A new class of iterative equalizers for space-time BICM over MIMO block fading multipath AWGN channel

This paper addresses the issue of advanced equalization methods for space-time communications over multiple-input multiple-output block fading channel with intersymbol interference. Instead of resorting to conventional multiuser detection techniques (based on the straightforward analogy between ante...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on communications Vol. 53; no. 12; pp. 2076 - 2091
Main Authors: Visoz, R., Berthet, A.O., Chtourou, S.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.12.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0090-6778, 1558-0857
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses the issue of advanced equalization methods for space-time communications over multiple-input multiple-output block fading channel with intersymbol interference. Instead of resorting to conventional multiuser detection techniques (based on the straightforward analogy between antennas and users), we adopt a different point of view, and separate time equalization from space equalization, thus introducing a higher degree of freedom in the overall space-time equalizer design. Time-domain equalization relies on minimum mean-square error criterion and operates on multidimensional modulation symbols, whose individual components can be detected in accordance with another criterion. In particular, when the optimum maximum a posteriori criterion is chosen, substantial performance gains over conventional space-time turbo equalization have been observed for different transmission scenarios, at the price of an increased, albeit manageable, computational complexity.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0090-6778
1558-0857
DOI:10.1109/TCOMM.2005.860061