Rapeseed Seed Coat Color Classification Based on the Visibility Graph Algorithm and Hyperspectral Technique

Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of cr...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Agronomy (Basel) Ročník 14; číslo 5; s. 941
Hlavní autori: Zou, Chaojun, Zhu, Xinghui, Wang, Fang, Wu, Jinran, Wang, You-Gan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2024
Predmet:
ISSN:2073-4395, 2073-4395
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of crops and seeds, becoming essential tools in traditional agriculture. This work applies these techniques to address the color classification of rapeseed, which is of great significance in the field of rapeseed growth diagnosis research. To bridge the gap between machine vision and hyperspectral technology, a framework is developed that includes seed color calibration, spectral feature extraction and fusion, and the recognition modeling of three seed colors using four machine learning methods. Three categories of rapeseed coat colors are calibrated based on visual perception and vector-square distance methods. A fast-weighted visibility graph method is employed to map the spectral reflectance sequences to complex networks, and five global network attributes are extracted to fuse the full-band reflectance as model input. The experimental results demonstrate that the classification recognition rate of the fused feature reaches 0.943 under the XGBoost model, confirming the effectiveness of the network features as a complement to the spectral reflectance. The high recognition accuracy and simple operation process of the framework support the further application of hyperspectral technology to analyze the quality of rapeseed.
AbstractList Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of crops and seeds, becoming essential tools in traditional agriculture. This work applies these techniques to address the color classification of rapeseed, which is of great significance in the field of rapeseed growth diagnosis research. To bridge the gap between machine vision and hyperspectral technology, a framework is developed that includes seed color calibration, spectral feature extraction and fusion, and the recognition modeling of three seed colors using four machine learning methods. Three categories of rapeseed coat colors are calibrated based on visual perception and vector-square distance methods. A fast-weighted visibility graph method is employed to map the spectral reflectance sequences to complex networks, and five global network attributes are extracted to fuse the full-band reflectance as model input. The experimental results demonstrate that the classification recognition rate of the fused feature reaches 0.943 under the XGBoost model, confirming the effectiveness of the network features as a complement to the spectral reflectance. The high recognition accuracy and simple operation process of the framework support the further application of hyperspectral technology to analyze the quality of rapeseed.
Audience Academic
Author Zhu, Xinghui
Wang, Fang
Wu, Jinran
Wang, You-Gan
Zou, Chaojun
Author_xml – sequence: 1
  givenname: Chaojun
  orcidid: 0009-0005-0400-8346
  surname: Zou
  fullname: Zou, Chaojun
– sequence: 2
  givenname: Xinghui
  surname: Zhu
  fullname: Zhu, Xinghui
– sequence: 3
  givenname: Fang
  orcidid: 0000-0002-4756-719X
  surname: Wang
  fullname: Wang, Fang
– sequence: 4
  givenname: Jinran
  orcidid: 0000-0002-2388-3614
  surname: Wu
  fullname: Wu, Jinran
– sequence: 5
  givenname: You-Gan
  orcidid: 0000-0003-0901-4671
  surname: Wang
  fullname: Wang, You-Gan
BookMark eNp1Us9rHCEUlpJA023uPQ700ssmOuqox-3SJoFAoU16lTeO7rp1xqm6h_3va7IphIUovPd4ft8n78cHdDbFySL0ieArShW-hk2KUxwPhGGOFSPv0EWLBV0yqvjZq_g9usx5h-tRhEosLtCfnzDbbO3Q_Hoy6wilmhBTsw6Qs3feQPFxar5Cru81KFvb_PbZ9z74cmhuEszbZhU2MfmyHRuYhub2MNuUZ2tKgtA8WLOd_N-9_YjOHYRsL1_8Aj1-__awvl3e_7i5W6_ul4ZxUpZAeiecwqprpWPKWcWJNVIQrLgxQjjbY8m7VkhhWqOw4aqzWBkHnIueE7pAd0fdIcJOz8mPkA46gtfPiZg2GlLxJlhNZcdZCz3DDpgEBVTwlomBOxgEZbhqfTlqzSnWEnLRo8_GhgCTjfusKeGUd6yrboE-n0B3cZ-mWqmmmKuWtQK3FXV1RG2g_u8nF2uTTL2DHb2pY3W-5ldCcSqJFLISuiPBpJhzsk4bX55nUok-aIL10w7o0x2oRHxC_N-KNyn_ABxFtz0
CitedBy_id crossref_primary_10_1140_epjp_s13360_024_05802_y
crossref_primary_10_1016_j_foodchem_2025_143557
crossref_primary_10_1016_j_infrared_2025_106014
crossref_primary_10_1016_j_engappai_2025_110401
crossref_primary_10_3390_agronomy15092218
crossref_primary_10_1002_moda_70024
crossref_primary_10_1016_j_microc_2025_112913
Cites_doi 10.1016/j.physa.2006.12.022
10.1016/j.compag.2021.106546
10.1007/978-3-319-17290-3_2
10.1007/BF00041268
10.1016/j.neucom.2023.03.025
10.1109/ICCRD.2010.183
10.3390/s23052486
10.1007/s004420050337
10.1046/j.1439-0523.2001.00640.x
10.26833/ijeg.709212
10.1038/s42256-019-0138-9
10.1007/BF00024019
10.1016/j.physa.2017.10.052
10.3390/agronomy12102350
10.1145/2939672.2939785
10.1002/widm.1404
10.3390/molecules21080983
10.1007/s11071-022-08002-4
10.1109/IJCNN54540.2023.10191004
10.1016/j.compag.2020.105404
10.1046/j.1469-8137.1999.00424.x
10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
10.3390/agriculture13050992
10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2
10.1209/0295-5075/86/30001
10.3390/app11125726
10.1109/TGRS.2024.3363159
10.1007/978-3-031-19059-9
10.1038/s41598-019-47210-8
10.3390/diagnostics13050842
10.1016/j.compag.2020.105778
10.1109/TLA.2018.8789565
10.1073/pnas.0709247105
10.1007/s11071-018-4241-y
10.1109/ICCSE.2009.5228509
10.1080/10942912.2017.1371188
10.1364/OL.42.002599
10.1016/j.physa.2006.04.066
10.1007/978-1-4757-3264-1
10.1016/0034-4257(92)90059-S
10.1073/pnas.122653799
10.1016/S0034-4257(00)00113-9
10.1016/j.ijleo.2020.165308
10.4141/cjps10124
10.1063/1.4978308
10.1016/j.compag.2020.105713
10.1016/j.physa.2022.127627
10.1016/j.foodres.2005.01.008
10.1063/1.4927835
10.1016/j.physd.2011.09.008
10.1007/BF00027488
10.1016/j.compag.2024.108784
10.1111/j.1439-0523.2011.01914.x
10.1080/21642583.2019.1708830
10.1021/acs.jafc.7b01226
10.1080/22797254.2023.2220565
10.1016/j.compag.2022.107097
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7ST
7T7
7TM
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
M0K
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7S9
L.6
DOA
DOI 10.3390/agronomy14050941
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA

Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2073-4395
ExternalDocumentID oai_doaj_org_article_386542ab40fa48a9a375247d5fad7340
A795381878
10_3390_agronomy14050941
GeographicLocations Germany
GeographicLocations_xml – name: Germany
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
M0K
MODMG
M~E
OK1
OZF
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
3V.
7SN
7SS
7ST
7T7
7TM
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
SOI
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c451t-a1bf7f909628f49fe951ec871095cc77feb08562787c2c90c596e09cfa557b513
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233077100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4395
IngestDate Fri Oct 03 12:52:38 EDT 2025
Thu Sep 04 20:01:16 EDT 2025
Mon Jun 30 11:27:34 EDT 2025
Tue Nov 04 18:24:19 EST 2025
Tue Nov 18 22:26:27 EST 2025
Sat Nov 29 07:15:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-a1bf7f909628f49fe951ec871095cc77feb08562787c2c90c596e09cfa557b513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2388-3614
0000-0002-4756-719X
0000-0003-0901-4671
0009-0005-0400-8346
OpenAccessLink https://doaj.org/article/386542ab40fa48a9a375247d5fad7340
PQID 3059242702
PQPubID 2032440
ParticipantIDs doaj_primary_oai_doaj_org_article_386542ab40fa48a9a375247d5fad7340
proquest_miscellaneous_3153564615
proquest_journals_3059242702
gale_infotracacademiconefile_A795381878
crossref_citationtrail_10_3390_agronomy14050941
crossref_primary_10_3390_agronomy14050941
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Agronomy (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Baykan (ref_27) 2021; 6
Gomes (ref_53) 2022; 198
ref_14
ref_58
ref_13
Rehman (ref_63) 2020; 177
ref_11
ref_54
Gertz (ref_50) 2020; 173
Yang (ref_29) 2010; 46
Gamon (ref_19) 1999; 143
Bohorquez (ref_64) 2018; 16
Long (ref_28) 2020; 221
Rahman (ref_4) 2001; 120
Wen (ref_36) 2022; 110
ref_15
Gamon (ref_22) 1997; 112
Kok (ref_45) 2021; 191
ref_61
ref_60
Jiang (ref_57) 2017; 121
Deng (ref_25) 2024; 62
Xue (ref_55) 2020; 8
Michalski (ref_5) 2009; 30
ref_24
Leung (ref_40) 2007; 378
Rahman (ref_2) 2011; 91
ref_20
ref_62
Pauls (ref_6) 1994; 76
Daughtry (ref_23) 2000; 74
Zhao (ref_26) 2017; 42
Wang (ref_18) 2017; 65
Gitelson (ref_16) 2001; 74
Girvan (ref_42) 2002; 99
Cai (ref_44) 2014; 63
Obsie (ref_52) 2020; 178
Zhang (ref_43) 2022; 602
Silva (ref_35) 2021; 11
ref_30
Lan (ref_37) 2015; 25
Zhang (ref_34) 2018; 493
Almog (ref_41) 2019; 9
Velasco (ref_7) 1996; 90
ref_38
Rotkiewicz (ref_9) 2005; 38
Holme (ref_59) 2007; 373
Jiang (ref_56) 2018; 93
Tian (ref_39) 2016; 50
Gamon (ref_21) 1992; 41
Lu (ref_10) 2012; 131
ref_47
ref_46
Gitelson (ref_17) 2002; 75
ref_1
Moharram (ref_12) 2023; 536
ref_49
ref_48
Dutta (ref_65) 2024; 219
Ahmadlou (ref_32) 2012; 241
Lundberg (ref_51) 2020; 2
Lacasa (ref_33) 2009; 86
Chen (ref_3) 1992; 59
Jankowski (ref_8) 2017; 20
Lacasa (ref_31) 2008; 105
References_xml – volume: 378
  start-page: 591
  year: 2007
  ident: ref_40
  article-title: Weighted assortative and disassortative networks model
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2006.12.022
– volume: 191
  start-page: 106546
  year: 2021
  ident: ref_45
  article-title: Support vector machine in precision agriculture: A review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106546
– ident: ref_38
  doi: 10.1007/978-3-319-17290-3_2
– volume: 59
  start-page: 157
  year: 1992
  ident: ref_3
  article-title: Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L.
  publication-title: Euphytica
  doi: 10.1007/BF00041268
– volume: 536
  start-page: 90
  year: 2023
  ident: ref_12
  article-title: Land Use and Land Cover Classification with Hyperspectral Data: A comprehensive review of methods, challenges and future directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.03.025
– ident: ref_47
  doi: 10.1109/ICCRD.2010.183
– ident: ref_14
  doi: 10.3390/s23052486
– volume: 112
  start-page: 492
  year: 1997
  ident: ref_22
  article-title: The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels
  publication-title: Oecologia
  doi: 10.1007/s004420050337
– volume: 120
  start-page: 463
  year: 2001
  ident: ref_4
  article-title: Production of yellow-seeded Brassica napus through interspecific crosses
  publication-title: Plant Breed.
  doi: 10.1046/j.1439-0523.2001.00640.x
– volume: 6
  start-page: 117
  year: 2021
  ident: ref_27
  article-title: A new color distance measure formulated from the cooperation of the Euclidean and the vector angular differences for lidar point cloud segmentation
  publication-title: Int. J. Eng. Geosci.
  doi: 10.26833/ijeg.709212
– volume: 2
  start-page: 56
  year: 2020
  ident: ref_51
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0138-9
– volume: 76
  start-page: 45
  year: 1994
  ident: ref_6
  article-title: Seed colour assessment in Brassica napus using a Near Infrared Reflectance spectrometer adapted for visible light measurements
  publication-title: Euphytica
  doi: 10.1007/BF00024019
– volume: 493
  start-page: 239
  year: 2018
  ident: ref_34
  article-title: Forecasting construction cost index based on visibility graph: A network approach
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2017.10.052
– ident: ref_13
  doi: 10.3390/agronomy12102350
– ident: ref_48
  doi: 10.1145/2939672.2939785
– volume: 11
  start-page: e1404
  year: 2021
  ident: ref_35
  article-title: Time series analysis via network science: Concepts and algorithms
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1404
– ident: ref_54
  doi: 10.3390/molecules21080983
– volume: 110
  start-page: 2979
  year: 2022
  ident: ref_36
  article-title: Visibility graph for time series prediction and image classification: A review
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08002-4
– ident: ref_60
  doi: 10.1109/IJCNN54540.2023.10191004
– volume: 173
  start-page: 105404
  year: 2020
  ident: ref_50
  article-title: Using the XGBoost algorithm to classify neck and leg activity sensor data using on-farm health recordings for locomotor-associated diseases
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105404
– volume: 143
  start-page: 105
  year: 1999
  ident: ref_19
  article-title: Assessing leaf pigment content and activity with a reflectometer
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.1999.00424.x
– ident: ref_62
– volume: 74
  start-page: 38
  year: 2001
  ident: ref_16
  article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves
  publication-title: Photochem. Photobiol.
  doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2
– ident: ref_1
  doi: 10.3390/agriculture13050992
– volume: 75
  start-page: 272
  year: 2002
  ident: ref_17
  article-title: Assessing carotenoid content in plant leaves with reflectance spectroscopy
  publication-title: Photochem. Photobiol.
  doi: 10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2
– ident: ref_20
– volume: 86
  start-page: 30001
  year: 2009
  ident: ref_33
  article-title: The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/86/30001
– volume: 46
  start-page: 154
  year: 2010
  ident: ref_29
  article-title: Vector-angular distance color difference formula in RGB color space
  publication-title: Comput. Eng. Appl.
– ident: ref_58
  doi: 10.3390/app11125726
– volume: 62
  start-page: 5509314
  year: 2024
  ident: ref_25
  article-title: Feature Dimensionality Reduction with L 2, p-Norm-Based Robust Embedding Regression for Classification of Hyperspectral Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2024.3363159
– ident: ref_30
– ident: ref_11
  doi: 10.1007/978-3-031-19059-9
– volume: 9
  start-page: 10832
  year: 2019
  ident: ref_41
  article-title: Structural entropy: Monitoring correlation-based networks over time with application to financial markets
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-47210-8
– ident: ref_49
  doi: 10.3390/diagnostics13050842
– volume: 50
  start-page: 141
  year: 2016
  ident: ref_39
  article-title: A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 178
  start-page: 105778
  year: 2020
  ident: ref_52
  article-title: Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105778
– volume: 16
  start-page: 2435
  year: 2018
  ident: ref_64
  article-title: New Hyperspectral Index for Determining the State of Fermentation in the Non-Destructive Analysis for Organic Cocoa Violet
  publication-title: IEEE Lat. Am. Trans.
  doi: 10.1109/TLA.2018.8789565
– volume: 105
  start-page: 4972
  year: 2008
  ident: ref_31
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0709247105
– volume: 93
  start-page: 995
  year: 2018
  ident: ref_56
  article-title: Local detrended fluctuation analysis for spectral red-edge parameters extraction
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-018-4241-y
– ident: ref_61
  doi: 10.1109/ICCSE.2009.5228509
– volume: 20
  start-page: S2379
  year: 2017
  ident: ref_8
  article-title: Possibility use of digital image analysis for the estimation of the rapeseed maturity stage
  publication-title: Int. J. Food Prop.
  doi: 10.1080/10942912.2017.1371188
– volume: 42
  start-page: 2599
  year: 2017
  ident: ref_26
  article-title: Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002599
– volume: 373
  start-page: 821
  year: 2007
  ident: ref_59
  article-title: Korean university life in a network perspective: Dynamics of a large affiliation network
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2006.04.066
– ident: ref_46
  doi: 10.1007/978-1-4757-3264-1
– volume: 41
  start-page: 35
  year: 1992
  ident: ref_21
  article-title: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(92)90059-S
– volume: 99
  start-page: 7821
  year: 2002
  ident: ref_42
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.122653799
– volume: 74
  start-page: 229
  year: 2000
  ident: ref_23
  article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(00)00113-9
– volume: 221
  start-page: 165308
  year: 2020
  ident: ref_28
  article-title: Image segmentation based on the minimum spanning tree with a novel weight
  publication-title: Optik
  doi: 10.1016/j.ijleo.2020.165308
– volume: 91
  start-page: 437
  year: 2011
  ident: ref_2
  article-title: A review of Brassica seed color
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps10124
– volume: 121
  start-page: 104702
  year: 2017
  ident: ref_57
  article-title: Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4978308
– volume: 177
  start-page: 105713
  year: 2020
  ident: ref_63
  article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105713
– volume: 602
  start-page: 127627
  year: 2022
  ident: ref_43
  article-title: Multiscale time-lagged correlation networks for detecting air pollution interaction
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2022.127627
– volume: 38
  start-page: 741
  year: 2005
  ident: ref_9
  article-title: Measurement of the geometrical features and surface color of rapeseeds using digital image analysis
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2005.01.008
– volume: 25
  start-page: 083105
  year: 2015
  ident: ref_37
  article-title: Fast transformation from time series to visibility graphs
  publication-title: Chaos Interdiscip. J. Nonlinear Sci.
  doi: 10.1063/1.4927835
– volume: 241
  start-page: 326
  year: 2012
  ident: ref_32
  article-title: Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/j.physd.2011.09.008
– volume: 90
  start-page: 359
  year: 1996
  ident: ref_7
  article-title: An efficient method for screening seed colour in Ethiopian mustard using visible reflectance spectroscopy and multivariate analysis
  publication-title: Euphytica
  doi: 10.1007/BF00027488
– volume: 219
  start-page: 108784
  year: 2024
  ident: ref_65
  article-title: Early detection of wilt in Cajanus cajan using satellite hyperspectral images: Development and validation of disease-specific spectral index with integrated methodology
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2024.108784
– volume: 30
  start-page: 119
  year: 2009
  ident: ref_5
  article-title: Seed color assessment in rapeseed seeds using Color and Near Infrared Reflectance Spectrometers
  publication-title: Rośl. Oleist
– volume: 131
  start-page: 176
  year: 2012
  ident: ref_10
  article-title: A simple and rapid procedure for identification of seed coat colour at the early developmental stage of Brassica juncea and Brassica napus seeds
  publication-title: Plant Breed.
  doi: 10.1111/j.1439-0523.2011.01914.x
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_55
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control. Eng.
  doi: 10.1080/21642583.2019.1708830
– volume: 63
  start-page: 102
  year: 2014
  ident: ref_44
  article-title: A new network structure entropy based on maximum flow
  publication-title: Acta Phys. Sin.
– volume: 65
  start-page: 5229
  year: 2017
  ident: ref_18
  article-title: Genome-wide association mapping of seed coat color in Brassica napus
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.7b01226
– ident: ref_15
– ident: ref_24
  doi: 10.1080/22797254.2023.2220565
– volume: 198
  start-page: 107097
  year: 2022
  ident: ref_53
  article-title: Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107097
SSID ssj0000913807
Score 2.3063834
Snippet Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 941
SubjectTerms Agriculture
agronomy
Algorithms
Calibration
Chlorophyll
Classification
Color
color classification
Coloration
computer vision
Depth perception
Diagnosis
Digital agriculture
Fatty acids
Feature extraction
Fourier transforms
hyperspectral imagery
hyperspectral reflectance
Information technology
Machine learning
Machine vision
Mathematical models
Methods
Proteins
Quality control
Rape plants
Rapeseed
Reflectance
seed coat
seed color
Seeds
Software
Spectral reflectance
Spectrum analysis
Statistical analysis
Statistical models
Technology assessment
Traditional farming
vector-square distance
Visibility
visibility graph algorithm
Vision systems
Visual perception
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM98EYECjISEuIQrdeJ4_iEthWlHKhWUFA5RbZjLxVtsmRTJP49M4l3EUj0xCWKss5jNeOZ-eyZbwBeGOdCIaxI61poBChcp1YEWoYzKsukk0XuhmYT6vi4PD3Vi1gevY5plRubOBjqke2Z8rbRCE_r1tGK-RS1FIED1VK9Xn1PqYcU7bXGhhrXYYeIt_gEdhbv3i--bNdciAOz5GrcrcwQ7U_NshtqBxBmEJPc7A_vNJD4_8tUD_7n8Pb__fI7cCvGoWw-Ks5duOabe7A7X3aRi8Pfh28fzMqv0buxj3Q4aE2PB8T3bOikSTlGg1jZPnrCmuEJBpPs81lMuP3J3hIZNpufL_H9_dcLZpqaHSHuHcs7O3z9yYZB9gF8OnxzcnCUxt4MqcvlrE_NzAYVNAIgUYZcB4-RmnclZXZK55QK3mIwVwi0B044zZ3UhefaBSOlsnKWPYRJ0zb-EbAio-pejziKm5wbaUNRIN63mQ3cYjSXwHQjk8pF4nLqn3FeIYAhKVZ_SzGBV9s7ViNpxxVj90nM23FEtz1caLtlFWdvRY1Rc2FszoPJS6NNpqTIVS2DqVWW8wRekpJUZBTw05yJtQ34B4leq5orLSk0UmUCexslqaK1WFe_dSKB59ufcZ7T5o1pfHuJY9A14cTBAPTx1Y94AjcFBl5jUuYeTPru0j-FG-5Hf7bunsUp8Qs_Ph4T
  priority: 102
  providerName: ProQuest
Title Rapeseed Seed Coat Color Classification Based on the Visibility Graph Algorithm and Hyperspectral Technique
URI https://www.proquest.com/docview/3059242702
https://www.proquest.com/docview/3153564615
https://doaj.org/article/386542ab40fa48a9a375247d5fad7340
Volume 14
WOSCitedRecordID wos001233077100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: M0K
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: PATMY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2073-4395
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913807
  issn: 2073-4395
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl7aE9lD6pmzSoUCg9mLVlybKOuyEvSpYlTUt6EpIsbZam3uB1Av33nZG9SxpIe-lFGFvG8mikmc-e-YaQD8a5UDLL0rpmCgBKplLLAn6GM7IohBMld7HYhJxOq_NzNbtV6gtjwnp64F5wI6xJyZmxPAuGV0aZQgrGZS2CqWXBI1rPpLoFpuIerHJkUu__SxaA60dm3sYsAQAUyBmX_2GHIl3_fZtytDQHz8jTwUWk435oz8kD37wgT8bzdqDJ8C_Jj1Nz5VdgeOgXbPaWpoMGoDeNRS4x_CdKnE7ASNUUDsDPo98WQyzsL3qIPNV0fDlftovu4ic1TU2PAJL2mZctPP5sTe76inw92D_bO0qHsgmp4yLvUpPbIIMCbMKqwFXw4ER5V2HQpXBOyuAt-Fklg6XqmFOZE6r0mXLBCCGtyIvXZKtZNv4NoWWBibceIE5meGaEDWUJUNwWNmQWHK2EjNZC1G7gFMfSFpcasAWKXd8Ve0I-be646vk0_tJ3gvOy6YdM2PEE6Ice9EP_Sz8S8hFnVeN6haE5M6QdwAsi85UeSyXQa5FVQnbWE6-HhbzSsB0CQsWkvYS831yGJYj_VUzjl9fQB6wG6DT4hm__x4i3yWMGnlMfVblDtrr22r8jj9xNt1i1u-ThZH86O92N-g7tSfYZzs2OT2bffwNB0Qa2
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0IFFgkEOJgZbP2er0HhNJCadQ2iiCgcjLr9W6oCHFwUlD_FL-RGX8EgURvPXCxomRjZ-PnmTe7M28AnhhrfSwyEeS50BigcB1kwtMynFFhKK2MI1s1m1CjUXJ0pMcb8LOthaG0ytYmVoY6LyytkfcQlxgqUPXUy8W3gLpG0e5q20KjhsW-O_2BIdvyxfAV3t-nQuy-nuzsBU1XgcBGsr8KTD_zymuk7iLxkfYOOYazCeUkSmuV8i5DGhILRLIVVnMrdey4tt5IqTLZD_G8F2AzQrDzDmyOh4fjj-tVHVLZTLiq90PDUPOemZZVdQIGMqRV1__D_1VtAv7lDCoPt3vtf_tvrsPVhkuzQQ3-G7Dh5jfhymBaNnoi7hZ8eWsWbokemr2jw05hVniYFSWruoFSnlQFTbaN3jxn-AIJMftw3CQNn7I3JOjNBrMpznf1-Ssz85ztYexel6iWePlJq4J7G96fy2zvQGdezN1dYHFIFcoOY0FuIm5k5uPYZSILM88zZKRd6LV3PbWN-Dr1AJmlGIQRTtK_cdKF5-tvLGrhkTPGbhOQ1uNIMrx6oyinaWOBUmruGgmTRdybKDHahEqKSOXSm1yFEe_CM4JhSoYNf5o1TX0GTpAkwtKB0pLonUq6sNXCMG0s3jL9jcEuPF5_jLaKNqDM3BUnOAbdKz78SKLvnX2KR3Bpb3J4kB4MR_v34bJAIlknmW5BZ1WeuAdw0X5fHS_Lh80DyODTeeP6F4fVbpw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I0IFFgkEOJgxVl7vd4DQknb0KooikpBvbm7691QEeLgpKD-NX4dM_4IAoneeuBiWcnGycbPM292Z94AvNDW-oQbHuQ5VxighCow3NMynJZRJKxIYls1m5DjcXp8rCYb8LOthaG0ytYmVoY6LyytkfcQlxgqUPVUzzdpEZOd0dvFt4A6SNFOa9tOo4bIgTv_geHb8s3-Dt7rl5yPdo-294Kmw0BgY9FfBbpvvPQKaTxPfay8Q77hbEr5icJaKb0zSEkSjqi23KrQCpW4UFmvhZBG9CO87hXYlBEGPR3YHO6OJ4frFR5S3ExDWe-NRpEKe3paVpUKGNSQbl3_D19YtQz4l2OovN3o1v_8P92Gmw3HZoP6obgDG25-F24MpmWjM-LuwZdDvXBL9NzsAx22C73Cw6woWdUllPKnKsiyIXr5nOEJEmX26bRJJj5n70jomw1mU5zv6vNXpuc528OYvi5dLfHrj1p13Pvw8VJm-wA682LuHgJLIqpcdhgjhjoOtTA-SZzhJjI-NMhUu9BrEZDZRpSdeoPMMgzOCDPZ35jpwuv1Jxa1IMkFY4cEqvU4khKvXijKadZYpoyavsZcmzj0Ok610pEUPJa58DqXURx24RVBMiODhz_N6qZuAydI0mHZQCpBtE-mXdhqIZk1lnCZ_cZjF56v30YbRhtTeu6KMxyDbheNApLrRxdf4hlcQzBn7_fHB4_hOkd-WeeebkFnVZ65J3DVfl-dLsunzbPI4OSyYf0LHYZ3Ng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapeseed+Seed+Coat+Color+Classification+Based+on+the+Visibility+Graph+Algorithm+and+Hyperspectral+Technique&rft.jtitle=Agronomy+%28Basel%29&rft.au=Zou%2C+Chaojun&rft.au=Zhu%2C+Xinghui&rft.au=Wang%2C+Fang&rft.au=Wu%2C+Jinran&rft.date=2024-05-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=14&rft.issue=5&rft.spage=941&rft_id=info:doi/10.3390%2Fagronomy14050941&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy14050941
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon