Early diagnosis of Parkinson’s disease using machine learning algorithms

Parkinson’s disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60–80%of these cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical hypotheses Jg. 138; S. 109603
1. Verfasser: Karapinar Senturk, Zehra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.05.2020
Schlagworte:
ISSN:0306-9877, 1532-2777, 1532-2777
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Parkinson’s disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60–80%of these cells are lost, then enough dopamine is not produced and Parkinson’s motor symptoms appear. It is thought that the disease begins many years before the motor (movement related) symptoms and therefore, researchers are looking for ways to recognize the non-motor symptoms that appear early in the disease as early as possible, thereby halting the progression of the disease. In this paper, machine learning based diagnosis of Parkinson’s disease is presented. The proposed diagnosis method consists of feature selection and classification processes. Feature Importance and Recursive Feature Elimination methods were considered for feature selection task. Classification and Regression Trees, Artificial Neural Networks, and Support Vector Machines were used for the classification of Parkinson's patients in the experiments. Support Vector Machines with Recursive Feature Elimination was shown to perform better than the other methods. 93.84% accuracy was achieved with the least number of voice features for Parkinson’s diagnosis.
AbstractList Parkinson's disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60-80%of these cells are lost, then enough dopamine is not produced and Parkinson's motor symptoms appear. It is thought that the disease begins many years before the motor (movement related) symptoms and therefore, researchers are looking for ways to recognize the non-motor symptoms that appear early in the disease as early as possible, thereby halting the progression of the disease. In this paper, machine learning based diagnosis of Parkinson's disease is presented. The proposed diagnosis method consists of feature selection and classification processes. Feature Importance and Recursive Feature Elimination methods were considered for feature selection task. Classification and Regression Trees, Artificial Neural Networks, and Support Vector Machines were used for the classification of Parkinson's patients in the experiments. Support Vector Machines with Recursive Feature Elimination was shown to perform better than the other methods. 93.84% accuracy was achieved with the least number of voice features for Parkinson's diagnosis.Parkinson's disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60-80%of these cells are lost, then enough dopamine is not produced and Parkinson's motor symptoms appear. It is thought that the disease begins many years before the motor (movement related) symptoms and therefore, researchers are looking for ways to recognize the non-motor symptoms that appear early in the disease as early as possible, thereby halting the progression of the disease. In this paper, machine learning based diagnosis of Parkinson's disease is presented. The proposed diagnosis method consists of feature selection and classification processes. Feature Importance and Recursive Feature Elimination methods were considered for feature selection task. Classification and Regression Trees, Artificial Neural Networks, and Support Vector Machines were used for the classification of Parkinson's patients in the experiments. Support Vector Machines with Recursive Feature Elimination was shown to perform better than the other methods. 93.84% accuracy was achieved with the least number of voice features for Parkinson's diagnosis.
Parkinson’s disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine. The cells that produce dopamine in the brain are responsible for the control, adaptation and fluency of movements. When 60–80%of these cells are lost, then enough dopamine is not produced and Parkinson’s motor symptoms appear. It is thought that the disease begins many years before the motor (movement related) symptoms and therefore, researchers are looking for ways to recognize the non-motor symptoms that appear early in the disease as early as possible, thereby halting the progression of the disease. In this paper, machine learning based diagnosis of Parkinson’s disease is presented. The proposed diagnosis method consists of feature selection and classification processes. Feature Importance and Recursive Feature Elimination methods were considered for feature selection task. Classification and Regression Trees, Artificial Neural Networks, and Support Vector Machines were used for the classification of Parkinson's patients in the experiments. Support Vector Machines with Recursive Feature Elimination was shown to perform better than the other methods. 93.84% accuracy was achieved with the least number of voice features for Parkinson’s diagnosis.
ArticleNumber 109603
Author Karapinar Senturk, Zehra
Author_xml – sequence: 1
  givenname: Zehra
  surname: Karapinar Senturk
  fullname: Karapinar Senturk, Zehra
  email: zehrakarapinar@duzce.edu.tr
  organization: Duzce University, Engineering Faculty, Department of Computer Engineering, 81620 Duzce, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32028195$$D View this record in MEDLINE/PubMed
BookMark eNqFkM9u1DAQhy1URLeFF-CAcuSSxY6T2EZcUFX-qRIc4GxNnMnubB272FmkvfEavF6fpIm2vfRQTjOa-X0jzXfGTkIMyNhrwdeCi_bdbj3i9rCueLUMTMvlM7YSjazKSil1wlZc8rY0WqlTdpbzjnNuaqlfsFM5M1qYZsW-XULyh6In2ISYKRdxKH5AuqaQY7j9-y_Pq4yQsdhnCptiBLelgIVHSGEZgN_ERNN2zC_Z8wF8xlf39Zz9-nT58-JLefX989eLj1elqxsxlabvBxRatboyAjow6JSDuoVGAmgjO-N6rlFjJxsphk40Blw9dw0Kp7SS5-zt8e5Nir_3mCc7UnboPQSM-2wr2VRtzZUyc_TNfXTfjdjbm0QjpIN9-H8O6GPApZhzwsE6mmCiGKYE5K3gdlFtd3ZRbRfV9qh6RqtH6MP1J6EPRwhnQX8Ik82OMDjsKaGbbB_pafz9I9x5CuTAX-Phf_AdbWmsIA
CitedBy_id crossref_primary_10_1186_s13550_025_01245_3
crossref_primary_10_1007_s10772_021_09837_9
crossref_primary_10_1007_s10072_024_07956_0
crossref_primary_10_1007_s11042_025_20599_3
crossref_primary_10_1016_j_jclepro_2020_125324
crossref_primary_10_1109_ACCESS_2025_3575023
crossref_primary_10_3390_biomedicines13071764
crossref_primary_10_1002_wjo2_70017
crossref_primary_10_1109_ACCESS_2024_3405009
crossref_primary_10_3390_electronics12102290
crossref_primary_10_1109_ACCESS_2024_3520482
crossref_primary_10_1016_j_procs_2025_04_132
crossref_primary_10_1142_S0219467825500639
crossref_primary_10_3390_bioengineering11010088
crossref_primary_10_1007_s12144_024_06891_9
crossref_primary_10_3390_s23115243
crossref_primary_10_1109_TAI_2022_3193651
crossref_primary_10_3390_diagnostics12071543
crossref_primary_10_1007_s12553_021_00555_5
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1007_s13312_021_2228_0
crossref_primary_10_7717_peerj_cs_1702
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_1038_s41598_022_24541_7
crossref_primary_10_1007_s11831_022_09710_1
crossref_primary_10_3390_diagnostics12102404
crossref_primary_10_1155_2023_1493676
crossref_primary_10_1007_s11042_023_14647_z
crossref_primary_10_3389_fgene_2023_1230579
crossref_primary_10_1007_s11042_025_20904_0
crossref_primary_10_3390_ijms242216119
crossref_primary_10_1109_ACCESS_2025_3572092
crossref_primary_10_17163_ings_n25_2021_02
crossref_primary_10_3390_math8091620
crossref_primary_10_1007_s42979_023_02313_y
crossref_primary_10_1111_exsy_13790
crossref_primary_10_2196_69422
crossref_primary_10_56294_sctconf20251353
crossref_primary_10_1007_s44174_025_00279_4
crossref_primary_10_1007_s10772_023_10068_3
crossref_primary_10_1109_ACCESS_2025_3600685
crossref_primary_10_32604_cmc_2024_048967
crossref_primary_10_3389_fneur_2022_831428
crossref_primary_10_3390_diagnostics12082003
crossref_primary_10_1007_s10772_024_10152_2
crossref_primary_10_1007_s11042_024_18398_3
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1007_s42979_025_04201_z
crossref_primary_10_3390_s23218936
crossref_primary_10_3390_jcdd9080268
crossref_primary_10_1016_j_cmpb_2023_107495
crossref_primary_10_3390_diagnostics10060421
crossref_primary_10_1016_j_ecoinf_2022_101640
crossref_primary_10_1080_03772063_2024_2434572
crossref_primary_10_1007_s13369_025_10148_3
crossref_primary_10_1007_s11042_023_16156_5
crossref_primary_10_1002_hbm_25838
crossref_primary_10_3233_JIFS_230183
crossref_primary_10_1007_s42979_024_03187_4
crossref_primary_10_1016_j_matpr_2020_10_063
crossref_primary_10_1177_20552076251352941
crossref_primary_10_1007_s11277_023_10285_8
crossref_primary_10_1016_j_bspc_2023_104870
crossref_primary_10_3390_math12101575
crossref_primary_10_3233_JPD_230002
crossref_primary_10_3390_diagnostics13111924
crossref_primary_10_1016_j_jvoice_2024_04_020
crossref_primary_10_1007_s10462_025_11347_y
crossref_primary_10_1002_eng2_13091
crossref_primary_10_1016_j_amjcard_2020_07_048
crossref_primary_10_3390_ijtm1030016
crossref_primary_10_1186_s42269_023_01047_4
crossref_primary_10_1007_s12144_022_02949_8
crossref_primary_10_1016_j_eswa_2022_117483
crossref_primary_10_1515_bmt_2022_0022
crossref_primary_10_1007_s00521_021_06626_y
crossref_primary_10_1590_1678_4324_2025230860
crossref_primary_10_1007_s00521_024_09516_1
crossref_primary_10_1155_2022_6159392
crossref_primary_10_3390_app13179502
crossref_primary_10_1186_s12880_025_01677_2
crossref_primary_10_21015_vtse_v11i3_1598
crossref_primary_10_3390_w15193487
crossref_primary_10_1109_ACCESS_2021_3108892
crossref_primary_10_7717_peerj_cs_2031
crossref_primary_10_1016_j_energy_2020_119076
crossref_primary_10_1080_10255842_2025_2542942
crossref_primary_10_1016_j_artmed_2025_103109
crossref_primary_10_3389_fnagi_2021_633752
crossref_primary_10_1515_bams_2021_0064
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1007_s42044_025_00232_0
crossref_primary_10_1155_2022_2793361
crossref_primary_10_3390_diagnostics12010166
crossref_primary_10_1186_s12911_022_01909_3
crossref_primary_10_1016_j_patrec_2023_03_011
crossref_primary_10_1080_0954898X_2025_2457955
crossref_primary_10_1016_j_compbiomed_2024_107959
crossref_primary_10_3389_frai_2023_1084001
crossref_primary_10_1007_s11042_024_20108_y
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_4236_jcc_2025_138014
crossref_primary_10_3390_bioengineering9070283
crossref_primary_10_3390_biomedinformatics5020023
crossref_primary_10_1007_s40846_023_00796_x
crossref_primary_10_1007_s11517_023_02803_4
crossref_primary_10_1007_s00521_021_05974_z
crossref_primary_10_3390_computation12110230
crossref_primary_10_1177_18724981251353596
crossref_primary_10_1007_s10278_024_01316_2
crossref_primary_10_3390_ai6040068
crossref_primary_10_1007_s10439_023_03303_0
crossref_primary_10_1007_s00521_024_09596_z
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_3390_bioengineering9030116
Cites_doi 10.1016/j.bspc.2016.08.003
10.1007/s10916-009-9272-y
10.1016/j.future.2018.02.009
10.1016/j.compbiomed.2019.103375
10.1016/j.compbiomed.2019.103347
10.1016/j.bbe.2017.09.002
10.1016/j.procs.2019.06.052
10.1016/j.clinph.2018.09.018
10.1016/j.procs.2018.10.031
10.1016/j.eij.2018.03.002
10.1080/00207721.2011.581395
10.1016/j.ifacol.2016.07.331
10.1016/j.eswa.2009.06.040
10.1016/j.neucom.2018.04.049
10.1016/j.parkreldis.2019.02.028
10.1016/j.patrec.2019.04.005
10.1016/j.eswa.2018.06.003
10.1016/j.bspc.2017.06.015
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.mehy.2020.109603
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-2777
ExternalDocumentID 32028195
10_1016_j_mehy_2020_109603
S0306987719314148
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEA
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LZ2
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSP
SSU
SSZ
T5K
UHS
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AAIAV
AATCM
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
LCYCR
RIG
9DU
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c451t-9ddfe18768291aba9ec7ca46a53aa893b9cd08e8eb3531fb159ac431f5e1c7873
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523642300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-9877
1532-2777
IngestDate Sun Nov 09 09:59:55 EST 2025
Mon Jul 21 05:59:28 EDT 2025
Tue Nov 18 21:56:18 EST 2025
Sat Nov 29 07:19:53 EST 2025
Fri Feb 23 02:48:48 EST 2024
Tue Oct 14 19:25:11 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Decision support systems
Feature selection
Medical diagnosis
Support Vector Machines
Machine learning
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-9ddfe18768291aba9ec7ca46a53aa893b9cd08e8eb3531fb159ac431f5e1c7873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hdl.handle.net/20.500.12684/5647
PMID 32028195
PQID 2352640779
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2352640779
pubmed_primary_32028195
crossref_citationtrail_10_1016_j_mehy_2020_109603
crossref_primary_10_1016_j_mehy_2020_109603
elsevier_sciencedirect_doi_10_1016_j_mehy_2020_109603
elsevier_clinicalkey_doi_10_1016_j_mehy_2020_109603
PublicationCentury 2000
PublicationDate May 2020
2020-05-00
2020-May
20200501
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical hypotheses
PublicationTitleAlternate Med Hypotheses
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Öztemel (b0120) 2012
Karabudak (b0005) 2014
Sakar, Kursun (b0010) 2010; 34
Zhu, Zeng, Wang (b0125) 2010
Rayan, Alfonse, Salem (bib126) 2019; 154
Das (b0055) 2010; 37
Prashanth, Dutta Roy (b0030) 2018; 305
Yaman, Ertam, Tuncer (b0080) 2019
UCI machine learning repository: Parkinsons data set. [Online]. Available
Cavallo, Moschetti, Esposito, Maremmani, Rovini (b0035) 2019; 63
Almeida (b0040) 2019; 125
Wan, Maszczyk, See, Dauwels, King (b0015) 2019; 130
Kotsavasiloglou, Kostikis, Hristu-Varsakelis, Arnaoutoglou (b0085) 2017; 31
Jain, Singh (b0100) 2018; 19
Polat (b0060) 2012; 43
Wang, Wang, Ai, Sun (b0065) 2017; 38
Singh, Vadera, Samavedham, Lim (b0070) 2016; 49
Abdulhay, Arunkumar, Narasimhan, Vellaiappan, Venkatraman (b0075) 2018; 83
Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines.
Salmanpour (b0020) 2019; 111
Nilashi, Ibrahim, Ahmadi, Shahmoradi, Farahmand (b0050) 2018; 38
Remeseiro, Bolon-Canedo (b0095) 2019; 112
Pedrosa, Vasconcelos, Medeiros, Silva (b0025) 2018; 138
[Accessed: 10-Dec-2019].
Yohannes, Webb (b0110) 1999
Hsu, Chang, Lin (b0115) 2003
Parisi, RaviChandran, Manaog (b0045) 2018; 110
Salmanpour (10.1016/j.mehy.2020.109603_b0020) 2019; 111
Rayan (10.1016/j.mehy.2020.109603_bib126) 2019; 154
Wan (10.1016/j.mehy.2020.109603_b0015) 2019; 130
Polat (10.1016/j.mehy.2020.109603_b0060) 2012; 43
Zhu (10.1016/j.mehy.2020.109603_b0125) 2010
Nilashi (10.1016/j.mehy.2020.109603_b0050) 2018; 38
Öztemel (10.1016/j.mehy.2020.109603_b0120) 2012
Yaman (10.1016/j.mehy.2020.109603_b0080) 2019
Wang (10.1016/j.mehy.2020.109603_b0065) 2017; 38
10.1016/j.mehy.2020.109603_b0090
Prashanth (10.1016/j.mehy.2020.109603_b0030) 2018; 305
Abdulhay (10.1016/j.mehy.2020.109603_b0075) 2018; 83
Sakar (10.1016/j.mehy.2020.109603_b0010) 2010; 34
Kotsavasiloglou (10.1016/j.mehy.2020.109603_b0085) 2017; 31
10.1016/j.mehy.2020.109603_b0105
Hsu (10.1016/j.mehy.2020.109603_b0115) 2003
Singh (10.1016/j.mehy.2020.109603_b0070) 2016; 49
Cavallo (10.1016/j.mehy.2020.109603_b0035) 2019; 63
Remeseiro (10.1016/j.mehy.2020.109603_b0095) 2019; 112
Yohannes (10.1016/j.mehy.2020.109603_b0110) 1999
Das (10.1016/j.mehy.2020.109603_b0055) 2010; 37
Karabudak (10.1016/j.mehy.2020.109603_b0005) 2014
Pedrosa (10.1016/j.mehy.2020.109603_b0025) 2018; 138
Almeida (10.1016/j.mehy.2020.109603_b0040) 2019; 125
Parisi (10.1016/j.mehy.2020.109603_b0045) 2018; 110
Jain (10.1016/j.mehy.2020.109603_b0100) 2018; 19
References_xml – volume: 63
  start-page: 111
  year: 2019
  end-page: 116
  ident: b0035
  article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning
  publication-title: Park Relat Disord
– volume: 125
  start-page: 55
  year: 2019
  end-page: 62
  ident: b0040
  article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
  publication-title: Pattern Recogn Lett
– volume: 49
  start-page: 990
  year: 2016
  end-page: 995
  ident: b0070
  article-title: Machine learning-based framework for multi-class diagnosis of neurodegenerative diseases: a study on Parkinson’s Disease
  publication-title: IFAC-Papers OnLine
– volume: 83
  start-page: 366
  year: 2018
  end-page: 373
  ident: b0075
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Fut Gener Comput Syst
– volume: 31
  start-page: 174
  year: 2017
  end-page: 180
  ident: b0085
  article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease
  publication-title: Biomed Signal Process Control
– volume: 130
  start-page: 145
  year: 2019
  end-page: 154
  ident: b0015
  article-title: A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease
  publication-title: Clin Neurophysiol
– volume: 138
  start-page: 215
  year: 2018
  end-page: 220
  ident: b0025
  article-title: Machine learning application to quantify the tremor level for Parkinson’s disease patients
  publication-title: Procedia Comput Sci
– volume: 305
  start-page: 78
  year: 2018
  end-page: 103
  ident: b0030
  article-title: Novel and improved stage estimation in Parkinson’s disease using clinical scales and machine learning
  publication-title: Neurocomputing
– reference: UCI machine learning repository: Parkinsons data set. [Online]. Available:
– volume: 19
  start-page: 179
  year: 2018
  end-page: 189
  ident: b0100
  article-title: Feature selection and classification systems for chronic disease prediction: a review
  publication-title: Egypt Inform J
– year: 2014
  ident: b0005
  article-title: Parkinson’s disease
– reference: Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines.
– reference: . [Accessed: 10-Dec-2019].
– volume: 112
  year: 2019
  ident: b0095
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput Biol Med
– volume: 37
  start-page: 1568
  year: 2010
  end-page: 1572
  ident: b0055
  article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease
  publication-title: Expert Syst Appl
– year: 1999
  ident: b0110
  article-title: Classification and Regression Trees, CART: a user manual for identifying indicators of vulnerability to famine and chronic food insecurity
– volume: 38
  start-page: 1
  year: 2018
  end-page: 15
  ident: b0050
  article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques
  publication-title: Biocybern Biomed Eng
– start-page: 109483
  year: 2019
  ident: b0080
  article-title: Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features
  publication-title: Med Hypotheses
– volume: 110
  start-page: 182
  year: 2018
  end-page: 190
  ident: b0045
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Syst Appl
– year: 2003
  ident: b0115
  article-title: A practical guide to support vector classification
– year: 2010
  ident: b0125
  article-title: Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS ® implementations
– year: 2012
  ident: b0120
  article-title: Yapay Sinir Ağları
– volume: 43
  start-page: 597
  year: 2012
  end-page: 609
  ident: b0060
  article-title: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering
  publication-title: Int J Syst Sci
– volume: 111
  year: 2019
  ident: b0020
  article-title: Optimized machine learning methods for prediction of cognitive outcome in Parkinson’s disease
  publication-title: Comput Biol Med
– volume: 154
  start-page: 361
  year: 2019
  end-page: 368
  ident: bib126
  article-title: Machine learning approaches in smart health
  publication-title: Procedia Comput Sci
– volume: 38
  start-page: 400
  year: 2017
  end-page: 410
  ident: b0065
  article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease
  publication-title: Biomed Signal Process Control
– volume: 34
  start-page: 591
  year: 2010
  end-page: 599
  ident: b0010
  article-title: Telediagnosis of Parkinson’s disease using measurements of dysphonia
  publication-title: J Med Syst
– volume: 31
  start-page: 174
  year: 2017
  ident: 10.1016/j.mehy.2020.109603_b0085
  article-title: Machine learning-based classification of simple drawing movements in Parkinson’s disease
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2016.08.003
– volume: 34
  start-page: 591
  issue: 4
  year: 2010
  ident: 10.1016/j.mehy.2020.109603_b0010
  article-title: Telediagnosis of Parkinson’s disease using measurements of dysphonia
  publication-title: J Med Syst
  doi: 10.1007/s10916-009-9272-y
– volume: 83
  start-page: 366
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0075
  article-title: Gait and tremor investigation using machine learning techniques for the diagnosis of Parkinson disease
  publication-title: Fut Gener Comput Syst
  doi: 10.1016/j.future.2018.02.009
– volume: 112
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0095
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 111
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0020
  article-title: Optimized machine learning methods for prediction of cognitive outcome in Parkinson’s disease
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103347
– volume: 38
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0050
  article-title: A hybrid intelligent system for the prediction of Parkinson’s Disease progression using machine learning techniques
  publication-title: Biocybern Biomed Eng
  doi: 10.1016/j.bbe.2017.09.002
– volume: 154
  start-page: 361
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_bib126
  article-title: Machine learning approaches in smart health
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2019.06.052
– volume: 130
  start-page: 145
  issue: 1
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0015
  article-title: A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson’s disease
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2018.09.018
– volume: 138
  start-page: 215
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0025
  article-title: Machine learning application to quantify the tremor level for Parkinson’s disease patients
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.10.031
– volume: 19
  start-page: 179
  issue: 3
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0100
  article-title: Feature selection and classification systems for chronic disease prediction: a review
  publication-title: Egypt Inform J
  doi: 10.1016/j.eij.2018.03.002
– start-page: 109483
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0080
  article-title: Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features
  publication-title: Med Hypotheses
– ident: 10.1016/j.mehy.2020.109603_b0090
– year: 2010
  ident: 10.1016/j.mehy.2020.109603_b0125
– volume: 43
  start-page: 597
  issue: 4
  year: 2012
  ident: 10.1016/j.mehy.2020.109603_b0060
  article-title: Classification of Parkinson’s disease using feature weighting method on the basis of fuzzy C-means clustering
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2011.581395
– ident: 10.1016/j.mehy.2020.109603_b0105
– volume: 49
  start-page: 990
  issue: 7
  year: 2016
  ident: 10.1016/j.mehy.2020.109603_b0070
  article-title: Machine learning-based framework for multi-class diagnosis of neurodegenerative diseases: a study on Parkinson’s Disease
  publication-title: IFAC-Papers OnLine
  doi: 10.1016/j.ifacol.2016.07.331
– year: 2012
  ident: 10.1016/j.mehy.2020.109603_b0120
– volume: 37
  start-page: 1568
  issue: 2
  year: 2010
  ident: 10.1016/j.mehy.2020.109603_b0055
  article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.06.040
– volume: 305
  start-page: 78
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0030
  article-title: Novel and improved stage estimation in Parkinson’s disease using clinical scales and machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.049
– volume: 63
  start-page: 111
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0035
  article-title: Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning
  publication-title: Park Relat Disord
  doi: 10.1016/j.parkreldis.2019.02.028
– year: 1999
  ident: 10.1016/j.mehy.2020.109603_b0110
– volume: 125
  start-page: 55
  year: 2019
  ident: 10.1016/j.mehy.2020.109603_b0040
  article-title: Detecting Parkinson’s disease with sustained phonation and speech signals using machine learning techniques
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2019.04.005
– volume: 110
  start-page: 182
  year: 2018
  ident: 10.1016/j.mehy.2020.109603_b0045
  article-title: Feature-driven machine learning to improve early diagnosis of Parkinson’s disease
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.06.003
– year: 2003
  ident: 10.1016/j.mehy.2020.109603_b0115
– year: 2014
  ident: 10.1016/j.mehy.2020.109603_b0005
– volume: 38
  start-page: 400
  year: 2017
  ident: 10.1016/j.mehy.2020.109603_b0065
  article-title: An adaptive kernel-based weighted extreme learning machine approach for effective detection of Parkinson’s disease
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2017.06.015
SSID ssj0009438
Score 2.653803
Snippet Parkinson’s disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine....
Parkinson's disease is caused by the disruption of the brain cells that produce substance to allow brain cells to communicate with each other, called dopamine....
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109603
SubjectTerms Algorithms
Decision support systems
Early Diagnosis
Feature selection
Humans
Machine Learning
Medical diagnosis
Parkinson Disease - diagnosis
Support Vector Machine
Support Vector Machines
Title Early diagnosis of Parkinson’s disease using machine learning algorithms
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0306987719314148
https://dx.doi.org/10.1016/j.mehy.2020.109603
https://www.ncbi.nlm.nih.gov/pubmed/32028195
https://www.proquest.com/docview/2352640779
Volume 138
WOSCitedRecordID wos000523642300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1532-2777
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009438
  issn: 0306-9877
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVoixAXxDdboDISt1VWm9jZ2McKFUGBikORVlyiseN0W7XZVbKL2lv_Bn-PX8I4thOo2EIPXKIoikdOXvI8tufNEPJ6UqiyEKAjyZWOOJcqUnoCEUsKkZQ2ESprhcIfs4MDMZ3Kz76UXNOWE8iqSpyfy8V_hRqvIdhWOnsDuDujeAHPEXQ8Iux4_CfgXcriwoXQuWwjVtrsVF4-tEE2YWdmuGoXC87amEoTikgcDeH0aF4fL2c-mXmo-eS3dWYXC6vcavoAxA9Qw8Jqe5F97DDWkuxXM6vh13WFZNxH8QU91XgSSeGLrASudKlYPNvFdv7D_kjEbk3gZHRmZhcja37U3_x71usro1EXIxjCz05yayO3NnJnY4NsJVkqkcO2dt_vTff7JMu8rVze9dyLpFw839WerHNE1k00Wofj8D6552cKdNch_IDcMtVDcueTj4V4RPZboGkHNJ2XtAP6x-X3hnqIaQsx9RDTADHtIX5MvrzdO3zzLvKVMSLN03gZyaIoTYwDmUhkDAqk0ZkGPoGUAaAHqqQuxsIIoxhybKnQZwWNrmKZmlgjRbMnZLOaV-YZoabgKVMskRzGXBWZALQLaRlDloAo2YDE4TXl2qeNt9VLTvP1AA3IsGuzcElTrr2bhbefBzkwDmA5fkrXtkq7Vt5ZdE7gX9u9CgDnyKR2ewwqM181eWJLRfBxlskBeeqQ73rP0ILdcd6-0ZM9J3f7P-sF2VzWK_OS3NbflsdNvUM2sqnY8d_wT978n-4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+diagnosis+of+Parkinson%E2%80%99s+disease+using+machine+learning+algorithms&rft.jtitle=Medical+hypotheses&rft.au=Karapinar+Senturk%2C+Zehra&rft.date=2020-05-01&rft.issn=0306-9877&rft.volume=138&rft.spage=109603&rft_id=info:doi/10.1016%2Fj.mehy.2020.109603&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_mehy_2020_109603
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-9877&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-9877&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-9877&client=summon