Rapeseed Seed Coat Color Classification Based on the Visibility Graph Algorithm and Hyperspectral Technique
Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of cr...
Uložené v:
| Vydané v: | Agronomy (Basel) Ročník 14; číslo 5; s. 941 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.05.2024
|
| Predmet: | |
| ISSN: | 2073-4395, 2073-4395 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of crops and seeds, becoming essential tools in traditional agriculture. This work applies these techniques to address the color classification of rapeseed, which is of great significance in the field of rapeseed growth diagnosis research. To bridge the gap between machine vision and hyperspectral technology, a framework is developed that includes seed color calibration, spectral feature extraction and fusion, and the recognition modeling of three seed colors using four machine learning methods. Three categories of rapeseed coat colors are calibrated based on visual perception and vector-square distance methods. A fast-weighted visibility graph method is employed to map the spectral reflectance sequences to complex networks, and five global network attributes are extracted to fuse the full-band reflectance as model input. The experimental results demonstrate that the classification recognition rate of the fused feature reaches 0.943 under the XGBoost model, confirming the effectiveness of the network features as a complement to the spectral reflectance. The high recognition accuracy and simple operation process of the framework support the further application of hyperspectral technology to analyze the quality of rapeseed. |
|---|---|
| AbstractList | Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with their non-destructive and real-time capabilities, have been extensively utilized in the non-destructive diagnosis and quality monitoring of crops and seeds, becoming essential tools in traditional agriculture. This work applies these techniques to address the color classification of rapeseed, which is of great significance in the field of rapeseed growth diagnosis research. To bridge the gap between machine vision and hyperspectral technology, a framework is developed that includes seed color calibration, spectral feature extraction and fusion, and the recognition modeling of three seed colors using four machine learning methods. Three categories of rapeseed coat colors are calibrated based on visual perception and vector-square distance methods. A fast-weighted visibility graph method is employed to map the spectral reflectance sequences to complex networks, and five global network attributes are extracted to fuse the full-band reflectance as model input. The experimental results demonstrate that the classification recognition rate of the fused feature reaches 0.943 under the XGBoost model, confirming the effectiveness of the network features as a complement to the spectral reflectance. The high recognition accuracy and simple operation process of the framework support the further application of hyperspectral technology to analyze the quality of rapeseed. |
| Audience | Academic |
| Author | Zhu, Xinghui Wang, Fang Wu, Jinran Wang, You-Gan Zou, Chaojun |
| Author_xml | – sequence: 1 givenname: Chaojun orcidid: 0009-0005-0400-8346 surname: Zou fullname: Zou, Chaojun – sequence: 2 givenname: Xinghui surname: Zhu fullname: Zhu, Xinghui – sequence: 3 givenname: Fang orcidid: 0000-0002-4756-719X surname: Wang fullname: Wang, Fang – sequence: 4 givenname: Jinran orcidid: 0000-0002-2388-3614 surname: Wu fullname: Wu, Jinran – sequence: 5 givenname: You-Gan orcidid: 0000-0003-0901-4671 surname: Wang fullname: Wang, You-Gan |
| BookMark | eNp1Us9rHCEUlpJA023uPQ700ssmOuqox-3SJoFAoU16lTeO7rp1xqm6h_3va7IphIUovPd4ft8n78cHdDbFySL0ieArShW-hk2KUxwPhGGOFSPv0EWLBV0yqvjZq_g9usx5h-tRhEosLtCfnzDbbO3Q_Hoy6wilmhBTsw6Qs3feQPFxar5Cru81KFvb_PbZ9z74cmhuEszbZhU2MfmyHRuYhub2MNuUZ2tKgtA8WLOd_N-9_YjOHYRsL1_8Aj1-__awvl3e_7i5W6_ul4ZxUpZAeiecwqprpWPKWcWJNVIQrLgxQjjbY8m7VkhhWqOw4aqzWBkHnIueE7pAd0fdIcJOz8mPkA46gtfPiZg2GlLxJlhNZcdZCz3DDpgEBVTwlomBOxgEZbhqfTlqzSnWEnLRo8_GhgCTjfusKeGUd6yrboE-n0B3cZ-mWqmmmKuWtQK3FXV1RG2g_u8nF2uTTL2DHb2pY3W-5ldCcSqJFLISuiPBpJhzsk4bX55nUok-aIL10w7o0x2oRHxC_N-KNyn_ABxFtz0 |
| CitedBy_id | crossref_primary_10_1140_epjp_s13360_024_05802_y crossref_primary_10_1016_j_foodchem_2025_143557 crossref_primary_10_1016_j_infrared_2025_106014 crossref_primary_10_1016_j_engappai_2025_110401 crossref_primary_10_3390_agronomy15092218 crossref_primary_10_1002_moda_70024 crossref_primary_10_1016_j_microc_2025_112913 |
| Cites_doi | 10.1016/j.physa.2006.12.022 10.1016/j.compag.2021.106546 10.1007/978-3-319-17290-3_2 10.1007/BF00041268 10.1016/j.neucom.2023.03.025 10.1109/ICCRD.2010.183 10.3390/s23052486 10.1007/s004420050337 10.1046/j.1439-0523.2001.00640.x 10.26833/ijeg.709212 10.1038/s42256-019-0138-9 10.1007/BF00024019 10.1016/j.physa.2017.10.052 10.3390/agronomy12102350 10.1145/2939672.2939785 10.1002/widm.1404 10.3390/molecules21080983 10.1007/s11071-022-08002-4 10.1109/IJCNN54540.2023.10191004 10.1016/j.compag.2020.105404 10.1046/j.1469-8137.1999.00424.x 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 10.3390/agriculture13050992 10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2 10.1209/0295-5075/86/30001 10.3390/app11125726 10.1109/TGRS.2024.3363159 10.1007/978-3-031-19059-9 10.1038/s41598-019-47210-8 10.3390/diagnostics13050842 10.1016/j.compag.2020.105778 10.1109/TLA.2018.8789565 10.1073/pnas.0709247105 10.1007/s11071-018-4241-y 10.1109/ICCSE.2009.5228509 10.1080/10942912.2017.1371188 10.1364/OL.42.002599 10.1016/j.physa.2006.04.066 10.1007/978-1-4757-3264-1 10.1016/0034-4257(92)90059-S 10.1073/pnas.122653799 10.1016/S0034-4257(00)00113-9 10.1016/j.ijleo.2020.165308 10.4141/cjps10124 10.1063/1.4978308 10.1016/j.compag.2020.105713 10.1016/j.physa.2022.127627 10.1016/j.foodres.2005.01.008 10.1063/1.4927835 10.1016/j.physd.2011.09.008 10.1007/BF00027488 10.1016/j.compag.2024.108784 10.1111/j.1439-0523.2011.01914.x 10.1080/21642583.2019.1708830 10.1021/acs.jafc.7b01226 10.1080/22797254.2023.2220565 10.1016/j.compag.2022.107097 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7ST 7T7 7TM 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ M0K P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY SOI 7S9 L.6 DOA |
| DOI | 10.3390/agronomy14050941 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central (subscription) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Agricultural Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts AGRICOLA AGRICOLA - Academic Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2073-4395 |
| ExternalDocumentID | oai_doaj_org_article_386542ab40fa48a9a375247d5fad7340 A795381878 10_3390_agronomy14050941 |
| GeographicLocations | Germany |
| GeographicLocations_xml | – name: Germany |
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ IAO ITC KQ8 M0K MODMG M~E OK1 OZF PATMY PHGZM PHGZT PIMPY PROAC PYCSY 3V. 7SN 7SS 7ST 7T7 7TM 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c451t-a1bf7f909628f49fe951ec871095cc77feb08562787c2c90c596e09cfa557b513 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001233077100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4395 |
| IngestDate | Fri Oct 03 12:52:38 EDT 2025 Thu Sep 04 20:01:16 EDT 2025 Mon Jun 30 11:27:34 EDT 2025 Tue Nov 04 18:24:19 EST 2025 Tue Nov 18 22:26:27 EST 2025 Sat Nov 29 07:15:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-a1bf7f909628f49fe951ec871095cc77feb08562787c2c90c596e09cfa557b513 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2388-3614 0000-0002-4756-719X 0000-0003-0901-4671 0009-0005-0400-8346 |
| OpenAccessLink | https://doaj.org/article/386542ab40fa48a9a375247d5fad7340 |
| PQID | 3059242702 |
| PQPubID | 2032440 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_386542ab40fa48a9a375247d5fad7340 proquest_miscellaneous_3153564615 proquest_journals_3059242702 gale_infotracacademiconefile_A795381878 crossref_citationtrail_10_3390_agronomy14050941 crossref_primary_10_3390_agronomy14050941 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agronomy (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Baykan (ref_27) 2021; 6 Gomes (ref_53) 2022; 198 ref_14 ref_58 ref_13 Rehman (ref_63) 2020; 177 ref_11 ref_54 Gertz (ref_50) 2020; 173 Yang (ref_29) 2010; 46 Gamon (ref_19) 1999; 143 Bohorquez (ref_64) 2018; 16 Long (ref_28) 2020; 221 Rahman (ref_4) 2001; 120 Wen (ref_36) 2022; 110 ref_15 Gamon (ref_22) 1997; 112 Kok (ref_45) 2021; 191 ref_61 ref_60 Jiang (ref_57) 2017; 121 Deng (ref_25) 2024; 62 Xue (ref_55) 2020; 8 Michalski (ref_5) 2009; 30 ref_24 Leung (ref_40) 2007; 378 Rahman (ref_2) 2011; 91 ref_20 ref_62 Pauls (ref_6) 1994; 76 Daughtry (ref_23) 2000; 74 Zhao (ref_26) 2017; 42 Wang (ref_18) 2017; 65 Gitelson (ref_16) 2001; 74 Girvan (ref_42) 2002; 99 Cai (ref_44) 2014; 63 Obsie (ref_52) 2020; 178 Zhang (ref_43) 2022; 602 Silva (ref_35) 2021; 11 ref_30 Lan (ref_37) 2015; 25 Zhang (ref_34) 2018; 493 Almog (ref_41) 2019; 9 Velasco (ref_7) 1996; 90 ref_38 Rotkiewicz (ref_9) 2005; 38 Holme (ref_59) 2007; 373 Jiang (ref_56) 2018; 93 Tian (ref_39) 2016; 50 Gamon (ref_21) 1992; 41 Lu (ref_10) 2012; 131 ref_47 ref_46 Gitelson (ref_17) 2002; 75 ref_1 Moharram (ref_12) 2023; 536 ref_49 ref_48 Dutta (ref_65) 2024; 219 Ahmadlou (ref_32) 2012; 241 Lundberg (ref_51) 2020; 2 Lacasa (ref_33) 2009; 86 Chen (ref_3) 1992; 59 Jankowski (ref_8) 2017; 20 Lacasa (ref_31) 2008; 105 |
| References_xml | – volume: 378 start-page: 591 year: 2007 ident: ref_40 article-title: Weighted assortative and disassortative networks model publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2006.12.022 – volume: 191 start-page: 106546 year: 2021 ident: ref_45 article-title: Support vector machine in precision agriculture: A review publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106546 – ident: ref_38 doi: 10.1007/978-3-319-17290-3_2 – volume: 59 start-page: 157 year: 1992 ident: ref_3 article-title: Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. publication-title: Euphytica doi: 10.1007/BF00041268 – volume: 536 start-page: 90 year: 2023 ident: ref_12 article-title: Land Use and Land Cover Classification with Hyperspectral Data: A comprehensive review of methods, challenges and future directions publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.03.025 – ident: ref_47 doi: 10.1109/ICCRD.2010.183 – ident: ref_14 doi: 10.3390/s23052486 – volume: 112 start-page: 492 year: 1997 ident: ref_22 article-title: The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels publication-title: Oecologia doi: 10.1007/s004420050337 – volume: 120 start-page: 463 year: 2001 ident: ref_4 article-title: Production of yellow-seeded Brassica napus through interspecific crosses publication-title: Plant Breed. doi: 10.1046/j.1439-0523.2001.00640.x – volume: 6 start-page: 117 year: 2021 ident: ref_27 article-title: A new color distance measure formulated from the cooperation of the Euclidean and the vector angular differences for lidar point cloud segmentation publication-title: Int. J. Eng. Geosci. doi: 10.26833/ijeg.709212 – volume: 2 start-page: 56 year: 2020 ident: ref_51 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-019-0138-9 – volume: 76 start-page: 45 year: 1994 ident: ref_6 article-title: Seed colour assessment in Brassica napus using a Near Infrared Reflectance spectrometer adapted for visible light measurements publication-title: Euphytica doi: 10.1007/BF00024019 – volume: 493 start-page: 239 year: 2018 ident: ref_34 article-title: Forecasting construction cost index based on visibility graph: A network approach publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2017.10.052 – ident: ref_13 doi: 10.3390/agronomy12102350 – ident: ref_48 doi: 10.1145/2939672.2939785 – volume: 11 start-page: e1404 year: 2021 ident: ref_35 article-title: Time series analysis via network science: Concepts and algorithms publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1404 – ident: ref_54 doi: 10.3390/molecules21080983 – volume: 110 start-page: 2979 year: 2022 ident: ref_36 article-title: Visibility graph for time series prediction and image classification: A review publication-title: Nonlinear Dyn. doi: 10.1007/s11071-022-08002-4 – ident: ref_60 doi: 10.1109/IJCNN54540.2023.10191004 – volume: 173 start-page: 105404 year: 2020 ident: ref_50 article-title: Using the XGBoost algorithm to classify neck and leg activity sensor data using on-farm health recordings for locomotor-associated diseases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105404 – volume: 143 start-page: 105 year: 1999 ident: ref_19 article-title: Assessing leaf pigment content and activity with a reflectometer publication-title: New Phytol. doi: 10.1046/j.1469-8137.1999.00424.x – ident: ref_62 – volume: 74 start-page: 38 year: 2001 ident: ref_16 article-title: Optical properties and nondestructive estimation of anthocyanin content in plant leaves publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2001)074<0038:OPANEO>2.0.CO;2 – ident: ref_1 doi: 10.3390/agriculture13050992 – volume: 75 start-page: 272 year: 2002 ident: ref_17 article-title: Assessing carotenoid content in plant leaves with reflectance spectroscopy publication-title: Photochem. Photobiol. doi: 10.1562/0031-8655(2002)075<0272:ACCIPL>2.0.CO;2 – ident: ref_20 – volume: 86 start-page: 30001 year: 2009 ident: ref_33 article-title: The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion publication-title: Europhys. Lett. doi: 10.1209/0295-5075/86/30001 – volume: 46 start-page: 154 year: 2010 ident: ref_29 article-title: Vector-angular distance color difference formula in RGB color space publication-title: Comput. Eng. Appl. – ident: ref_58 doi: 10.3390/app11125726 – volume: 62 start-page: 5509314 year: 2024 ident: ref_25 article-title: Feature Dimensionality Reduction with L 2, p-Norm-Based Robust Embedding Regression for Classification of Hyperspectral Images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2024.3363159 – ident: ref_30 – ident: ref_11 doi: 10.1007/978-3-031-19059-9 – volume: 9 start-page: 10832 year: 2019 ident: ref_41 article-title: Structural entropy: Monitoring correlation-based networks over time with application to financial markets publication-title: Sci. Rep. doi: 10.1038/s41598-019-47210-8 – ident: ref_49 doi: 10.3390/diagnostics13050842 – volume: 50 start-page: 141 year: 2016 ident: ref_39 article-title: A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 178 start-page: 105778 year: 2020 ident: ref_52 article-title: Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105778 – volume: 16 start-page: 2435 year: 2018 ident: ref_64 article-title: New Hyperspectral Index for Determining the State of Fermentation in the Non-Destructive Analysis for Organic Cocoa Violet publication-title: IEEE Lat. Am. Trans. doi: 10.1109/TLA.2018.8789565 – volume: 105 start-page: 4972 year: 2008 ident: ref_31 article-title: From time series to complex networks: The visibility graph publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0709247105 – volume: 93 start-page: 995 year: 2018 ident: ref_56 article-title: Local detrended fluctuation analysis for spectral red-edge parameters extraction publication-title: Nonlinear Dyn. doi: 10.1007/s11071-018-4241-y – ident: ref_61 doi: 10.1109/ICCSE.2009.5228509 – volume: 20 start-page: S2379 year: 2017 ident: ref_8 article-title: Possibility use of digital image analysis for the estimation of the rapeseed maturity stage publication-title: Int. J. Food Prop. doi: 10.1080/10942912.2017.1371188 – volume: 42 start-page: 2599 year: 2017 ident: ref_26 article-title: Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects publication-title: Opt. Lett. doi: 10.1364/OL.42.002599 – volume: 373 start-page: 821 year: 2007 ident: ref_59 article-title: Korean university life in a network perspective: Dynamics of a large affiliation network publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2006.04.066 – ident: ref_46 doi: 10.1007/978-1-4757-3264-1 – volume: 41 start-page: 35 year: 1992 ident: ref_21 article-title: A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(92)90059-S – volume: 99 start-page: 7821 year: 2002 ident: ref_42 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122653799 – volume: 74 start-page: 229 year: 2000 ident: ref_23 article-title: Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(00)00113-9 – volume: 221 start-page: 165308 year: 2020 ident: ref_28 article-title: Image segmentation based on the minimum spanning tree with a novel weight publication-title: Optik doi: 10.1016/j.ijleo.2020.165308 – volume: 91 start-page: 437 year: 2011 ident: ref_2 article-title: A review of Brassica seed color publication-title: Can. J. Plant Sci. doi: 10.4141/cjps10124 – volume: 121 start-page: 104702 year: 2017 ident: ref_57 article-title: Extracting sensitive spectrum bands of rapeseed using multiscale multifractal detrended fluctuation analysis publication-title: J. Appl. Phys. doi: 10.1063/1.4978308 – volume: 177 start-page: 105713 year: 2020 ident: ref_63 article-title: Predictive spectral analysis using an end-to-end deep model from hyperspectral images for high-throughput plant phenotyping publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105713 – volume: 602 start-page: 127627 year: 2022 ident: ref_43 article-title: Multiscale time-lagged correlation networks for detecting air pollution interaction publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2022.127627 – volume: 38 start-page: 741 year: 2005 ident: ref_9 article-title: Measurement of the geometrical features and surface color of rapeseeds using digital image analysis publication-title: Food Res. Int. doi: 10.1016/j.foodres.2005.01.008 – volume: 25 start-page: 083105 year: 2015 ident: ref_37 article-title: Fast transformation from time series to visibility graphs publication-title: Chaos Interdiscip. J. Nonlinear Sci. doi: 10.1063/1.4927835 – volume: 241 start-page: 326 year: 2012 ident: ref_32 article-title: Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems publication-title: Phys. D Nonlinear Phenom. doi: 10.1016/j.physd.2011.09.008 – volume: 90 start-page: 359 year: 1996 ident: ref_7 article-title: An efficient method for screening seed colour in Ethiopian mustard using visible reflectance spectroscopy and multivariate analysis publication-title: Euphytica doi: 10.1007/BF00027488 – volume: 219 start-page: 108784 year: 2024 ident: ref_65 article-title: Early detection of wilt in Cajanus cajan using satellite hyperspectral images: Development and validation of disease-specific spectral index with integrated methodology publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2024.108784 – volume: 30 start-page: 119 year: 2009 ident: ref_5 article-title: Seed color assessment in rapeseed seeds using Color and Near Infrared Reflectance Spectrometers publication-title: Rośl. Oleist – volume: 131 start-page: 176 year: 2012 ident: ref_10 article-title: A simple and rapid procedure for identification of seed coat colour at the early developmental stage of Brassica juncea and Brassica napus seeds publication-title: Plant Breed. doi: 10.1111/j.1439-0523.2011.01914.x – volume: 8 start-page: 22 year: 2020 ident: ref_55 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control. Eng. doi: 10.1080/21642583.2019.1708830 – volume: 63 start-page: 102 year: 2014 ident: ref_44 article-title: A new network structure entropy based on maximum flow publication-title: Acta Phys. Sin. – volume: 65 start-page: 5229 year: 2017 ident: ref_18 article-title: Genome-wide association mapping of seed coat color in Brassica napus publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b01226 – ident: ref_15 – ident: ref_24 doi: 10.1080/22797254.2023.2220565 – volume: 198 start-page: 107097 year: 2022 ident: ref_53 article-title: Application of multispectral imaging combined with machine learning models to discriminate special and traditional green coffee publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107097 |
| SSID | ssj0000913807 |
| Score | 2.3063834 |
| Snippet | Information technology and statistical modeling have made significant contributions to smart agriculture. Machine vision and hyperspectral technologies, with... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 941 |
| SubjectTerms | Agriculture agronomy Algorithms Calibration Chlorophyll Classification Color color classification Coloration computer vision Depth perception Diagnosis Digital agriculture Fatty acids Feature extraction Fourier transforms hyperspectral imagery hyperspectral reflectance Information technology Machine learning Machine vision Mathematical models Methods Proteins Quality control Rape plants Rapeseed Reflectance seed coat seed color Seeds Software Spectral reflectance Spectrum analysis Statistical analysis Statistical models Technology assessment Traditional farming vector-square distance Visibility visibility graph algorithm Vision systems Visual perception |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7BlgM98EYECjISEuIQrdeJ4_iEthWlHKhWUFA5RbZjLxVtsmRTJP49M4l3EUj0xCWKss5jNeOZ-eyZbwBeGOdCIaxI61poBChcp1YEWoYzKsukk0XuhmYT6vi4PD3Vi1gevY5plRubOBjqke2Z8rbRCE_r1tGK-RS1FIED1VK9Xn1PqYcU7bXGhhrXYYeIt_gEdhbv3i--bNdciAOz5GrcrcwQ7U_NshtqBxBmEJPc7A_vNJD4_8tUD_7n8Pb__fI7cCvGoWw-Ks5duOabe7A7X3aRi8Pfh28fzMqv0buxj3Q4aE2PB8T3bOikSTlGg1jZPnrCmuEJBpPs81lMuP3J3hIZNpufL_H9_dcLZpqaHSHuHcs7O3z9yYZB9gF8OnxzcnCUxt4MqcvlrE_NzAYVNAIgUYZcB4-RmnclZXZK55QK3mIwVwi0B044zZ3UhefaBSOlsnKWPYRJ0zb-EbAio-pejziKm5wbaUNRIN63mQ3cYjSXwHQjk8pF4nLqn3FeIYAhKVZ_SzGBV9s7ViNpxxVj90nM23FEtz1caLtlFWdvRY1Rc2FszoPJS6NNpqTIVS2DqVWW8wRekpJUZBTw05yJtQ34B4leq5orLSk0UmUCexslqaK1WFe_dSKB59ufcZ7T5o1pfHuJY9A14cTBAPTx1Y94AjcFBl5jUuYeTPru0j-FG-5Hf7bunsUp8Qs_Ph4T priority: 102 providerName: ProQuest |
| Title | Rapeseed Seed Coat Color Classification Based on the Visibility Graph Algorithm and Hyperspectral Technique |
| URI | https://www.proquest.com/docview/3059242702 https://www.proquest.com/docview/3153564615 https://doaj.org/article/386542ab40fa48a9a375247d5fad7340 |
| Volume | 14 |
| WOSCitedRecordID | wos001233077100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agricultural Science Database customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: M0K dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: PATMY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2073-4395 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913807 issn: 2073-4395 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl7aE9lD6pmzSoUCg9mLVlybKOuyEvSpYlTUt6EpIsbZam3uB1Av33nZG9SxpIe-lFGFvG8mikmc-e-YaQD8a5UDLL0rpmCgBKplLLAn6GM7IohBMld7HYhJxOq_NzNbtV6gtjwnp64F5wI6xJyZmxPAuGV0aZQgrGZS2CqWXBI1rPpLoFpuIerHJkUu__SxaA60dm3sYsAQAUyBmX_2GHIl3_fZtytDQHz8jTwUWk435oz8kD37wgT8bzdqDJ8C_Jj1Nz5VdgeOgXbPaWpoMGoDeNRS4x_CdKnE7ASNUUDsDPo98WQyzsL3qIPNV0fDlftovu4ic1TU2PAJL2mZctPP5sTe76inw92D_bO0qHsgmp4yLvUpPbIIMCbMKqwFXw4ER5V2HQpXBOyuAt-Fklg6XqmFOZE6r0mXLBCCGtyIvXZKtZNv4NoWWBibceIE5meGaEDWUJUNwWNmQWHK2EjNZC1G7gFMfSFpcasAWKXd8Ve0I-be646vk0_tJ3gvOy6YdM2PEE6Ice9EP_Sz8S8hFnVeN6haE5M6QdwAsi85UeSyXQa5FVQnbWE6-HhbzSsB0CQsWkvYS831yGJYj_VUzjl9fQB6wG6DT4hm__x4i3yWMGnlMfVblDtrr22r8jj9xNt1i1u-ThZH86O92N-g7tSfYZzs2OT2bffwNB0Qa2 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFAk48I0IFFgkEOJgZbP2er0HhNJCadQ2iiCgcjLr9W6oCHFwUlD_FL-RGX8EgURvPXCxomRjZ-PnmTe7M28AnhhrfSwyEeS50BigcB1kwtMynFFhKK2MI1s1m1CjUXJ0pMcb8LOthaG0ytYmVoY6LyytkfcQlxgqUPXUy8W3gLpG0e5q20KjhsW-O_2BIdvyxfAV3t-nQuy-nuzsBU1XgcBGsr8KTD_zymuk7iLxkfYOOYazCeUkSmuV8i5DGhILRLIVVnMrdey4tt5IqTLZD_G8F2AzQrDzDmyOh4fjj-tVHVLZTLiq90PDUPOemZZVdQIGMqRV1__D_1VtAv7lDCoPt3vtf_tvrsPVhkuzQQ3-G7Dh5jfhymBaNnoi7hZ8eWsWbokemr2jw05hVniYFSWruoFSnlQFTbaN3jxn-AIJMftw3CQNn7I3JOjNBrMpznf1-Ssz85ztYexel6iWePlJq4J7G96fy2zvQGdezN1dYHFIFcoOY0FuIm5k5uPYZSILM88zZKRd6LV3PbWN-Dr1AJmlGIQRTtK_cdKF5-tvLGrhkTPGbhOQ1uNIMrx6oyinaWOBUmruGgmTRdybKDHahEqKSOXSm1yFEe_CM4JhSoYNf5o1TX0GTpAkwtKB0pLonUq6sNXCMG0s3jL9jcEuPF5_jLaKNqDM3BUnOAbdKz78SKLvnX2KR3Bpb3J4kB4MR_v34bJAIlknmW5BZ1WeuAdw0X5fHS_Lh80DyODTeeP6F4fVbpw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFCE48I0IFFgkEOJgxVl7vd4DQknb0KooikpBvbm7691QEeLgpKD-NX4dM_4IAoneeuBiWcnGycbPM292Z94AvNDW-oQbHuQ5VxighCow3NMynJZRJKxIYls1m5DjcXp8rCYb8LOthaG0ytYmVoY6LyytkfcQlxgqUPVUzzdpEZOd0dvFt4A6SNFOa9tOo4bIgTv_geHb8s3-Dt7rl5yPdo-294Kmw0BgY9FfBbpvvPQKaTxPfay8Q77hbEr5icJaKb0zSEkSjqi23KrQCpW4UFmvhZBG9CO87hXYlBEGPR3YHO6OJ4frFR5S3ExDWe-NRpEKe3paVpUKGNSQbl3_D19YtQz4l2OovN3o1v_8P92Gmw3HZoP6obgDG25-F24MpmWjM-LuwZdDvXBL9NzsAx22C73Cw6woWdUllPKnKsiyIXr5nOEJEmX26bRJJj5n70jomw1mU5zv6vNXpuc528OYvi5dLfHrj1p13Pvw8VJm-wA682LuHgJLIqpcdhgjhjoOtTA-SZzhJjI-NMhUu9BrEZDZRpSdeoPMMgzOCDPZ35jpwuv1Jxa1IMkFY4cEqvU4khKvXijKadZYpoyavsZcmzj0Ok610pEUPJa58DqXURx24RVBMiODhz_N6qZuAydI0mHZQCpBtE-mXdhqIZk1lnCZ_cZjF56v30YbRhtTeu6KMxyDbheNApLrRxdf4hlcQzBn7_fHB4_hOkd-WeeebkFnVZ65J3DVfl-dLsunzbPI4OSyYf0LHYZ3Ng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapeseed+Seed+Coat+Color+Classification+Based+on+the+Visibility+Graph+Algorithm+and+Hyperspectral+Technique&rft.jtitle=Agronomy+%28Basel%29&rft.au=Zou%2C+Chaojun&rft.au=Zhu%2C+Xinghui&rft.au=Wang%2C+Fang&rft.au=Wu%2C+Jinran&rft.date=2024-05-01&rft.issn=2073-4395&rft.eissn=2073-4395&rft.volume=14&rft.issue=5&rft.spage=941&rft_id=info:doi/10.3390%2Fagronomy14050941&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_agronomy14050941 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4395&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4395&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4395&client=summon |