Dolphin swarm algorithm
By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, gen...
Uložené v:
| Vydané v: | Frontiers of information technology & electronic engineering Ročník 17; číslo 8; s. 717 - 729 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hangzhou
Zhejiang University Press
01.08.2016
Springer Nature B.V |
| Predmet: | |
| ISSN: | 2095-9184, 2095-9230 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals. |
|---|---|
| AbstractList | By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals. By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the 'dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals. |
| Author | Tian-qi WU Min YAO Jian-hua YANG |
| AuthorAffiliation | School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China |
| Author_xml | – sequence: 1 givenname: Tian-qi surname: Wu fullname: Wu, Tian-qi email: TainchWu@gmail.com organization: School of Computer Science and Technology, Zhejiang University – sequence: 2 givenname: Min surname: Yao fullname: Yao, Min organization: School of Computer Science and Technology, Zhejiang University – sequence: 3 givenname: Jian-hua surname: Yang fullname: Yang, Jian-hua organization: School of Computer Science and Technology, Zhejiang University |
| BookMark | eNp1kEFPAjEQhRuDiYgcjVeiFy-LnXa33R4NgpKQeMFz0y1dWLLbQrvE8O-tgpqQcJo5fO_Nm3eNOtZZg9At4CEwCk-T6Xw8HkKGMcn5BeoSLLJEEIo7vzvk6RXqh7DGGAMDwUXeRXcvrt6sKjsIn8o3A1Uvna_aVXODLktVB9M_zh76mIzno7dk9v46HT3PEp1m0CapVphjo1lGNV4oQsuFAV1o0IRhYkpWMsWLIluoHPO8YEQoKJkBkQGPSTXtoceD78a77c6EVjZV0KaulTVuFyTkggrgBEhEH07Qtdt5G9NJEp_jhAGlkUoOlPYuBG9KufFVo_xeApbfTcmfpuSxqcjTE15XrWorZ1uvqvqsanhQhehul8b_ZzknuD-eWTm73EbNXy7GBMtTTjP6BepuhUk |
| CitedBy_id | crossref_primary_10_1007_s00500_022_07568_w crossref_primary_10_1007_s10462_020_09893_8 crossref_primary_10_1016_j_jksuci_2021_11_016 crossref_primary_10_1109_ACCESS_2020_2988867 crossref_primary_10_3390_a14080230 crossref_primary_10_3390_e20100762 crossref_primary_10_1016_j_micpro_2022_104626 crossref_primary_10_1080_01969722_2022_2145661 crossref_primary_10_1111_exsy_12843 crossref_primary_10_1007_s10462_022_10341_y crossref_primary_10_4018_IJDIBE_298650 crossref_primary_10_1088_1742_6596_2312_1_012026 crossref_primary_10_3390_s21020335 crossref_primary_10_3390_computation12100205 crossref_primary_10_1016_j_knosys_2022_108455 crossref_primary_10_1177_09544119211060989 crossref_primary_10_1177_1748301817713185 crossref_primary_10_3390_math8091389 crossref_primary_10_1007_s13369_021_06134_0 crossref_primary_10_1007_s11276_019_02032_4 crossref_primary_10_1109_JIOT_2025_3528872 crossref_primary_10_1007_s00500_019_04290_y crossref_primary_10_1007_s10462_023_10451_1 crossref_primary_10_1016_j_asoc_2023_110514 crossref_primary_10_1109_TII_2017_2786782 crossref_primary_10_3390_app10051827 crossref_primary_10_1177_0142331219887844 crossref_primary_10_1002_dac_4895 crossref_primary_10_1016_j_jpowsour_2021_230808 crossref_primary_10_1093_comjnl_bxaa106 crossref_primary_10_3390_drones7070427 crossref_primary_10_1038_s41598_024_83788_4 crossref_primary_10_1631_FITEE_2100530 crossref_primary_10_1109_ACCESS_2019_2931910 crossref_primary_10_3390_sym17040592 crossref_primary_10_1007_s10723_023_09728_0 crossref_primary_10_1016_j_adhoc_2024_103416 crossref_primary_10_1109_ACCESS_2019_2958456 crossref_primary_10_1109_ACCESS_2019_2962825 crossref_primary_10_1631_FITEE_1601555 crossref_primary_10_1016_j_jksuci_2018_06_007 crossref_primary_10_1007_s12065_024_00967_y crossref_primary_10_1016_j_vehcom_2017_12_003 crossref_primary_10_1109_ACCESS_2022_3173401 crossref_primary_10_1631_FITEE_2200237 crossref_primary_10_1093_comjnl_bxz061 crossref_primary_10_3390_math11102340 |
| Cites_doi | 10.1007/s11721-007-0002-0 10.7551/mitpress/3927.001.0001 10.1016/j.ins.2010.07.005 10.1504/IJBIC.2011.038700 10.1007/BF00175354 10.1016/j.eswa.2011.09.076 10.1109/MHS.1995.494215 10.1007/s11721-007-0004-y 10.1007/s10462-012-9328-0 10.1016/j.eswa.2011.07.123 10.1093/oso/9780195131581.001.0001 10.1109/3477.484436 10.1007/s11721-010-0040-x 10.1109/4235.771163 10.1007/s10898-007-9149-x |
| ContentType | Journal Article |
| Copyright | Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016 Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016. |
| Copyright_xml | – notice: Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016 – notice: Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016. |
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7SC 7SP 8FD L7M L~C L~D |
| DOI | 10.1631/FITEE.1500287 |
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| DocumentTitleAlternate | Dolphin swarm algorithm |
| EISSN | 2095-9230 |
| EndPage | 729 |
| ExternalDocumentID | 10_1631_FITEE_1500287 669684735 |
| GroupedDBID | -EM 2KG 2RA 4.4 406 5VR 92L 96X AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAYFA AAYIU AAYTO AAZMS ABDZT ABECU ABFGW ABFTD ABFTV ABJCF ABJNI ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AESKC AESTI AETCA AEVLU AEVTX AEXYK AFKRA AFLOW AFNRJ AFQWF AFUIB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF ANMIH AOCGG ARAPS AXYYD BENPR BGLVJ BGNMA CCEZO CHBEP CQIGP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB HCIFZ IKXTQ IWAJR J-C JUIAU JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9J PT4 PTHSS R-I RLLFE RSV S.. SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TCJ TGT TSG UG4 UOJIU UTJUX UZXMN VFIZW W92 Z7R Z7S Z7X Z7Z Z83 Z88 ZMTXR ~WA -SI -S~ 0R~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEI CCPQU Q-- ROL SJYHP U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFFHD AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS 7SC 7SP 8FD L7M L~C L~D PUEGO |
| ID | FETCH-LOGICAL-c451t-4ca070ec653c0da23fde1cbc1c2602ef6f6a7bb5da8078b629a1f6e19517002c3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2095-9184 |
| IngestDate | Fri Sep 05 07:47:53 EDT 2025 Wed Nov 05 03:28:09 EST 2025 Tue Nov 18 19:44:11 EST 2025 Sat Nov 29 04:33:22 EST 2025 Fri Feb 21 02:35:19 EST 2025 Wed Feb 14 10:16:54 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Swarm intelligence TP391 Dolphin Optimization Bio-inspired algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c451t-4ca070ec653c0da23fde1cbc1c2602ef6f6a7bb5da8078b629a1f6e19517002c3 |
| Notes | By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals. Swarm intelligence; Bio-inspired algorithm; Dolphin; Optimization 33-1389/TP ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1631%2FFITEE.1500287.pdf |
| PQID | 2918726133 |
| PQPubID | 2044401 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1893917212 proquest_journals_2918726133 crossref_primary_10_1631_FITEE_1500287 crossref_citationtrail_10_1631_FITEE_1500287 springer_journals_10_1631_FITEE_1500287 chongqing_primary_669684735 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-01 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hangzhou |
| PublicationPlace_xml | – name: Hangzhou – name: Heidelberg |
| PublicationTitle | Frontiers of information technology & electronic engineering |
| PublicationTitleAbbrev | Frontiers Inf Technol Electronic Eng |
| PublicationTitleAlternate | Frontiers of Information Technology & Electronic Engineering |
| PublicationYear | 2016 |
| Publisher | Zhejiang University Press Springer Nature B.V |
| Publisher_xml | – name: Zhejiang University Press – name: Springer Nature B.V |
| References | KarabogaD.An Idea Based on Honey Bee Swarm for Numerical Optimization2005 EberhartR.C.ShiY.H.Particle swarm optimization: developments, applications and resourcesProc. Congress on Evolutionary Computation20018186 WhitleyD.A genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354 MohanB.C.BaskaranR.A survey: ant colony optimization based recent research and implementation on several engineering domainsExpert Syst. Appl.20123944618462710.1016/j.eswa.2011.09.076 MitchellM.An Introduction to Genetic Algorithms19980906.68113 DucatelleF.di CaroG.A.GambardellaL.M.Principles and applications of swarm intelligence for adaptive routing in telecommunications networksSwarm Intell.20104317319810.1007/s11721-010-0040-x CuraT.A particle swarm optimization approach to clusteringExpert Syst. Appl.20123911582158810.1016/j.eswa.2011.07.123 KarabogaD.BasturkB.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ. Glob. Optim.2007393459471234617810.1007/s10898-007-9149-x PoliR.KennedyJ.BlackwellT.Particle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0 EberhartR.C.KennedyJ.A new optimizer using particle swarm theoryProc. 6th Int. Symp. on Micro Machine and Human Science1995394310.1109/MHS.1995.494215 ParpinelliR.S.LopesH.S.New inspirations in swarm intelligence: a surveyInt. J. Bio-inspired Comput.20113111610.1504/IJBIC.2011.038700 BonabeauE.DorigoM.TheraulazG.Swarm Intelligence: from Natural to Artificial Systems19991003.68123 YaoX.LiuY.LinG.M.Evolutionary programming made fasterIEEE Trans. Evol. Comput.1999328210210.1109/4235.771163 KarabogaD.GorkemliB.OzturkC.A comprehensive survey: artificial bee colony (ABC) algorithm and applicationsArtif. Intell. Rev.2014421215710.1007/s10462-012-9328-0 DorigoM.ManiezzoV.ColorniA.Ant system: optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B1996261294110.1109/3477.484436 GarnierS.GautraisJ.TheraulazG.The biological principles of swarm intelligenceSwarm Intell.20071133110.1007/s11721-007-0004-y DorigoM.BirattariM.SammutC.WebbG.I.Ant colony optimizationEncyclopedia of Machine Learning20103639 SaleemM.di CaroG.A.FarooqM.Swarm intelligence based routing protocol for wireless sensor networks: survey and future directionsInform. Sci.2011181204597462410.1016/j.ins.2010.07.005 KennedyJ.SammutC.WebbG.I.Particle swarm optimizationEncyclopedia of Machine Learning2010760766 R. Poli (103_CR16) 2007; 1 B.C. Mohan (103_CR14) 2012; 39 M. Mitchell (103_CR13) 1998 X. Yao (103_CR19) 1999; 3 F. Ducatelle (103_CR5) 2010; 4 M. Saleem (103_CR17) 2011; 181 E. Bonabeau (103_CR1) 1999 D. Karaboga (103_CR10) 2007; 39 M. Dorigo (103_CR4) 1996; 26 J. Kennedy (103_CR12) 2010 D. Karaboga (103_CR11) 2014; 42 M. Dorigo (103_CR3) 2010 D. Whitley (103_CR18) 1994; 4 R.S. Parpinelli (103_CR15) 2011; 3 D. Karaboga (103_CR9) 2005 T. Cura (103_CR2) 2012; 39 R.C. Eberhart (103_CR7) 2001 S. Garnier (103_CR8) 2007; 1 R.C. Eberhart (103_CR6) 1995 |
| References_xml | – reference: DorigoM.BirattariM.SammutC.WebbG.I.Ant colony optimizationEncyclopedia of Machine Learning20103639 – reference: KarabogaD.GorkemliB.OzturkC.A comprehensive survey: artificial bee colony (ABC) algorithm and applicationsArtif. Intell. Rev.2014421215710.1007/s10462-012-9328-0 – reference: BonabeauE.DorigoM.TheraulazG.Swarm Intelligence: from Natural to Artificial Systems19991003.68123 – reference: KarabogaD.BasturkB.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ. Glob. Optim.2007393459471234617810.1007/s10898-007-9149-x – reference: KennedyJ.SammutC.WebbG.I.Particle swarm optimizationEncyclopedia of Machine Learning2010760766 – reference: SaleemM.di CaroG.A.FarooqM.Swarm intelligence based routing protocol for wireless sensor networks: survey and future directionsInform. Sci.2011181204597462410.1016/j.ins.2010.07.005 – reference: DucatelleF.di CaroG.A.GambardellaL.M.Principles and applications of swarm intelligence for adaptive routing in telecommunications networksSwarm Intell.20104317319810.1007/s11721-010-0040-x – reference: KarabogaD.An Idea Based on Honey Bee Swarm for Numerical Optimization2005 – reference: MohanB.C.BaskaranR.A survey: ant colony optimization based recent research and implementation on several engineering domainsExpert Syst. Appl.20123944618462710.1016/j.eswa.2011.09.076 – reference: EberhartR.C.KennedyJ.A new optimizer using particle swarm theoryProc. 6th Int. Symp. on Micro Machine and Human Science1995394310.1109/MHS.1995.494215 – reference: PoliR.KennedyJ.BlackwellT.Particle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0 – reference: YaoX.LiuY.LinG.M.Evolutionary programming made fasterIEEE Trans. Evol. Comput.1999328210210.1109/4235.771163 – reference: ParpinelliR.S.LopesH.S.New inspirations in swarm intelligence: a surveyInt. J. Bio-inspired Comput.20113111610.1504/IJBIC.2011.038700 – reference: DorigoM.ManiezzoV.ColorniA.Ant system: optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B1996261294110.1109/3477.484436 – reference: GarnierS.GautraisJ.TheraulazG.The biological principles of swarm intelligenceSwarm Intell.20071133110.1007/s11721-007-0004-y – reference: WhitleyD.A genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354 – reference: CuraT.A particle swarm optimization approach to clusteringExpert Syst. Appl.20123911582158810.1016/j.eswa.2011.07.123 – reference: EberhartR.C.ShiY.H.Particle swarm optimization: developments, applications and resourcesProc. Congress on Evolutionary Computation20018186 – reference: MitchellM.An Introduction to Genetic Algorithms19980906.68113 – volume: 1 start-page: 33 issue: 1 year: 2007 ident: 103_CR16 publication-title: Swarm Intell. doi: 10.1007/s11721-007-0002-0 – volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization year: 2005 ident: 103_CR9 – volume-title: An Introduction to Genetic Algorithms year: 1998 ident: 103_CR13 doi: 10.7551/mitpress/3927.001.0001 – volume: 181 start-page: 4597 issue: 20 year: 2011 ident: 103_CR17 publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.07.005 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 103_CR15 publication-title: Int. J. Bio-inspired Comput. doi: 10.1504/IJBIC.2011.038700 – volume: 4 start-page: 65 issue: 2 year: 1994 ident: 103_CR18 publication-title: Stat. Comput. doi: 10.1007/BF00175354 – volume: 39 start-page: 4618 issue: 4 year: 2012 ident: 103_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.09.076 – start-page: 39 volume-title: Proc. 6th Int. Symp. on Micro Machine and Human Science year: 1995 ident: 103_CR6 doi: 10.1109/MHS.1995.494215 – volume: 1 start-page: 3 issue: 1 year: 2007 ident: 103_CR8 publication-title: Swarm Intell. doi: 10.1007/s11721-007-0004-y – volume: 42 start-page: 21 issue: 1 year: 2014 ident: 103_CR11 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-012-9328-0 – volume: 39 start-page: 1582 issue: 1 year: 2012 ident: 103_CR2 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.123 – start-page: 81 volume-title: Proc. Congress on Evolutionary Computation year: 2001 ident: 103_CR7 – volume-title: Swarm Intelligence: from Natural to Artificial Systems year: 1999 ident: 103_CR1 doi: 10.1093/oso/9780195131581.001.0001 – volume: 26 start-page: 29 issue: 1 year: 1996 ident: 103_CR4 publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/3477.484436 – volume: 4 start-page: 173 issue: 3 year: 2010 ident: 103_CR5 publication-title: Swarm Intell. doi: 10.1007/s11721-010-0040-x – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 103_CR19 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – start-page: 36 volume-title: Encyclopedia of Machine Learning year: 2010 ident: 103_CR3 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 103_CR10 publication-title: J. Glob. Optim. doi: 10.1007/s10898-007-9149-x – start-page: 760 volume-title: Encyclopedia of Machine Learning year: 2010 ident: 103_CR12 |
| SSID | ssj0001619798 |
| Score | 2.356942 |
| Snippet | By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are... |
| SourceID | proquest crossref springer chongqing |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 717 |
| SubjectTerms | Algorithms Ant colony optimization Benchmarking Benchmarks Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Convergence Dolphins Electrical Engineering Electronics and Microelectronics Genetic algorithms Instrumentation Networks Optimization Optimization algorithms Particle swarm optimization Phases Problem solving Search algorithms Swarm intelligence 优化问题 海豚 生活习惯 生物学特性 粒子群优化算法 群体智能 群算法 遗传算法 |
| SummonAdditionalLinks | – databaseName: SpringerLink dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHeBAoWyhBQUJwYXQrHZzRNCKA6qQgKo3y7GdtlJJoCnw-4zTpGWV4JyRbc14Mm9i5z2AY0T0PlFNYalASsvnIbFC3_atUApbIL4Xbi7f1r2hnU6z1wtvF6BR_guT33YvjyTzN7VOa-I5jTamcusc8QtWRLoIy4EmmtHt-V13_lEF2wGa69-6dq5B2PQLXs1vI2guhUGa9J9xps81aQ40v5yN5iWnXfn3YjdgvUCX5sV0O2zCgkqqUCmVG8wikauw9oGGcAt2r9LR02CYmNkbHz-afNRPx8PJ4HEbHtqt-8trqxBMsIQfOBPLFxwzWAkSeMKW3PViqRwRCUdg1-KqmMSE0ygKJNcs8xFxQ-7ERDmIsiiuVHg7sJSkidoD02sG0o6lcEgU-MqmIZExp3GkaBxKIgMDajP3sacpMQYjmmlHaxkbcFY6lImCa1xLXoyY7jnQQSx3ECscZMDJzLwc6xfDehkdVuRaxlwMM8VG0PMMOJo9xizRRx88UelLxhyEZaHudl0DTsuIzYf4cbL9P1vWYBVxFJneC6zD0mT8og5gRbxOhtn4MN-i7-To3zM priority: 102 providerName: Springer Nature |
| Title | Dolphin swarm algorithm |
| URI | http://lib.cqvip.com/qk/89589A/201608/669684735.html https://link.springer.com/article/10.1631/FITEE.1500287 https://www.proquest.com/docview/2918726133 https://www.proquest.com/docview/1893917212 |
| Volume | 17 |
| WOSCitedRecordID | wos000381439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2095-9230 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001619798 issn: 2095-9184 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2095-9230 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001619798 issn: 2095-9184 databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2095-9230 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001619798 issn: 2095-9184 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2095-9230 dateEnd: 20241213 omitProxy: false ssIdentifier: ssj0001619798 issn: 2095-9184 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2095-9230 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001619798 issn: 2095-9184 databaseCode: RSV dateStart: 20150101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6KE9AH1At9Aolar2UsN6H_b6hKBNVAkURdAi1Ivltb0EKeyGbKB_n_HGm5Sq7aUXX9ayVzO25xt79H0A7xHRJ8xmmtjUGJIowYhIwoQIo0ON-F5HjXzbxSkfDLLLSzH0F261L6tsz8TmoDaVdnfkB5GgGUe4H8eHk1viVKPc66qX0FiFdcdUhut8_bg3GJ4tb1kwP-CNIG4UNqKEWeKJNllMD_p4OvT2ERJhkOWOXGFUlVe3GDIeB6kl8vztsbSJQf3N__37Ldjw6LN7NF8uz2HFli_g2S-chC9h50s1noyuy279U01vump8hePMRjev4Hu_9-3zV-LVE4hOUjojiVa4na1maaxDo6K4MJbqXFONKUxkC1YwxfM8NcpRzucsEooWzFKEXBwNouNtWCur0r6GbpylJiyMpixPExtywUyheJFbXgjDTBrA7sJ0cjJnyZDM0e44YeMAPrXGlNoTjzv9i7F0CQj6QTZ-kN4PAXxYdG_H-kvHvdbW0m-8Wi4NHcC7xWfcMu4dRJW2uqslRYwmXOobBfCx9ehyiD9O9ubfk-3CU0RSbF4ZuAdrs-mdfQtP9P3sup52_KrswOoJJx1XXnqO7TD9ge3Z-cUDGSnq1A |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlUJ5tQwsEiceF0NhxnPiAENBdteqyqlCLejOO7XQrbZPtZtuKP8VvZJxNdgEBtx44x7KtfOOZb_yYD-A5MnrGbaoDGxsTMCV4IFjIAmF0qJHfa1rLt33pJ4NBenwsDpbge_sWxl2rbH1i7ahNqd0e-TYVJE2Q7kfRu_F54FSj3OlqK6ExM4t9--0KU7bq7d4O4vuC0l738ONu0KgKBJrFZBowrdDMreZxpEOjaJQbS3SmiUZqT23Oc66SLIuNcqXYM06FIjm3BKlIgu5DR9jvDVhmEeNxB5Y_dAcHnxe7OpiPJLUALw1rEcSUNYU9eUS2e-iNum-QgmFQT1wxh2FZnJxjiPo1KC6Y7m-Hs3XM69353_7WXVht2LX_frYc7sGSLe7D7Z9qLj6A9Z1yNB6eFn51pSZnvhqd4Lynw7OHcHQtM1uDTlEWdgP8KI1NmBtNeBYzGyaCm1wleWaTXBhuYg8251DJ8awKiOSurJATbvbgdQue1E1hdafvMZIuwULcZY27bHD34OW8edvXXxputdjKxrFUcgGsB8_mn9EluHMeVdjyopIEOahwqT314FVrQYsu_jjYo38P9hRu7R5-6sv-3mB_E1aQNfLZLcgt6EwnF_Yx3NSX09Nq8qRZET58vW6z-gFNU0Tl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xJQQPMGBAKBtBmsbLAvlw7EY8IaAaAlVoA8Sb5fiDVipJaVP49zmnScs2Jk3acyzbOvt0v8udfz-AL4joCdVN6elYKY-IhHoJ8YmXKOlLxPcyLOXb7q5Yu928v0-uZ-C4fgtTdrvXJcnxmwbL0pQVR31lShenUXDUQrc-P0Qsg9GRzcI8wSTG9nP9-Hk3_cGCqQErtXBDv9QjbJKKY_OPGSyvQifPHp5w1V_j0xR0_lYnLcNPa_W_Nv4BVirU6Z6Mr8kazOhsHVZrRQe3cvB1WH5DT7gBW2d5r9_pZu7wRQweXdF7yAfdovP4EW5b5zen371KSMGTJA4Kj0iBnq0ljSPpKxFGRulApjKQmM2E2lBDBUvTWAnLPp_SMBGBoTpA9MVwpzLahLksz_Q2uFEzVr5RMqBpTLTPEqqMYCbVzCSKqtiBxsSUvD8mzODUMvBYjWMHvtXG5bLiILdSGD1ucxE0EC8NxCsDOfB1Mrye6y8Dd-uT4pUPDnmIR84wQYwiB_Ynn9F7bElEZDofDXmAcC2xWXDowEF9etMp3l1s559H7sHi9VmLX120LxuwhFCLjlsHd2GuGIz0J1iQz0V3OPhc3txX7Vnq-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dolphin+swarm+algorithm&rft.jtitle=Frontiers+of+information+technology+%26+electronic+engineering&rft.au=Wu%2C+Tian-qi&rft.au=Yao%2C+Min&rft.au=Yang%2C+Jian-hua&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-9184&rft.eissn=2095-9230&rft.volume=17&rft.issue=8&rft.spage=717&rft.epage=729&rft_id=info:doi/10.1631%2FFITEE.1500287 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F89589A%2F89589A.jpg |