DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo

Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Jg. 71; H. 18; S. 6073
Hauptverfasser: Li, Ji-Liang, Sainson, Richard C A, Oon, Chern Ein, Turley, Helen, Leek, Russell, Sheldon, Helen, Bridges, Esther, Shi, Wen, Snell, Cameron, Bowden, Emma T, Wu, Herren, Chowdhury, Partha S, Russell, Angela J, Montgomery, Craig P, Poulsom, Richard, Harris, Adrian L
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 15.09.2011
Schlagworte:
ISSN:1538-7445, 1538-7445
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.
AbstractList Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.
Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate mechanisms of resistance to angiogenesis inhibitors, we transduced human glioblastoma cells with retroviruses encoding Notch delta-like ligand 4 (DLL4), grew them as tumor xenografts and then treated the murine hosts with the VEGF-A inhibitor bevacizumab. We found that DLL4-mediated tumor resistance to bevacizumab in vivo. The large vessels induced by DLL4-Notch signaling increased tumor blood supply and were insensitive to bevacizumab. However, blockade of Notch signaling by dibenzazepine, a γ-secretase inhibitor, disrupted the large vessels and abolished the tumor resistance. Multiple molecular mechanisms of resistance were shown, including decreased levels of hypoxia-induced VEGF and increased levels of the VEGF receptor VEGFR1 in the tumor stroma, decreased levels of VEGFR2 in large blood vessels, and reduced levels of VEGFR3 overall. DLL4-expressing tumors were also resistant to a VEGFR targeting multikinase inhibitor. We also observed activation of other pathways of tumor resistance driven by DLL4-Notch signaling, including the FGF2-FGFR and EphB4-EprinB2 pathways, the inhibition of which reversed tumor resistance partially. Taken together, our findings show the importance of classifying mechanisms involved in angiogenesis in tumors, and how combination therapy to block DLL4-Notch signaling may enhance the efficacy of VEGF inhibitors, particularly in DLL4-upregulated tumors, and thus provide a rational base for the development of novel strategies to overcome antiangiogenic resistance in the clinic.
Author Wu, Herren
Li, Ji-Liang
Chowdhury, Partha S
Shi, Wen
Montgomery, Craig P
Harris, Adrian L
Leek, Russell
Russell, Angela J
Bowden, Emma T
Oon, Chern Ein
Turley, Helen
Sheldon, Helen
Poulsom, Richard
Sainson, Richard C A
Bridges, Esther
Snell, Cameron
Author_xml – sequence: 1
  givenname: Ji-Liang
  surname: Li
  fullname: Li, Ji-Liang
  email: ji-liang.li@imm.ox.ac.uk
  organization: Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom. ji-liang.li@imm.ox.ac.uk
– sequence: 2
  givenname: Richard C A
  surname: Sainson
  fullname: Sainson, Richard C A
– sequence: 3
  givenname: Chern Ein
  surname: Oon
  fullname: Oon, Chern Ein
– sequence: 4
  givenname: Helen
  surname: Turley
  fullname: Turley, Helen
– sequence: 5
  givenname: Russell
  surname: Leek
  fullname: Leek, Russell
– sequence: 6
  givenname: Helen
  surname: Sheldon
  fullname: Sheldon, Helen
– sequence: 7
  givenname: Esther
  surname: Bridges
  fullname: Bridges, Esther
– sequence: 8
  givenname: Wen
  surname: Shi
  fullname: Shi, Wen
– sequence: 9
  givenname: Cameron
  surname: Snell
  fullname: Snell, Cameron
– sequence: 10
  givenname: Emma T
  surname: Bowden
  fullname: Bowden, Emma T
– sequence: 11
  givenname: Herren
  surname: Wu
  fullname: Wu, Herren
– sequence: 12
  givenname: Partha S
  surname: Chowdhury
  fullname: Chowdhury, Partha S
– sequence: 13
  givenname: Angela J
  surname: Russell
  fullname: Russell, Angela J
– sequence: 14
  givenname: Craig P
  surname: Montgomery
  fullname: Montgomery, Craig P
– sequence: 15
  givenname: Richard
  surname: Poulsom
  fullname: Poulsom, Richard
– sequence: 16
  givenname: Adrian L
  surname: Harris
  fullname: Harris, Adrian L
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21803743$$D View this record in MEDLINE/PubMed
BookMark eNpNj01PAjEURRuDEUF_gqY7V8W-ftCyJAhonOBG3U7amQI1Mx2cdkj4904iJm7efYtzb3JGaBCa4BC6AzoBkPqRUqqJFIpNFvMNASCgqLhA1yC5JkoIOfj3D9Eoxq--IoHKKzRkoClXgl-j16csE2TTpGKPo98FU_mww7UrvUku4tTVTYtbF31MJhQOpwabkDz5XK5XOO1daw4n7AM--mNzgy63poru9pxj9LFavi-eSfa2flnMM1IICYmo0sBMzJwzqgTQdqtUKbi1JTdKF9ZZbQUz_TWOsoJzIUsrZK_bs1ZwYGP08Lt7aJvvzsWU1z4WrqpMcE0Xcz2jUzWljPfk_ZnsbO-UH1pfm_aU__mzH6ooXyE
CitedBy_id crossref_primary_10_1038_bjc_2012_398
crossref_primary_10_1042_BST20140233
crossref_primary_10_1016_j_bbamcr_2014_10_024
crossref_primary_10_1369_00221554211058098
crossref_primary_10_1038_s41416_019_0482_x
crossref_primary_10_3390_cancers13081795
crossref_primary_10_1158_0008_5472_CAN_13_1467
crossref_primary_10_1016_j_ajpath_2012_07_013
crossref_primary_10_1016_j_canlet_2019_10_003
crossref_primary_10_1155_2014_318714
crossref_primary_10_1074_jbc_M114_576512
crossref_primary_10_1038_s41568_018_0006_7
crossref_primary_10_1007_s13277_015_4312_3
crossref_primary_10_3390_pharmaceutics14102218
crossref_primary_10_3389_fimmu_2024_1460533
crossref_primary_10_7554_eLife_17079
crossref_primary_10_1158_0008_5472_CAN_14_3773
crossref_primary_10_1007_s12032_012_0390_x
crossref_primary_10_1007_s10456_018_9633_6
crossref_primary_10_1038_s41434_022_00362_1
crossref_primary_10_1097_MPA_0000000000000751
crossref_primary_10_1016_j_biopha_2023_114494
crossref_primary_10_1016_j_cpt_2025_07_003
crossref_primary_10_1002_prca_201200102
crossref_primary_10_1007_s10456_014_9420_y
crossref_primary_10_1016_j_mvr_2019_03_006
crossref_primary_10_1155_2013_983981
crossref_primary_10_2147_OTT_S244860
crossref_primary_10_1016_j_drup_2018_01_002
crossref_primary_10_1038_bjc_2014_73
crossref_primary_10_1038_oncsis_2015_14
crossref_primary_10_1038_s41420_021_00682_y
crossref_primary_10_4254_wjh_v6_i12_830
crossref_primary_10_1093_carcin_bgs386
crossref_primary_10_1038_s41591_022_01868_2
crossref_primary_10_1016_j_heliyon_2023_e20777
crossref_primary_10_3389_fonc_2020_581459
crossref_primary_10_1038_onc_2015_363
crossref_primary_10_1007_s12032_016_0881_2
crossref_primary_10_1016_j_biomaterials_2014_11_039
crossref_primary_10_3389_fcell_2017_00101
crossref_primary_10_1038_s41598_018_21132_3
crossref_primary_10_1016_j_bulcan_2015_10_018
crossref_primary_10_1016_j_ctrv_2012_04_006
crossref_primary_10_1038_onc_2017_1
crossref_primary_10_1186_s12885_015_1648_4
crossref_primary_10_1593_neo_13550
crossref_primary_10_1016_j_annonc_2020_09_003
crossref_primary_10_1093_eurheartj_ehs141
crossref_primary_10_1002_jcp_26775
crossref_primary_10_1158_1078_0432_CCR_17_0160
crossref_primary_10_15252_emmm_201404271
crossref_primary_10_1371_journal_pone_0220101
crossref_primary_10_3892_mmr_2016_5688
crossref_primary_10_1016_j_mvr_2021_104209
crossref_primary_10_3389_fonc_2014_00341
crossref_primary_10_1097_MD_0000000000000057
crossref_primary_10_2217_fon_14_57
crossref_primary_10_3390_ijms22010241
crossref_primary_10_7717_peerj_12338
crossref_primary_10_1155_2018_7390104
crossref_primary_10_3892_ijo_2014_2286
crossref_primary_10_3390_brainsci12040505
crossref_primary_10_1093_cvr_cvab096
crossref_primary_10_1038_cgt_2014_58
crossref_primary_10_1016_j_mvr_2022_104341
crossref_primary_10_1007_s10456_020_09726_w
crossref_primary_10_1016_j_ctrv_2014_07_001
crossref_primary_10_3390_ijms24043226
crossref_primary_10_1093_neuonc_not071
crossref_primary_10_1097_CMR_0b013e3283538293
crossref_primary_10_2217_fon_15_218
crossref_primary_10_1038_nrc3366
crossref_primary_10_1016_j_tranon_2017_04_007
crossref_primary_10_1016_j_ejca_2013_02_019
crossref_primary_10_1016_j_mvr_2018_10_011
crossref_primary_10_1002_ddr_22257
crossref_primary_10_1186_s40659_020_0273_0
crossref_primary_10_1016_j_amjms_2022_03_001
crossref_primary_10_1177_0960327116650006
crossref_primary_10_1002_path_5246
crossref_primary_10_1146_annurev_pharmtox_011112_140226
crossref_primary_10_1016_j_humpath_2014_04_025
crossref_primary_10_1093_jnci_djr419
crossref_primary_10_1016_j_mvr_2019_103955
crossref_primary_10_1186_s12964_019_0337_3
crossref_primary_10_1007_s13277_015_4157_9
crossref_primary_10_1016_j_heliyon_2020_e05591
crossref_primary_10_1186_1756_9966_32_46
crossref_primary_10_2174_1381612825666190306164157
crossref_primary_10_3389_fonc_2020_01494
crossref_primary_10_1038_nrclinonc_2012_8
crossref_primary_10_1016_j_canlet_2012_11_015
crossref_primary_10_1016_j_cmet_2015_10_015
crossref_primary_10_1371_journal_pone_0119723
crossref_primary_10_1038_s41568_018_0023_6
crossref_primary_10_1089_scd_2012_0259
crossref_primary_10_3390_ijms23031679
crossref_primary_10_1111_cas_12409
crossref_primary_10_1158_1078_0432_CCR_18_1635
crossref_primary_10_1002_advs_201701036
crossref_primary_10_1371_journal_pone_0112371
crossref_primary_10_1186_s12935_016_0309_2
crossref_primary_10_1016_j_lfs_2019_116652
crossref_primary_10_1016_j_mvr_2021_104305
crossref_primary_10_1158_1078_0432_CCR_11_3237
crossref_primary_10_1080_14737140_2017_1322903
crossref_primary_10_1007_s10353_021_00707_x
crossref_primary_10_1002_mc_22976
crossref_primary_10_1007_s12032_013_0572_1
crossref_primary_10_3171_2014_12_JNS14768
crossref_primary_10_1016_j_wneu_2019_07_180
crossref_primary_10_1038_bjc_2012_178
crossref_primary_10_1002_1878_0261_12980
crossref_primary_10_1186_1756_8722_5_63
crossref_primary_10_1186_1756_8722_6_31
crossref_primary_10_1042_BST20110721
crossref_primary_10_1093_jnci_djs007
crossref_primary_10_1007_s00109_013_1019_z
crossref_primary_10_1007_s10456_014_9457_y
crossref_primary_10_12688_f1000research_11771_1
crossref_primary_10_1080_14796694_2024_2351351
crossref_primary_10_1038_bjc_2013_380
crossref_primary_10_1111_cas_16363
crossref_primary_10_1002_jcp_24434
crossref_primary_10_1007_s00401_014_1352_5
crossref_primary_10_1007_s11060_016_2263_1
crossref_primary_10_1158_0008_5472_CAN_14_0685
crossref_primary_10_1007_s11883_020_00899_9
crossref_primary_10_3389_fphar_2022_797805
crossref_primary_10_1155_2018_1052102
crossref_primary_10_3390_cells9061539
crossref_primary_10_1038_onc_2016_256
crossref_primary_10_1038_srep33737
crossref_primary_10_1016_j_ejca_2015_01_005
crossref_primary_10_1093_neuonc_nox081
crossref_primary_10_3390_ijms241310456
crossref_primary_10_7554_eLife_46012
crossref_primary_10_1016_j_ejca_2015_12_016
crossref_primary_10_1200_JCO_2012_41_9242
crossref_primary_10_3892_ol_2018_9227
crossref_primary_10_1158_1078_0432_CCR_22_1366
crossref_primary_10_1016_j_ccr_2013_06_004
crossref_primary_10_1586_14737140_2014_949245
crossref_primary_10_3389_fimmu_2023_1266450
crossref_primary_10_1182_blood_2012_11_459347
crossref_primary_10_3109_15419061_2011_619673
crossref_primary_10_1016_j_mam_2013_06_004
crossref_primary_10_1039_D3NR01539D
crossref_primary_10_1186_s13046_024_03135_3
crossref_primary_10_1172_JCI70212
crossref_primary_10_17816_MAJ83594
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1158/0008-5472.CAN-11-1704
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
ExternalDocumentID 21803743
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
6J9
AAJMC
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CGR
CS3
CUY
CVF
DIK
DU5
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
NPM
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WH7
WOQ
YKV
YZZ
7X8
AAFWJ
ABUFD
ID FETCH-LOGICAL-c451t-7da1949eea7d118bf77d43bbd3a78cbeb8b42ab8bae02c3345db4500818bb4312
IEDL.DBID 7X8
ISICitedReferencesCount 194
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000294843600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1538-7445
IngestDate Sun Nov 09 13:22:07 EST 2025
Thu Apr 03 06:50:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-7da1949eea7d118bf77d43bbd3a78cbeb8b42ab8bae02c3345db4500818bb4312
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/71/18/6073.full.pdf
PMID 21803743
PQID 890676023
PQPubID 23479
ParticipantIDs proquest_miscellaneous_890676023
pubmed_primary_21803743
PublicationCentury 2000
PublicationDate 2011-09-15
PublicationDateYYYYMMDD 2011-09-15
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2011
SSID ssj0005105
Score 2.4833903
Snippet Resistance to VEGF inhibitors is emerging as a major clinical problem. Notch signaling has been implicated in tumor angiogenesis. Therefore, to investigate...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 6073
SubjectTerms Angiogenesis Inhibitors - pharmacology
Animals
Antibodies, Monoclonal, Humanized - pharmacology
Bevacizumab
Cell Hypoxia - physiology
Cell Line, Tumor
Dibenzazepines - pharmacology
Drug Resistance, Neoplasm
Female
Fibrosarcoma - blood supply
Fibrosarcoma - drug therapy
Fibrosarcoma - metabolism
Glioblastoma - blood supply
Glioblastoma - drug therapy
Glioblastoma - metabolism
Humans
Intracellular Signaling Peptides and Proteins - metabolism
Membrane Proteins - metabolism
Mice
Mice, Inbred BALB C
Mice, SCID
Neovascularization, Pathologic - drug therapy
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - pathology
Receptors, Notch - metabolism
Signal Transduction
Transplantation, Heterologous
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - biosynthesis
Title DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo
URI https://www.ncbi.nlm.nih.gov/pubmed/21803743
https://www.proquest.com/docview/890676023
Volume 71
WOSCitedRecordID wos000294843600013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsTC-1Fe8sBqaGI7diZUlRYk2qgDVN0iO3akDCSlTSvx7zknKUyIgcVbpOh8vvvO_r47hG51mkgFmZP4JpGEGaGJMikjSnQCmyoubcV2nwxFFMnpNBw33JxFQ6tcx8QqUJsicXfk9zKEuBpAhnmYfRA3NMo9rjYTNDZRiwKScYwuMf1pFs5rBmN1pgVjvBHweFw6_YIknAn_rteNnLTME9Wotl9AZpVsBvv__M0DtNegTNyt3eIQbdj8CO2Mmnf0Y_TyOBwyEhWwZdgxOJQTpeNKRQLQE5fL92KOoRB34BK8ApcFhh3IyKT_NMC1ZOsTZzleZaviBL0N-q-9Z9KMVSAJ415JhFFeyEJrlTBQXuhUCMOo1oYqIRNttdTMV7Aq2_ETShk3mvGq953WgDf8U7SVF7k9Rzil1NM8pNq4utJwmXCjWBCk0gBsM7qN8NpKMbite4tQuS2Wi_jbTm10Vls6ntXtNWIAHa4pDr34--NLtFvf8YbE41eolcKRtddoO1mV2WJ-U7kDrNF49AXWbb53
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DLL4-Notch+signaling+mediates+tumor+resistance+to+anti-VEGF+therapy+in+vivo&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Li%2C+Ji-Liang&rft.au=Sainson%2C+Richard+C+A&rft.au=Oon%2C+Chern+Ein&rft.au=Turley%2C+Helen&rft.date=2011-09-15&rft.issn=1538-7445&rft.eissn=1538-7445&rft.volume=71&rft.issue=18&rft.spage=6073&rft_id=info:doi/10.1158%2F0008-5472.CAN-11-1704&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-7445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-7445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-7445&client=summon