Dolphin swarm algorithm

By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, gen...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Frontiers of information technology & electronic engineering Ročník 17; číslo 8; s. 717 - 729
Hlavní autori: Wu, Tian-qi, Yao, Min, Yang, Jian-hua
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hangzhou Zhejiang University Press 01.08.2016
Springer Nature B.V
Predmet:
ISSN:2095-9184, 2095-9230
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.
AbstractList By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.
By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the 'dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.
Author Tian-qi WU Min YAO Jian-hua YANG
AuthorAffiliation School of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Author_xml – sequence: 1
  givenname: Tian-qi
  surname: Wu
  fullname: Wu, Tian-qi
  email: TainchWu@gmail.com
  organization: School of Computer Science and Technology, Zhejiang University
– sequence: 2
  givenname: Min
  surname: Yao
  fullname: Yao, Min
  organization: School of Computer Science and Technology, Zhejiang University
– sequence: 3
  givenname: Jian-hua
  surname: Yang
  fullname: Yang, Jian-hua
  organization: School of Computer Science and Technology, Zhejiang University
BookMark eNp1kEFPAjEQhRuDiYgcjVeiFy-LnXa33R4NgpKQeMFz0y1dWLLbQrvE8O-tgpqQcJo5fO_Nm3eNOtZZg9At4CEwCk-T6Xw8HkKGMcn5BeoSLLJEEIo7vzvk6RXqh7DGGAMDwUXeRXcvrt6sKjsIn8o3A1Uvna_aVXODLktVB9M_zh76mIzno7dk9v46HT3PEp1m0CapVphjo1lGNV4oQsuFAV1o0IRhYkpWMsWLIluoHPO8YEQoKJkBkQGPSTXtoceD78a77c6EVjZV0KaulTVuFyTkggrgBEhEH07Qtdt5G9NJEp_jhAGlkUoOlPYuBG9KufFVo_xeApbfTcmfpuSxqcjTE15XrWorZ1uvqvqsanhQhehul8b_ZzknuD-eWTm73EbNXy7GBMtTTjP6BepuhUk
CitedBy_id crossref_primary_10_1007_s00500_022_07568_w
crossref_primary_10_1007_s10462_020_09893_8
crossref_primary_10_1016_j_jksuci_2021_11_016
crossref_primary_10_1109_ACCESS_2020_2988867
crossref_primary_10_3390_a14080230
crossref_primary_10_3390_e20100762
crossref_primary_10_1016_j_micpro_2022_104626
crossref_primary_10_1080_01969722_2022_2145661
crossref_primary_10_1111_exsy_12843
crossref_primary_10_1007_s10462_022_10341_y
crossref_primary_10_4018_IJDIBE_298650
crossref_primary_10_1088_1742_6596_2312_1_012026
crossref_primary_10_3390_s21020335
crossref_primary_10_3390_computation12100205
crossref_primary_10_1016_j_knosys_2022_108455
crossref_primary_10_1177_09544119211060989
crossref_primary_10_1177_1748301817713185
crossref_primary_10_3390_math8091389
crossref_primary_10_1007_s13369_021_06134_0
crossref_primary_10_1007_s11276_019_02032_4
crossref_primary_10_1109_JIOT_2025_3528872
crossref_primary_10_1007_s00500_019_04290_y
crossref_primary_10_1007_s10462_023_10451_1
crossref_primary_10_1016_j_asoc_2023_110514
crossref_primary_10_1109_TII_2017_2786782
crossref_primary_10_3390_app10051827
crossref_primary_10_1177_0142331219887844
crossref_primary_10_1002_dac_4895
crossref_primary_10_1016_j_jpowsour_2021_230808
crossref_primary_10_1093_comjnl_bxaa106
crossref_primary_10_3390_drones7070427
crossref_primary_10_1038_s41598_024_83788_4
crossref_primary_10_1631_FITEE_2100530
crossref_primary_10_1109_ACCESS_2019_2931910
crossref_primary_10_3390_sym17040592
crossref_primary_10_1007_s10723_023_09728_0
crossref_primary_10_1016_j_adhoc_2024_103416
crossref_primary_10_1109_ACCESS_2019_2958456
crossref_primary_10_1109_ACCESS_2019_2962825
crossref_primary_10_1631_FITEE_1601555
crossref_primary_10_1016_j_jksuci_2018_06_007
crossref_primary_10_1007_s12065_024_00967_y
crossref_primary_10_1016_j_vehcom_2017_12_003
crossref_primary_10_1109_ACCESS_2022_3173401
crossref_primary_10_1631_FITEE_2200237
crossref_primary_10_1093_comjnl_bxz061
crossref_primary_10_3390_math11102340
Cites_doi 10.1007/s11721-007-0002-0
10.7551/mitpress/3927.001.0001
10.1016/j.ins.2010.07.005
10.1504/IJBIC.2011.038700
10.1007/BF00175354
10.1016/j.eswa.2011.09.076
10.1109/MHS.1995.494215
10.1007/s11721-007-0004-y
10.1007/s10462-012-9328-0
10.1016/j.eswa.2011.07.123
10.1093/oso/9780195131581.001.0001
10.1109/3477.484436
10.1007/s11721-010-0040-x
10.1109/4235.771163
10.1007/s10898-007-9149-x
ContentType Journal Article
Copyright Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016
Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016.
Copyright_xml – notice: Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016
– notice: Journal of Zhejiang University Science Editorial Office and Springer-Verlag Berlin Heidelberg 2016.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7SC
7SP
8FD
L7M
L~C
L~D
DOI 10.1631/FITEE.1500287
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Computer Science Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
DocumentTitleAlternate Dolphin swarm algorithm
EISSN 2095-9230
EndPage 729
ExternalDocumentID 10_1631_FITEE_1500287
669684735
GroupedDBID -EM
2KG
2RA
4.4
406
5VR
92L
96X
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAYFA
AAYIU
AAYTO
AAZMS
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
CCEZO
CHBEP
CQIGP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
HCIFZ
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
R-I
RLLFE
RSV
S..
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W92
Z7R
Z7S
Z7X
Z7Z
Z83
Z88
ZMTXR
~WA
-SI
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
CCPQU
Q--
ROL
SJYHP
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7SC
7SP
8FD
L7M
L~C
L~D
PUEGO
ID FETCH-LOGICAL-c451t-4ca070ec653c0da23fde1cbc1c2602ef6f6a7bb5da8078b629a1f6e19517002c3
IEDL.DBID BENPR
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2095-9184
IngestDate Fri Sep 05 07:47:53 EDT 2025
Wed Nov 05 03:28:09 EST 2025
Tue Nov 18 19:44:11 EST 2025
Sat Nov 29 04:33:22 EST 2025
Fri Feb 21 02:35:19 EST 2025
Wed Feb 14 10:16:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Swarm intelligence
TP391
Dolphin
Optimization
Bio-inspired algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-4ca070ec653c0da23fde1cbc1c2602ef6f6a7bb5da8078b629a1f6e19517002c3
Notes By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are difficult to deal with using traditional methods. At present, there are many well-implemented algorithms, such as particle swarm optimization, genetic algorithm, artificial bee colony algorithm, and ant colony optimization. These algorithms have already shown favorable performances. However, with the objects becoming increasingly complex, it is becoming gradually more difficult for these algorithms to meet human's demand in terms of accuracy and time. Designing a new algorithm to seek better solutions for optimization problems is becoming increasingly essential. Dolphins have many noteworthy biological characteristics and living habits such as echolocation, information exchanges, cooperation, and division of labor. Combining these biological characteristics and living habits with swarm intelligence and bringing them into optimization problems, we propose a brand new algorithm named the ‘dolphin swarm algorithm' in this paper. We also provide the definitions of the algorithm and specific descriptions of the four pivotal phases in the algorithm, which are the search phase, call phase, reception phase, and predation phase. Ten benchmark functions with different properties are tested using the dolphin swarm algorithm, particle swarm optimization, genetic algorithm, and artificial bee colony algorithm. The convergence rates and benchmark function results of these four algorithms are compared to testify the effect of the dolphin swarm algorithm. The results show that in most cases, the dolphin swarm algorithm performs better. The dolphin swarm algorithm possesses some great features, such as first-slow-then-fast convergence, periodic convergence, local-optimum-free, and no specific demand on benchmark functions. Moreover, the dolphin swarm algorithm is particularly appropriate to optimization problems, with more calls of fitness functions and fewer individuals.
Swarm intelligence; Bio-inspired algorithm; Dolphin; Optimization
33-1389/TP
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://link.springer.com/content/pdf/10.1631%2FFITEE.1500287.pdf
PQID 2918726133
PQPubID 2044401
PageCount 13
ParticipantIDs proquest_miscellaneous_1893917212
proquest_journals_2918726133
crossref_primary_10_1631_FITEE_1500287
crossref_citationtrail_10_1631_FITEE_1500287
springer_journals_10_1631_FITEE_1500287
chongqing_primary_669684735
PublicationCentury 2000
PublicationDate 2016-08-01
PublicationDateYYYYMMDD 2016-08-01
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationTitle Frontiers of information technology & electronic engineering
PublicationTitleAbbrev Frontiers Inf Technol Electronic Eng
PublicationTitleAlternate Frontiers of Information Technology & Electronic Engineering
PublicationYear 2016
Publisher Zhejiang University Press
Springer Nature B.V
Publisher_xml – name: Zhejiang University Press
– name: Springer Nature B.V
References KarabogaD.An Idea Based on Honey Bee Swarm for Numerical Optimization2005
EberhartR.C.ShiY.H.Particle swarm optimization: developments, applications and resourcesProc. Congress on Evolutionary Computation20018186
WhitleyD.A genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354
MohanB.C.BaskaranR.A survey: ant colony optimization based recent research and implementation on several engineering domainsExpert Syst. Appl.20123944618462710.1016/j.eswa.2011.09.076
MitchellM.An Introduction to Genetic Algorithms19980906.68113
DucatelleF.di CaroG.A.GambardellaL.M.Principles and applications of swarm intelligence for adaptive routing in telecommunications networksSwarm Intell.20104317319810.1007/s11721-010-0040-x
CuraT.A particle swarm optimization approach to clusteringExpert Syst. Appl.20123911582158810.1016/j.eswa.2011.07.123
KarabogaD.BasturkB.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ. Glob. Optim.2007393459471234617810.1007/s10898-007-9149-x
PoliR.KennedyJ.BlackwellT.Particle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0
EberhartR.C.KennedyJ.A new optimizer using particle swarm theoryProc. 6th Int. Symp. on Micro Machine and Human Science1995394310.1109/MHS.1995.494215
ParpinelliR.S.LopesH.S.New inspirations in swarm intelligence: a surveyInt. J. Bio-inspired Comput.20113111610.1504/IJBIC.2011.038700
BonabeauE.DorigoM.TheraulazG.Swarm Intelligence: from Natural to Artificial Systems19991003.68123
YaoX.LiuY.LinG.M.Evolutionary programming made fasterIEEE Trans. Evol. Comput.1999328210210.1109/4235.771163
KarabogaD.GorkemliB.OzturkC.A comprehensive survey: artificial bee colony (ABC) algorithm and applicationsArtif. Intell. Rev.2014421215710.1007/s10462-012-9328-0
DorigoM.ManiezzoV.ColorniA.Ant system: optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B1996261294110.1109/3477.484436
GarnierS.GautraisJ.TheraulazG.The biological principles of swarm intelligenceSwarm Intell.20071133110.1007/s11721-007-0004-y
DorigoM.BirattariM.SammutC.WebbG.I.Ant colony optimizationEncyclopedia of Machine Learning20103639
SaleemM.di CaroG.A.FarooqM.Swarm intelligence based routing protocol for wireless sensor networks: survey and future directionsInform. Sci.2011181204597462410.1016/j.ins.2010.07.005
KennedyJ.SammutC.WebbG.I.Particle swarm optimizationEncyclopedia of Machine Learning2010760766
R. Poli (103_CR16) 2007; 1
B.C. Mohan (103_CR14) 2012; 39
M. Mitchell (103_CR13) 1998
X. Yao (103_CR19) 1999; 3
F. Ducatelle (103_CR5) 2010; 4
M. Saleem (103_CR17) 2011; 181
E. Bonabeau (103_CR1) 1999
D. Karaboga (103_CR10) 2007; 39
M. Dorigo (103_CR4) 1996; 26
J. Kennedy (103_CR12) 2010
D. Karaboga (103_CR11) 2014; 42
M. Dorigo (103_CR3) 2010
D. Whitley (103_CR18) 1994; 4
R.S. Parpinelli (103_CR15) 2011; 3
D. Karaboga (103_CR9) 2005
T. Cura (103_CR2) 2012; 39
R.C. Eberhart (103_CR7) 2001
S. Garnier (103_CR8) 2007; 1
R.C. Eberhart (103_CR6) 1995
References_xml – reference: DorigoM.BirattariM.SammutC.WebbG.I.Ant colony optimizationEncyclopedia of Machine Learning20103639
– reference: KarabogaD.GorkemliB.OzturkC.A comprehensive survey: artificial bee colony (ABC) algorithm and applicationsArtif. Intell. Rev.2014421215710.1007/s10462-012-9328-0
– reference: BonabeauE.DorigoM.TheraulazG.Swarm Intelligence: from Natural to Artificial Systems19991003.68123
– reference: KarabogaD.BasturkB.A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ. Glob. Optim.2007393459471234617810.1007/s10898-007-9149-x
– reference: KennedyJ.SammutC.WebbG.I.Particle swarm optimizationEncyclopedia of Machine Learning2010760766
– reference: SaleemM.di CaroG.A.FarooqM.Swarm intelligence based routing protocol for wireless sensor networks: survey and future directionsInform. Sci.2011181204597462410.1016/j.ins.2010.07.005
– reference: DucatelleF.di CaroG.A.GambardellaL.M.Principles and applications of swarm intelligence for adaptive routing in telecommunications networksSwarm Intell.20104317319810.1007/s11721-010-0040-x
– reference: KarabogaD.An Idea Based on Honey Bee Swarm for Numerical Optimization2005
– reference: MohanB.C.BaskaranR.A survey: ant colony optimization based recent research and implementation on several engineering domainsExpert Syst. Appl.20123944618462710.1016/j.eswa.2011.09.076
– reference: EberhartR.C.KennedyJ.A new optimizer using particle swarm theoryProc. 6th Int. Symp. on Micro Machine and Human Science1995394310.1109/MHS.1995.494215
– reference: PoliR.KennedyJ.BlackwellT.Particle swarm optimizationSwarm Intell.200711335710.1007/s11721-007-0002-0
– reference: YaoX.LiuY.LinG.M.Evolutionary programming made fasterIEEE Trans. Evol. Comput.1999328210210.1109/4235.771163
– reference: ParpinelliR.S.LopesH.S.New inspirations in swarm intelligence: a surveyInt. J. Bio-inspired Comput.20113111610.1504/IJBIC.2011.038700
– reference: DorigoM.ManiezzoV.ColorniA.Ant system: optimization by a colony of cooperating agentsIEEE Trans. Syst. Man Cybern. B1996261294110.1109/3477.484436
– reference: GarnierS.GautraisJ.TheraulazG.The biological principles of swarm intelligenceSwarm Intell.20071133110.1007/s11721-007-0004-y
– reference: WhitleyD.A genetic algorithm tutorialStat. Comput.199442658510.1007/BF00175354
– reference: CuraT.A particle swarm optimization approach to clusteringExpert Syst. Appl.20123911582158810.1016/j.eswa.2011.07.123
– reference: EberhartR.C.ShiY.H.Particle swarm optimization: developments, applications and resourcesProc. Congress on Evolutionary Computation20018186
– reference: MitchellM.An Introduction to Genetic Algorithms19980906.68113
– volume: 1
  start-page: 33
  issue: 1
  year: 2007
  ident: 103_CR16
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0002-0
– volume-title: An Idea Based on Honey Bee Swarm for Numerical Optimization
  year: 2005
  ident: 103_CR9
– volume-title: An Introduction to Genetic Algorithms
  year: 1998
  ident: 103_CR13
  doi: 10.7551/mitpress/3927.001.0001
– volume: 181
  start-page: 4597
  issue: 20
  year: 2011
  ident: 103_CR17
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.07.005
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 103_CR15
  publication-title: Int. J. Bio-inspired Comput.
  doi: 10.1504/IJBIC.2011.038700
– volume: 4
  start-page: 65
  issue: 2
  year: 1994
  ident: 103_CR18
  publication-title: Stat. Comput.
  doi: 10.1007/BF00175354
– volume: 39
  start-page: 4618
  issue: 4
  year: 2012
  ident: 103_CR14
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.09.076
– start-page: 39
  volume-title: Proc. 6th Int. Symp. on Micro Machine and Human Science
  year: 1995
  ident: 103_CR6
  doi: 10.1109/MHS.1995.494215
– volume: 1
  start-page: 3
  issue: 1
  year: 2007
  ident: 103_CR8
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-007-0004-y
– volume: 42
  start-page: 21
  issue: 1
  year: 2014
  ident: 103_CR11
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-012-9328-0
– volume: 39
  start-page: 1582
  issue: 1
  year: 2012
  ident: 103_CR2
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.123
– start-page: 81
  volume-title: Proc. Congress on Evolutionary Computation
  year: 2001
  ident: 103_CR7
– volume-title: Swarm Intelligence: from Natural to Artificial Systems
  year: 1999
  ident: 103_CR1
  doi: 10.1093/oso/9780195131581.001.0001
– volume: 26
  start-page: 29
  issue: 1
  year: 1996
  ident: 103_CR4
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/3477.484436
– volume: 4
  start-page: 173
  issue: 3
  year: 2010
  ident: 103_CR5
  publication-title: Swarm Intell.
  doi: 10.1007/s11721-010-0040-x
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 103_CR19
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– start-page: 36
  volume-title: Encyclopedia of Machine Learning
  year: 2010
  ident: 103_CR3
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 103_CR10
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-007-9149-x
– start-page: 760
  volume-title: Encyclopedia of Machine Learning
  year: 2010
  ident: 103_CR12
SSID ssj0001619798
Score 2.356942
Snippet By adopting the distributed problem-solving strategy, swarm intelligence algorithms have been successfully applied to many optimization problems that are...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 717
SubjectTerms Algorithms
Ant colony optimization
Benchmarking
Benchmarks
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Convergence
Dolphins
Electrical Engineering
Electronics and Microelectronics
Genetic algorithms
Instrumentation
Networks
Optimization
Optimization algorithms
Particle swarm optimization
Phases
Problem solving
Search algorithms
Swarm intelligence
优化问题
海豚
生活习惯
生物学特性
粒子群优化算法
群体智能
群算法
遗传算法
SummonAdditionalLinks – databaseName: SpringerLink
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xHeBAoWyhBQUJwYXQrHZzRNCKA6qQgKo3y7GdtlJJoCnw-4zTpGWV4JyRbc14Mm9i5z2AY0T0PlFNYalASsvnIbFC3_atUApbIL4Xbi7f1r2hnU6z1wtvF6BR_guT33YvjyTzN7VOa-I5jTamcusc8QtWRLoIy4EmmtHt-V13_lEF2wGa69-6dq5B2PQLXs1vI2guhUGa9J9xps81aQ40v5yN5iWnXfn3YjdgvUCX5sV0O2zCgkqqUCmVG8wikauw9oGGcAt2r9LR02CYmNkbHz-afNRPx8PJ4HEbHtqt-8trqxBMsIQfOBPLFxwzWAkSeMKW3PViqRwRCUdg1-KqmMSE0ygKJNcs8xFxQ-7ERDmIsiiuVHg7sJSkidoD02sG0o6lcEgU-MqmIZExp3GkaBxKIgMDajP3sacpMQYjmmlHaxkbcFY6lImCa1xLXoyY7jnQQSx3ECscZMDJzLwc6xfDehkdVuRaxlwMM8VG0PMMOJo9xizRRx88UelLxhyEZaHudl0DTsuIzYf4cbL9P1vWYBVxFJneC6zD0mT8og5gRbxOhtn4MN-i7-To3zM
  priority: 102
  providerName: Springer Nature
Title Dolphin swarm algorithm
URI http://lib.cqvip.com/qk/89589A/201608/669684735.html
https://link.springer.com/article/10.1631/FITEE.1500287
https://www.proquest.com/docview/2918726133
https://www.proquest.com/docview/1893917212
Volume 17
WOSCitedRecordID wos000381439900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 20241213
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2095-9230
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001619798
  issn: 2095-9184
  databaseCode: RSV
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB7x6KE9AH1At9Aolar2UsN6H_b6hKBNVAkURdAi1Ivltb0EKeyGbKB_n_HGm5Sq7aUXX9ayVzO25xt79H0A7xHRJ8xmmtjUGJIowYhIwoQIo0ON-F5HjXzbxSkfDLLLSzH0F261L6tsz8TmoDaVdnfkB5GgGUe4H8eHk1viVKPc66qX0FiFdcdUhut8_bg3GJ4tb1kwP-CNIG4UNqKEWeKJNllMD_p4OvT2ERJhkOWOXGFUlVe3GDIeB6kl8vztsbSJQf3N__37Ldjw6LN7NF8uz2HFli_g2S-chC9h50s1noyuy279U01vump8hePMRjev4Hu_9-3zV-LVE4hOUjojiVa4na1maaxDo6K4MJbqXFONKUxkC1YwxfM8NcpRzucsEooWzFKEXBwNouNtWCur0r6GbpylJiyMpixPExtywUyheJFbXgjDTBrA7sJ0cjJnyZDM0e44YeMAPrXGlNoTjzv9i7F0CQj6QTZ-kN4PAXxYdG_H-kvHvdbW0m-8Wi4NHcC7xWfcMu4dRJW2uqslRYwmXOobBfCx9ehyiD9O9ubfk-3CU0RSbF4ZuAdrs-mdfQtP9P3sup52_KrswOoJJx1XXnqO7TD9ge3Z-cUDGSnq1A
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRLlUJ5tQwsEiceF0NhxnPiAENBdteqyqlCLejOO7XQrbZPtZtuKP8VvZJxNdgEBtx44x7KtfOOZb_yYD-A5MnrGbaoDGxsTMCV4IFjIAmF0qJHfa1rLt33pJ4NBenwsDpbge_sWxl2rbH1i7ahNqd0e-TYVJE2Q7kfRu_F54FSj3OlqK6ExM4t9--0KU7bq7d4O4vuC0l738ONu0KgKBJrFZBowrdDMreZxpEOjaJQbS3SmiUZqT23Oc66SLIuNcqXYM06FIjm3BKlIgu5DR9jvDVhmEeNxB5Y_dAcHnxe7OpiPJLUALw1rEcSUNYU9eUS2e-iNum-QgmFQT1wxh2FZnJxjiPo1KC6Y7m-Hs3XM69353_7WXVht2LX_frYc7sGSLe7D7Z9qLj6A9Z1yNB6eFn51pSZnvhqd4Lynw7OHcHQtM1uDTlEWdgP8KI1NmBtNeBYzGyaCm1wleWaTXBhuYg8251DJ8awKiOSurJATbvbgdQue1E1hdafvMZIuwULcZY27bHD34OW8edvXXxputdjKxrFUcgGsB8_mn9EluHMeVdjyopIEOahwqT314FVrQYsu_jjYo38P9hRu7R5-6sv-3mB_E1aQNfLZLcgt6EwnF_Yx3NSX09Nq8qRZET58vW6z-gFNU0Tl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED_xJQQPMGBAKBtBmsbLAvlw7EY8IaAaAlVoA8Sb5fiDVipJaVP49zmnScs2Jk3acyzbOvt0v8udfz-AL4joCdVN6elYKY-IhHoJ8YmXKOlLxPcyLOXb7q5Yu928v0-uZ-C4fgtTdrvXJcnxmwbL0pQVR31lShenUXDUQrc-P0Qsg9GRzcI8wSTG9nP9-Hk3_cGCqQErtXBDv9QjbJKKY_OPGSyvQifPHp5w1V_j0xR0_lYnLcNPa_W_Nv4BVirU6Z6Mr8kazOhsHVZrRQe3cvB1WH5DT7gBW2d5r9_pZu7wRQweXdF7yAfdovP4EW5b5zen371KSMGTJA4Kj0iBnq0ljSPpKxFGRulApjKQmM2E2lBDBUvTWAnLPp_SMBGBoTpA9MVwpzLahLksz_Q2uFEzVr5RMqBpTLTPEqqMYCbVzCSKqtiBxsSUvD8mzODUMvBYjWMHvtXG5bLiILdSGD1ucxE0EC8NxCsDOfB1Mrye6y8Dd-uT4pUPDnmIR84wQYwiB_Ynn9F7bElEZDofDXmAcC2xWXDowEF9etMp3l1s559H7sHi9VmLX120LxuwhFCLjlsHd2GuGIz0J1iQz0V3OPhc3txX7Vnq-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dolphin+swarm+algorithm&rft.jtitle=Frontiers+of+information+technology+%26+electronic+engineering&rft.au=Wu%2C+Tian-qi&rft.au=Yao%2C+Min&rft.au=Yang%2C+Jian-hua&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-9184&rft.eissn=2095-9230&rft.volume=17&rft.issue=8&rft.spage=717&rft.epage=729&rft_id=info:doi/10.1631%2FFITEE.1500287
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F89589A%2F89589A.jpg