Center-Outward R-Estimation for Semiparametric VARMA Models

We propose a new class of R-estimators for semiparametric VARMA models in which the innovation density plays the role of the nuisance parameter. Our estimators are based on the novel concepts of multivariate center-outward ranks and signs. We show that these concepts, combined with Le Cam's asy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the American Statistical Association Ročník 117; číslo 538; s. 925 - 938
Hlavní autoři: Hallin, M., La Vecchia, D., Liu, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Alexandria Taylor & Francis 03.04.2022
Taylor & Francis Ltd
Témata:
ISSN:0162-1459, 1537-274X, 1537-274X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a new class of R-estimators for semiparametric VARMA models in which the innovation density plays the role of the nuisance parameter. Our estimators are based on the novel concepts of multivariate center-outward ranks and signs. We show that these concepts, combined with Le Cam's asymptotic theory of statistical experiments, yield a class of semiparametric estimation procedures, which are efficient (at a given reference density), root-n consistent, and asymptotically normal under a broad class of (possibly non-elliptical) actual innovation densities. No kernel density estimation is required to implement our procedures. A Monte Carlo comparative study of our R-estimators and other routinely applied competitors demonstrates the benefits of the novel methodology, in large and small sample. Proofs, computational aspects, and further numerical results are available in the supplementary materials . Supplementary materials for this article are available online.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0162-1459
1537-274X
1537-274X
DOI:10.1080/01621459.2020.1832501