P.H., Simonsen, C.W., Jensen, K.K., de Zee, M., Andersen, M.S.
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 27.04.2018
Elsevier Limited
Subjects:
ISSN:0021-9290, 1873-2380, 1873-2380
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).
AbstractList The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R ) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°).
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial–lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: −1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: −0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: −3.17 ± 0.86°, AA: 11.60 ± 1.51°).
The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°).The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a quasi-static lunge while micro-dose radiation bi-planar X-rays (EOS Imaging, Paris, France) were captured at roughly 0°, 20°, 45°, 60°, and 90° of tibiofemoral flexion. Joint translations and rotations were extracted from this experimental data through 2D-to-3D bone reconstructions, using an iterative closest point optimization technique, and employed during model calibration and validation. Subject-specific moving-axis and hinge models for comparisons were constructed in the AnyBody Modeling System (AMS) from Magnetic Resonance Imaging (MRI)-extracted anatomical surfaces and compared against the experimental data. The tibiofemoral axis of the hinge model was defined between the epicondyles while the moving-axis model was defined based on two tibiofemoral flexion angles (0° and 90°) and the articulation modeled such that the tibiofemoral joint axis moved linearly between these two positions as a function of the tibiofemoral flexion. Outside this range, the joint axis was assumed to remain stationary. Overall, the secondary joint kinematics (ML: medial-lateral, AP: anterior-posterior, SI: superior-inferior, IE: internal-external, AA: adduction-abduction) were better approximated by the moving-axis model with mean differences and standard errors of (ML: -1.98 ± 0.37 mm, AP: 6.50 ± 0.82 mm, SI: 0.05 ± 0.20 mm, IE: 0.59 ± 0.36°, AA: 1.90 ± 0.79°) and higher coefficients of determination (R2) for each clinical measure. While the hinge model achieved mean differences and standard errors of (ML: -0.84 ± 0.45 mm, AP: 10.11 ± 0.88 mm, SI: 0.66 ± 0.62 mm, IE: -3.17 ± 0.86°, AA: 11.60 ± 1.51°).
Author de Zee, M.
Pedersen, P.H.
Jensen, K.K.
Dzialo, C.M.
Simonsen, C.W.
Andersen, M.S.
Author_xml – sequence: 1
  givenname: C.M.
  surname: Dzialo
  fullname: Dzialo, C.M.
  email: cdz@mp.aau.dk
  organization: Department of Materials and Production, Aalborg University, Fibigerstræde 16, DK-9220 Aalborg, Denmark
– sequence: 2
  givenname: P.H.
  surname: Pedersen
  fullname: Pedersen, P.H.
  organization: Department of Orthopedic Surgery, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
– sequence: 3
  givenname: C.W.
  surname: Simonsen
  fullname: Simonsen, C.W.
  organization: Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
– sequence: 4
  givenname: K.K.
  surname: Jensen
  fullname: Jensen, K.K.
  organization: Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, DK-9000 Aalborg, Denmark
– sequence: 5
  givenname: M.
  surname: de Zee
  fullname: de Zee, M.
  organization: Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D, DK-9220 Aalborg, Denmark
– sequence: 6
  givenname: M.S.
  surname: Andersen
  fullname: Andersen, M.S.
  organization: Department of Materials and Production, Aalborg University, Fibigerstræde 16, DK-9220 Aalborg, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29567307$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1q3DAQhU1JaTZpXyEIetMbuyPZa9lQSkOatoGUQH-uhSyNtnJlayPZS_MMfelqd7M3e5OCYEB858zMmbPsZPQjZtkFhYICrd_2Rd9ZP6D6VTCgTQGsgJI9yxa04WXOygZOsgUAo3nLWjjNzmLsAYBXvH2RnbJ2WfMS-CL7-xE36Px6wHEictRkI53VcrJ-JN4QSeLc9aimPK5RWWMVGfzGjqtc_rGRTDYNYXDwQTrSe5s8Bq_RkTkmhnz9drPzvL77TuwgV9s_PYdtkeR-ltHmcUq9FHHzuMKX2XMjXcRXj_U8-_np-sfVl_z27vPN1eVtrqolnfLOSFOB0em1Km3R8ZbXgE2HvGqlKbnCxlBDJRjgS6Z1JSVqVvEaW0BZlufZm73vOvj7GeMkBhsVOidH9HMU20CBlmUNCX19hPZ-DmOaLlGMNcBqqBN18UjN3YBarEPaNjyIQ8wJeLcHVPAxBjRC2WkX8hSkdYKC2F5V9OJw1d0QAphIV03y-kh-6PCk8MNeiCnOjcUgorI4KtQ2pKMK7e3TFu-PLJSzo1XS_caH_zH4B0sA1xU
CitedBy_id crossref_primary_10_1016_j_medengphy_2019_08_001
crossref_primary_10_1016_j_medengphy_2022_103871
crossref_primary_10_1038_s41598_024_78618_6
crossref_primary_10_1007_s11831_022_09757_0
crossref_primary_10_1016_j_jbiomech_2021_110781
crossref_primary_10_3390_app10207255
crossref_primary_10_1007_s10237_020_01398_1
crossref_primary_10_1007_s10237_019_01245_y
crossref_primary_10_1016_j_jbiomech_2025_112845
crossref_primary_10_3389_fbioe_2022_904012
crossref_primary_10_3390_s20030673
Cites_doi 10.1115/1.4025692
10.1097/00003086-199811000-00016
10.1016/j.jbiomech.2013.03.014
10.1115/1.4038741
10.1109/10.102791
10.1016/j.jbiomech.2017.01.030
10.1016/j.jbspin.2012.09.018
10.1016/j.clinbiomech.2014.04.014
10.1115/1.1392310
10.1016/j.jbiomech.2012.02.010
10.1016/S0021-9290(98)00119-5
10.1038/s41598-017-17228-x
10.1016/j.jbiomech.2012.01.011
10.1115/1.4029258
10.1080/10255840802459412
10.1080/02533839.2014.904474
10.1016/j.jbiomech.2013.10.015
10.1016/j.jbiomech.2016.12.018
10.1002/jor.21203
10.1016/j.jbiomech.2012.05.040
10.1055/s-0035-1558858
10.1115/1.3138397
10.1038/s41598-017-04390-5
10.1007/s00264-012-1512-y
10.1302/0301-620X.82B8.0821189
10.1016/S0021-9290(98)00158-4
10.1080/10255842.2014.899588
10.1016/j.jbiomech.2010.06.010
10.1115/1.4026358
10.1080/10255840903077352
10.1115/1.4023320
10.1016/j.jbiomech.2017.01.015
10.1016/j.jbiomech.2015.09.040
10.1002/jor.20488
10.1002/jor.20844
10.1016/j.jbiomech.2015.01.010
10.1016/j.jbiomech.2004.02.042
10.1016/j.clinbiomech.2006.10.003
10.1016/S0021-9290(02)00276-2
10.1016/0021-9290(95)00017-C
10.1007/s11044-011-9286-3
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright © 2018 Elsevier Ltd. All rights reserved.
2018. Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright © 2018 Elsevier Ltd. All rights reserved.
– notice: 2018. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2018.02.032
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 80
ExternalDocumentID 29567307
10_1016_j_jbiomech_2018_02_032
S0021929018301386
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
~HD
3V.
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
.GJ
29J
53G
9DU
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFFHD
AFJKZ
AGHFR
AGQPQ
AI.
AIGII
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EBD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
ALIPV
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
ID FETCH-LOGICAL-c451t-bfaf40fd0fd9c730b79760e8be749af37ce8f1f1a0f0752dd4aaed2476e90ea33
IEDL.DBID M7P
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430889400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
1873-2380
IngestDate Sun Sep 28 11:44:38 EDT 2025
Sat Nov 29 14:19:17 EST 2025
Wed Feb 19 02:32:53 EST 2025
Tue Nov 18 21:18:07 EST 2025
Sat Nov 29 07:28:41 EST 2025
Fri Feb 23 02:49:46 EST 2024
Tue Oct 14 19:30:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords EOS imaging
Secondary joint kinematics
Musculoskeletal knee model
Magnetic resonance imaging
Tibiofemoral joint
Language English
License Copyright © 2018 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-bfaf40fd0fd9c730b79760e8be749af37ce8f1f1a0f0752dd4aaed2476e90ea33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29567307
PQID 2022802606
PQPubID 1226346
PageCount 10
ParticipantIDs proquest_miscellaneous_2018013360
proquest_journals_2022802606
pubmed_primary_29567307
crossref_citationtrail_10_1016_j_jbiomech_2018_02_032
crossref_primary_10_1016_j_jbiomech_2018_02_032
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2018_02_032
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2018_02_032
PublicationCentury 2000
PublicationDate 2018-04-27
PublicationDateYYYYMMDD 2018-04-27
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Qi, Hosseini, Tsai, Li, Rubash, Li (b0180) 2013; 46
Mootanah, Imhauser, Reisse, Carpanen, Walker, Koff, Lenhoff, Rozbruch, Fragomen, Kirane, Rozbruch, Dewan, Cheah, Dowell, Hillstrom (b0160) 2014
Habachi, Moissenet, Duprey, Cheze, Dumas (b0095) 2015; 655–667
Wilson, Feikes, Connor (b0215) 1998; 31
Brito da Luz, Modenese, Sancisi, Mills, Kennedy, Beck, Lloyd (b0025) 2017; 53
Anderson, Pandy (b0015) 2001; 123
Zeng, Ma, Lin, Huang, Huang, Zhang, Mao (b0240) 2017; 7
Clément, Dumas, Hagemeister, de Guise (b0035) 2015; 48
Thelen, Won Choi, Schmitz (b0200) 2014; 136
Tsai, Lung (b0205) 2014; 37
Hast, Piazza (b0105) 2013; 135
Richard, Cappozzo, Dumas (b0185) 2017; 62
Wu, Cavanagh (b0220) 1995; 28
Smith, Vignos, Lenhart, Kaiser (b0195) 2017; 138
Halonen, Dzialo, Mannisi, Venäläinen, Zee, Andersen (b0100) 2017; 7
Dennis, Mahfouz, Komistek, Hoff (b0045) 2005; 38
Illés, Somoskeöy (b0110) 2012
Maxwell, Delaney, Planer (b0145) 2013; 53
Wybier, Bossard (b0225) 2013
Duprey, Chèze, Dumas (b0060) 2009; 12
Gasparutto, Sancisi, Jacquelin, Parenti-Castelli, Dumas (b0080) 2015; 48
Kiapour, Kiapour, Kaul, Quatman, Wordeman, Hewett, Demetropoulos, Goel (b0120) 2013; 136
Moissenet, Chèze, Dumas (b0150) 2014; 47
Marra, Strzelczak, Heesterbeek, van de Groes, Janssen, Koopman, Wymenga, Verdonschot (b0135) 2017
Iwaki, Pinskerova, Freeman (b0115) 2000; 82
Klein Horsman, Koopman, van der Helm, Prosé, Veeger (b0125) 2007; 22
Duprey, Cheze, Dumas (b0055) 2010; 43
Moro-oka, Hamai, Miura, Shimoto, Higaki, Fregly, Iwamoto, Banks (b0165) 2008; 26
Begon, Andersen, Dumas (b0020) 2018
Farrokhi, Voycheck, Klatt, Gustafson, Tashman, Fitzgerald (b0065) 2014; 29
Adouni, Shirazi-Adl, Shirazi (b0005) 2012; 45
Delp, Loan, Hoy, Zajac, Topp, Rosen (b0040) 1990; 37
Yue, Varadarajan, Moynihan, Liu, Rubash, Li (b0230) 2011; 29
Parra, Chatterjee, Soligo (b0170) 2012; 45
Guess, Stylianou, Kia (b0090) 2014; 136
Churchill, Incavo, Johnson, Beynnon (b0030) 1998
Grood, Suntay (b0085) 1983; 105
Smith, Lenhart, Thelen, Kaiser, Vignos (b0190) 2016; 29
Moissenet, Chèze, Dumas (b0155) 2012; 28
Zeighami, Dumas, Kanhonou, Hagemeister, Lavoie, de Guise, Aissaoui (b0235) 2017; 53
Feikes, Connor, Zavatsky (b0070) 2003; 36
Fregly (b0075) 2007; 29
Andersen, Damsgaard, Rasmussen (b0010) 2009; 12
Marra, Vanheule, Fluit, Koopman, Rasmussen, Verdonschot, Andersen (b0140) 2015; 137
Varadarajan, Gill, Freiberg, Rubash, Li (b0210) 2009; 27
Donnelly, Lloyd, Elliott, Reinbolt (b0050) 2012; 45
Lu, O’Connor (b0130) 1999; 32
Zeighami (10.1016/j.jbiomech.2018.02.032_b0235) 2017; 53
Richard (10.1016/j.jbiomech.2018.02.032_b0185) 2017; 62
Illés (10.1016/j.jbiomech.2018.02.032_b0110) 2012
Zeng (10.1016/j.jbiomech.2018.02.032_b0240) 2017; 7
Duprey (10.1016/j.jbiomech.2018.02.032_b0060) 2009; 12
Thelen (10.1016/j.jbiomech.2018.02.032_b0200) 2014; 136
Andersen (10.1016/j.jbiomech.2018.02.032_b0010) 2009; 12
Habachi (10.1016/j.jbiomech.2018.02.032_b0095) 2015; 655–667
Yue (10.1016/j.jbiomech.2018.02.032_b0230) 2011; 29
Grood (10.1016/j.jbiomech.2018.02.032_b0085) 1983; 105
Adouni (10.1016/j.jbiomech.2018.02.032_b0005) 2012; 45
Varadarajan (10.1016/j.jbiomech.2018.02.032_b0210) 2009; 27
Anderson (10.1016/j.jbiomech.2018.02.032_b0015) 2001; 123
Marra (10.1016/j.jbiomech.2018.02.032_b0140) 2015; 137
Tsai (10.1016/j.jbiomech.2018.02.032_b0205) 2014; 37
Begon (10.1016/j.jbiomech.2018.02.032_b0020) 2018
Smith (10.1016/j.jbiomech.2018.02.032_b0190) 2016; 29
Farrokhi (10.1016/j.jbiomech.2018.02.032_b0065) 2014; 29
Mootanah (10.1016/j.jbiomech.2018.02.032_b0160) 2014
Wilson (10.1016/j.jbiomech.2018.02.032_b0215) 1998; 31
Churchill (10.1016/j.jbiomech.2018.02.032_b0030) 1998
Gasparutto (10.1016/j.jbiomech.2018.02.032_b0080) 2015; 48
Kiapour (10.1016/j.jbiomech.2018.02.032_b0120) 2013; 136
Brito da Luz (10.1016/j.jbiomech.2018.02.032_b0025) 2017; 53
Moissenet (10.1016/j.jbiomech.2018.02.032_b0155) 2012; 28
Delp (10.1016/j.jbiomech.2018.02.032_b0040) 1990; 37
Maxwell (10.1016/j.jbiomech.2018.02.032_b0145) 2013; 53
Hast (10.1016/j.jbiomech.2018.02.032_b0105) 2013; 135
Duprey (10.1016/j.jbiomech.2018.02.032_b0055) 2010; 43
Feikes (10.1016/j.jbiomech.2018.02.032_b0070) 2003; 36
Halonen (10.1016/j.jbiomech.2018.02.032_b0100) 2017; 7
Wu (10.1016/j.jbiomech.2018.02.032_b0220) 1995; 28
Lu (10.1016/j.jbiomech.2018.02.032_b0130) 1999; 32
Iwaki (10.1016/j.jbiomech.2018.02.032_b0115) 2000; 82
Qi (10.1016/j.jbiomech.2018.02.032_b0180) 2013; 46
Marra (10.1016/j.jbiomech.2018.02.032_b0135) 2017
Donnelly (10.1016/j.jbiomech.2018.02.032_b0050) 2012; 45
Smith (10.1016/j.jbiomech.2018.02.032_b0195) 2017; 138
Clément (10.1016/j.jbiomech.2018.02.032_b0035) 2015; 48
Moro-oka (10.1016/j.jbiomech.2018.02.032_b0165) 2008; 26
Klein Horsman (10.1016/j.jbiomech.2018.02.032_b0125) 2007; 22
Moissenet (10.1016/j.jbiomech.2018.02.032_b0150) 2014; 47
Parra (10.1016/j.jbiomech.2018.02.032_b0170) 2012; 45
Dennis (10.1016/j.jbiomech.2018.02.032_b0045) 2005; 38
Fregly (10.1016/j.jbiomech.2018.02.032_b0075) 2007; 29
Guess (10.1016/j.jbiomech.2018.02.032_b0090) 2014; 136
Wybier (10.1016/j.jbiomech.2018.02.032_b0225) 2013
References_xml – volume: 136
  start-page: 1
  year: 2014
  end-page: 9
  ident: b0090
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
– volume: 31
  start-page: 1127
  year: 1998
  end-page: 1136
  ident: b0215
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech.
– volume: 137
  start-page: 20904
  year: 2015
  ident: b0140
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
– volume: 46
  start-page: 1576
  year: 2013
  end-page: 1582
  ident: b0180
  article-title: In vivo kinematics of the knee during weight bearing high flexion
  publication-title: J. Biomech.
– volume: 123
  start-page: 381
  year: 2001
  end-page: 390
  ident: b0015
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
– volume: 105
  start-page: 136
  year: 1983
  end-page: 144
  ident: b0085
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
– volume: 135
  start-page: 21013
  year: 2013
  ident: b0105
  article-title: Dual-joint modeling for estimation of total knee replacement contact forces during locomotion
  publication-title: J. Biomech. Eng.
– year: 2012
  ident: b0110
  article-title: The EOS
  publication-title: Int. Orthop.
– volume: 45
  start-page: 2149
  year: 2012
  end-page: 2156
  ident: b0005
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
– volume: 136
  start-page: 11002
  year: 2013
  ident: b0120
  article-title: Finite element model of the knee for investigation of injury mechanisms: development and validation
  publication-title: J. Biomech. Eng.
– volume: 29
  start-page: 629
  year: 2014
  end-page: 635
  ident: b0065
  article-title: Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability
  publication-title: Clin. Biomech.
– volume: 29
  start-page: 99
  year: 2016
  end-page: 106
  ident: b0190
  article-title: Influence of ligament properties on tibiofemoral mechanics in walking
  publication-title: J. Knee Surgeryournal Knee Surg.
– volume: 53
  start-page: 1689
  year: 2013
  end-page: 1699
  ident: b0145
  article-title: Stats: designing experiments Ch9-10
  publication-title: J. Chem. Inf. Model.
– volume: 12
  start-page: 105
  year: 2009
  end-page: 106
  ident: b0060
  article-title: A constraint-based approach to model the lower limb: preliminary results for running motions
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 82
  start-page: 1189
  year: 2000
  end-page: 1195
  ident: b0115
  article-title: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee
  publication-title: J. Bone Joint Surg. Br.
– year: 2018
  ident: b0020
  article-title: Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review
  publication-title: J. Biomech. Eng.
– volume: 138
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0195
  article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement
  publication-title: J. Biomech. Eng.
– volume: 53
  start-page: 45
  year: 2017
  end-page: 55
  ident: b0025
  article-title: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models
  publication-title: J. Biomech.
– volume: 37
  start-page: 757
  year: 1990
  end-page: 767
  ident: b0040
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 12
  start-page: 371
  year: 2009
  end-page: 384
  ident: b0010
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 38
  start-page: 241
  year: 2005
  end-page: 253
  ident: b0045
  article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics
  publication-title: J. Biomech.
– volume: 28
  start-page: 125
  year: 2012
  end-page: 141
  ident: b0155
  article-title: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions
  publication-title: Multibody Syst. Dyn.
– volume: 29
  start-page: 40
  year: 2011
  end-page: 46
  ident: b0230
  article-title: Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty
  publication-title: J. Orthop. Res.
– volume: 47
  start-page: 50
  year: 2014
  end-page: 58
  ident: b0150
  article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait
  publication-title: J. Biomech.
– volume: 53
  start-page: 178
  year: 2017
  end-page: 184
  ident: b0235
  article-title: Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysis
  publication-title: J. Biomech.
– volume: 32
  start-page: 129
  year: 1999
  end-page: 134
  ident: b0130
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: J. Biomech.
– volume: 36
  start-page: 125
  year: 2003
  end-page: 129
  ident: b0070
  article-title: A constraint-based approach to modelling the mobility of the human knee joint
  publication-title: J. Biomech.
– volume: 26
  start-page: 428
  year: 2008
  end-page: 434
  ident: b0165
  article-title: Dynamic activity dependence of in vivo normal knee kinematics
  publication-title: J. Orthop. Res.
– volume: 37
  start-page: 899
  year: 2014
  end-page: 914
  ident: b0205
  article-title: Two-phase optimized inverse kinematics for motion replication of real human models
  publication-title: J. Chinese Inst. Eng.
– year: 2013
  ident: b0225
  article-title: Musculoskeletal imaging in progress: the EOS imaging system
  publication-title: Jt. Bone Spine
– volume: 48
  start-page: 1141
  year: 2015
  end-page: 1146
  ident: b0080
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
– volume: 7
  start-page: 17396
  year: 2017
  ident: b0100
  article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage – combined musculoskeletal modelling and finite element analysis
  publication-title: Sci. Rep.
– start-page: 111
  year: 1998
  end-page: 118
  ident: b0030
  article-title: The transepicondylar axis approximates the optimal flexion axis of the knee
  publication-title: Clin. Orthop. Relat. Res.
– volume: 45
  start-page: 1491
  year: 2012
  end-page: 1497
  ident: b0050
  article-title: Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk
  publication-title: J. Biomech.
– volume: 62
  start-page: 95
  year: 2017
  end-page: 101
  ident: b0185
  article-title: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation
  publication-title: J. Biomech.
– volume: 48
  start-page: 3796
  year: 2015
  end-page: 3802
  ident: b0035
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
– volume: 22
  start-page: 239
  year: 2007
  end-page: 247
  ident: b0125
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech.
– volume: 27
  start-page: 871
  year: 2009
  end-page: 878
  ident: b0210
  article-title: Gender differences in trochlear groove orientation and rotational kinematics of human knees
  publication-title: J. Orthop. Res.
– volume: 28
  start-page: 1257
  year: 1995
  end-page: 1261
  ident: b0220
  article-title: ISB recommendations in the reporting for standardization of kinematic data
  publication-title: J Biomech.
– volume: 655–667
  year: 2015
  ident: b0095
  article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model
  publication-title: Med. Biol. Eng. Comput.
– year: 2014
  ident: b0160
  article-title: Development and verification of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
– volume: 29
  start-page: 997
  year: 2007
  end-page: 1003
  ident: b0075
  article-title: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation
  publication-title: IEEE Trans. Med. Imaging
– volume: 43
  start-page: 2858
  year: 2010
  end-page: 2862
  ident: b0055
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: J. Biomech.
– volume: 136
  start-page: 21033
  year: 2014
  ident: b0200
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
– start-page: 1
  year: 2017
  end-page: 9
  ident: b0135
  article-title: Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study
  publication-title: Knee Surgery, Sport. Traumatol. Arthrosc.
– volume: 45
  start-page: 1103
  year: 2012
  end-page: 1107
  ident: b0170
  article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions
  publication-title: J. Biomech.
– volume: 7
  start-page: 4080
  year: 2017
  ident: b0240
  article-title: Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system
  publication-title: Sci. Rep.
– volume: 136
  start-page: 11002
  year: 2013
  ident: 10.1016/j.jbiomech.2018.02.032_b0120
  article-title: Finite element model of the knee for investigation of injury mechanisms: development and validation
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4025692
– start-page: 111
  year: 1998
  ident: 10.1016/j.jbiomech.2018.02.032_b0030
  article-title: The transepicondylar axis approximates the optimal flexion axis of the knee
  publication-title: Clin. Orthop. Relat. Res.
  doi: 10.1097/00003086-199811000-00016
– volume: 46
  start-page: 1576
  year: 2013
  ident: 10.1016/j.jbiomech.2018.02.032_b0180
  article-title: In vivo kinematics of the knee during weight bearing high flexion
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.03.014
– year: 2018
  ident: 10.1016/j.jbiomech.2018.02.032_b0020
  article-title: Multibody kinematic optimization for the estimation of upper and lower limb human joint kinematics: a systematic review
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4038741
– volume: 37
  start-page: 757
  year: 1990
  ident: 10.1016/j.jbiomech.2018.02.032_b0040
  article-title: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.102791
– volume: 62
  start-page: 95
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0185
  article-title: Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.030
– year: 2013
  ident: 10.1016/j.jbiomech.2018.02.032_b0225
  article-title: Musculoskeletal imaging in progress: the EOS imaging system
  publication-title: Jt. Bone Spine
  doi: 10.1016/j.jbspin.2012.09.018
– volume: 29
  start-page: 629
  year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0065
  article-title: Altered tibiofemoral joint contact mechanics and kinematics in patients with knee osteoarthritis and episodic complaints of joint instability
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2014.04.014
– volume: 123
  start-page: 381
  year: 2001
  ident: 10.1016/j.jbiomech.2018.02.032_b0015
  article-title: Dynamic optimization of human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1392310
– volume: 45
  start-page: 1491
  year: 2012
  ident: 10.1016/j.jbiomech.2018.02.032_b0050
  article-title: Optimizing whole-body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.02.010
– volume: 31
  start-page: 1127
  year: 1998
  ident: 10.1016/j.jbiomech.2018.02.032_b0215
  article-title: Ligaments and articular contact guide passive knee flexion
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00119-5
– volume: 7
  start-page: 17396
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0100
  article-title: Workflow assessing the effect of gait alterations on stresses in the medial tibial cartilage – combined musculoskeletal modelling and finite element analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17228-x
– volume: 45
  start-page: 1103
  year: 2012
  ident: 10.1016/j.jbiomech.2018.02.032_b0170
  article-title: Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.01.011
– volume: 137
  start-page: 20904
  year: 2015
  ident: 10.1016/j.jbiomech.2018.02.032_b0140
  article-title: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029258
– volume: 12
  start-page: 371
  year: 2009
  ident: 10.1016/j.jbiomech.2018.02.032_b0010
  article-title: Kinematic analysis of over-determinate biomechanical systems
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840802459412
– volume: 136
  start-page: 1
  issue: 021032
  year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0090
  article-title: Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait
  publication-title: J. Biomech. Eng.
– volume: 37
  start-page: 899
  year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0205
  article-title: Two-phase optimized inverse kinematics for motion replication of real human models
  publication-title: J. Chinese Inst. Eng.
  doi: 10.1080/02533839.2014.904474
– volume: 47
  start-page: 50
  year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0150
  article-title: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.015
– volume: 29
  start-page: 997
  year: 2007
  ident: 10.1016/j.jbiomech.2018.02.032_b0075
  article-title: Design of patient-specific gait modifications for knee osteoarthritis rehabilitation
  publication-title: IEEE Trans. Med. Imaging
– volume: 53
  start-page: 45
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0025
  article-title: Feasibility of using MRIs to create subject-specific parallel-mechanism joint models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.12.018
– volume: 29
  start-page: 40
  year: 2011
  ident: 10.1016/j.jbiomech.2018.02.032_b0230
  article-title: Kinematics of medial osteoarthritic knees before and after posterior cruciate ligament retaining total knee arthroplasty
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.21203
– volume: 45
  start-page: 2149
  year: 2012
  ident: 10.1016/j.jbiomech.2018.02.032_b0005
  article-title: Computational biodynamics of human knee joint in gait: from muscle forces to cartilage stresses
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2012.05.040
– volume: 655–667
  year: 2015
  ident: 10.1016/j.jbiomech.2018.02.032_b0095
  article-title: Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model
  publication-title: Med. Biol. Eng. Comput.
– start-page: 1
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0135
  article-title: Anterior referencing of tibial slope in total knee arthroplasty considerably influences knee kinematics: a musculoskeletal simulation study
  publication-title: Knee Surgery, Sport. Traumatol. Arthrosc.
– volume: 29
  start-page: 99
  year: 2016
  ident: 10.1016/j.jbiomech.2018.02.032_b0190
  article-title: Influence of ligament properties on tibiofemoral mechanics in walking
  publication-title: J. Knee Surgeryournal Knee Surg.
  doi: 10.1055/s-0035-1558858
– volume: 105
  start-page: 136
  year: 1983
  ident: 10.1016/j.jbiomech.2018.02.032_b0085
  article-title: A joint coordinate system for the clinical description of three-dimensional motions: application to the knee
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.3138397
– volume: 7
  start-page: 4080
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0240
  article-title: Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-04390-5
– year: 2012
  ident: 10.1016/j.jbiomech.2018.02.032_b0110
  article-title: The EOSTM imaging system and its uses in daily orthopaedic practice
  publication-title: Int. Orthop.
  doi: 10.1007/s00264-012-1512-y
– volume: 82
  start-page: 1189
  year: 2000
  ident: 10.1016/j.jbiomech.2018.02.032_b0115
  article-title: Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee
  publication-title: J. Bone Joint Surg. Br.
  doi: 10.1302/0301-620X.82B8.0821189
– volume: 32
  start-page: 129
  year: 1999
  ident: 10.1016/j.jbiomech.2018.02.032_b0130
  article-title: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00158-4
– year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0160
  article-title: Development and verification of a computational model of the knee joint for the evaluation of surgical treatments for osteoarthritis
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2014.899588
– volume: 43
  start-page: 2858
  year: 2010
  ident: 10.1016/j.jbiomech.2018.02.032_b0055
  article-title: Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.06.010
– volume: 53
  start-page: 1689
  year: 2013
  ident: 10.1016/j.jbiomech.2018.02.032_b0145
  article-title: Stats: designing experiments Ch9-10
  publication-title: J. Chem. Inf. Model.
– volume: 136
  start-page: 21033
  year: 2014
  ident: 10.1016/j.jbiomech.2018.02.032_b0200
  article-title: Co-simulation of neuromuscular dynamics and knee mechanics during human walking
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4026358
– volume: 12
  start-page: 105
  year: 2009
  ident: 10.1016/j.jbiomech.2018.02.032_b0060
  article-title: A constraint-based approach to model the lower limb: preliminary results for running motions
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255840903077352
– volume: 135
  start-page: 21013
  year: 2013
  ident: 10.1016/j.jbiomech.2018.02.032_b0105
  article-title: Dual-joint modeling for estimation of total knee replacement contact forces during locomotion
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4023320
– volume: 53
  start-page: 178
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0235
  article-title: Tibio-femoral joint contact in healthy and osteoarthritic knees during quasi-static squat: a bi-planar X-ray analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.01.015
– volume: 48
  start-page: 3796
  year: 2015
  ident: 10.1016/j.jbiomech.2018.02.032_b0035
  article-title: Soft tissue artifact compensation in knee kinematics by multi-body optimization: performance of subject-specific knee joint models
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.040
– volume: 26
  start-page: 428
  year: 2008
  ident: 10.1016/j.jbiomech.2018.02.032_b0165
  article-title: Dynamic activity dependence of in vivo normal knee kinematics
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20488
– volume: 27
  start-page: 871
  year: 2009
  ident: 10.1016/j.jbiomech.2018.02.032_b0210
  article-title: Gender differences in trochlear groove orientation and rotational kinematics of human knees
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.20844
– volume: 48
  start-page: 1141
  year: 2015
  ident: 10.1016/j.jbiomech.2018.02.032_b0080
  article-title: Validation of a multi-body optimization with knee kinematic models including ligament constraints
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.01.010
– volume: 38
  start-page: 241
  year: 2005
  ident: 10.1016/j.jbiomech.2018.02.032_b0045
  article-title: In vivo determination of normal and anterior cruciate ligament-deficient knee kinematics
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.02.042
– volume: 22
  start-page: 239
  year: 2007
  ident: 10.1016/j.jbiomech.2018.02.032_b0125
  article-title: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity
  publication-title: Clin. Biomech.
  doi: 10.1016/j.clinbiomech.2006.10.003
– volume: 36
  start-page: 125
  year: 2003
  ident: 10.1016/j.jbiomech.2018.02.032_b0070
  article-title: A constraint-based approach to modelling the mobility of the human knee joint
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(02)00276-2
– volume: 28
  start-page: 1257
  year: 1995
  ident: 10.1016/j.jbiomech.2018.02.032_b0220
  article-title: ISB recommendations in the reporting for standardization of kinematic data
  publication-title: J Biomech.
  doi: 10.1016/0021-9290(95)00017-C
– volume: 138
  start-page: 1
  issue: 021017
  year: 2017
  ident: 10.1016/j.jbiomech.2018.02.032_b0195
  article-title: The influence of component alignment and ligament properties on tibiofemoral contact forces in total knee replacement
  publication-title: J. Biomech. Eng.
– volume: 28
  start-page: 125
  year: 2012
  ident: 10.1016/j.jbiomech.2018.02.032_b0155
  article-title: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-011-9286-3
SSID ssj0007479
Score 2.3393183
Snippet The aims of this study were to introduce and validate a novel computationally-efficient subject-specific tibiofemoral joint model. Subjects performed a...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 71
SubjectTerms Calibration
EOS imaging
Iterative methods
Kinematics
Knee
Magnetic resonance imaging
Musculoskeletal knee model
NMR
Nuclear magnetic resonance
Radiation dosage
Researchers
Secondary joint kinematics
Standard deviation
Tibiofemoral joint
Translations
X-rays
Title Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929018301386
https://dx.doi.org/10.1016/j.jbiomech.2018.02.032
https://www.ncbi.nlm.nih.gov/pubmed/29567307
https://www.proquest.com/docview/2022802606
https://www.proquest.com/docview/2018013360
Volume 72
WOSCitedRecordID wos000430889400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251008
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7YVkQfvGy1Xa3LCOJbbDJJdpInqbJFH3a7VIV9CzOZGcnSTdpmV_Q3-Kc9Z3JxX2oFIQRCOIeEfDnzzbkCvE60UpqTe8lI5UXpOPVkSD9ebHNtqWG6aoZNiNksWSzSeetwq9u0ys4mOkOtq5x85LRJ5wk1wBq_u7zyaGoURVfbERo7sEddEkKXujfvLTFS5TbFI_CQBvhbFcLLt0tX3-4CEkHi-naG_KbF6Sby6Rah00f_-_iP4WFLP9lJg5cncMeUA9g_KXHrvfrJ3jCXEOo87QN4sNWrcAD3pm0Ufh9-bWUaMVlqhmgtmtlMrLJMsnqjyL3jURknpSKxlfNbePJHUTMqUqksJfjigyyrAnW4cTyMUvC_sen5J6dzcvaZFSs3Q4k1tZSo-Goj68KjIihUeoF2yjyFr6eTLx8-eu1QBy-P4mDtKStt5FuNR5qjeVECCZFvEmVElEobitwkNrCB9C2yGa51JKXRPBJjk_pGhuEz2C2r0hwCs9yksYp9nRod-WEsE6V9wyOtxlLzwAwh7r5mlrcdz2nwxkXWpbYtsw4FGaEg83mGKBjCcS932fT8uFVCdGDJuopWtMEZLku3Sqa9ZMt5Gi7zT7JHHday1vLU2R-gDeFVfxttBgWCZGmqTe10IPUPx_4QDho89y_KccOMn0U8_7vyF3CftFBcjYsj2F1fb8xLuJt_Xxf19Qh2xEK4czKCvfeT2fwcr6b8bOR-0N8OgkIU
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBfE48Eh5BAosEnAz2Bs_DwhV0KpRm1BBkXrb7np3kaPGbusE6G_gv_AbmVnbIZdSLj0g-WbNyI957cw3MwAvUq2U5pReMlJ5YRZnnhyQ4kU215YGpqtm2UQyHqcHB9neCvzqemEIVtnZRGeodZVTjpwO6TylAVjxu-MTj7ZGUXW1W6HRiMWOOfuOR7b67fAD_t-XnG9t7r_f9tqtAl4eRsHMU1ba0LcaryxH-VYJemTfpMokYSbtIMlNagMbSN-iO-Vah1IazcMkNplvJCVA0eRfwTCCpw4quLew_Biat5CSwMOww1_qSJ68nrh-elcACVI3J3TAz3OG5wW7zult3f7fPtcduNWG12yj0Ye7sGLKHqxtlHJWTc_YK-YAr66S0IObS7MYe3Bt1KIM1uDnEpKKyVIz1Mai2T3FKsskq-eK0lcetakS1IpNXV7Gkz-KmlETTmUJwIwPMqkK5OHWDTFqMfjKRp-Gjufmx8-smLodUazpFUXGJ3NZFx41eSHTI7TD5h58uZTvdR9Wy6o0D4FZbrJIRb7OjA79QSRTpX3DQ61iqXlg-hB10iPydqI7LRY5Eh10byI6qRMkdcLnAqWuD28WdMfNTJMLKZJOOEXXsYs-RqDbvZAyW1C2MV0Tq_0T7Xon26K1rLX4I9h9eL64jTaRCl2yNNW8djzwaDOI_T48aPRn8aI8i2L8LcmjvzN_Bte390e7Ync43nkMN4gj1RB5sg6rs9O5eQJX82-zoj596kwAg8PLVqLfytidwg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VBVVw4JHyCBRYJOBmam_8PCBU0UZEpSHiIfW27Hp3kaPGbusE6G_gH_HrmFnbIZdSLj0g-WbNyI957cw3MwDPUq2U5pReMlJ5YRZnnhyQ4kU215YGpqtm2UQyHqeHh9lkDX51vTAEq-xsojPUusopR06HdJ7SAKx427awiMnu8PXxiUcbpKjS2q3TaERk35x9x-Nb_Wq0i__6OefDvU9v3nrthgEvD6Ng7ikrbehbjVeWo6yrBL2zb1JlkjCTdpDkJrWBDaRv0bVyrUMpjeZhEpvMN5KSoWj-ryQ0tNzBBidLL4BhegsvCTwMQfyV7uTpy6nrrXfFkCB1M0MH_DzHeF7g6xzg8Ob__OluwY027GY7jZ7chjVT9mBzp5TzanbGXjAHhHUVhh5cX5nR2IONgxZ9sAk_VxBWTJaaoZYWzU4qVlkmWb1QlNbyqH2VIFhs5vI1nvxR1IyacypLwGZ8kGlVIA-3hohR68FXdvBh5Hjuvf_IipnbHcWaHlJkfLKQdeFR8xcyPUL7bO7A50v5XndhvaxKcx-Y5SaLVOTrzOjQH0QyVdo3PNQqlpoHpg9RJ0kibye908KRI9FB-qaik0BBEih8LlAC-7C9pDtuZp1cSJF0giq6Tl70PQLd8YWU2ZKyjfWaGO6faLc6ORetxa3FHyHvw9PlbbSVVACTpakWteOBR55B7PfhXqNLyxflWRTjb0ke_J35E9hA3RHvRuP9h3CNGFJpkSdbsD4_XZhHcDX_Ni_q08fOGjD4ctk69Bvmn6Z_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+validation+of+a+subject-specific+moving-axis+tibiofemoral+joint+model+using+MRI+and+EOS+imaging+during+a+quasi-static+lunge&rft.jtitle=Journal+of+biomechanics&rft.au=Dzialo%2C+C+M&rft.au=Pedersen%2C+P+H&rft.au=Simonsen%2C+C+W&rft.au=Jensen%2C+K+K&rft.date=2018-04-27&rft.eissn=1873-2380&rft.volume=72&rft.spage=71&rft_id=info:doi/10.1016%2Fj.jbiomech.2018.02.032&rft_id=info%3Apmid%2F29567307&rft.externalDocID=29567307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon