An improved two-stage optimization for network and load recovery during power system restoration

•Proposed an improved two-stage optimization method for network and load recovery.•Decouples integer and continuous decision variables and solves them separately.•Proposed method significantly can improve the computational efficiency.•Verified the advantage in computational efficiency and plan optim...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied energy Ročník 249; s. 265 - 275
Hlavní autoři: Liao, Shiwu, Yao, Wei, Han, Xingning, Fang, Jiakun, Ai, Xiaomeng, Wen, Jinyu, He, Haibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.09.2019
Témata:
ISSN:0306-2619, 1872-9118
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Proposed an improved two-stage optimization method for network and load recovery.•Decouples integer and continuous decision variables and solves them separately.•Proposed method significantly can improve the computational efficiency.•Verified the advantage in computational efficiency and plan optimality.•Demonstrated potential application through simulation in a practical system. Network and load recovery (NLR) during power system restoration is a multi-step mixed-integer nonlinear programming (MINP) problem. The NLR is difficult to be solved as it is NP-hard. Thus, NLR is commonly solved step by step, which is short-sighted and will result in longer restoration time. To obtain a far-sighted NLR plan, this paper proposes an improved two-stage optimization method for NLR. The first stage adopts a mixed-integer linear programming (MILP) model to obtain optimal solutions of integer variables in NLR, namely the load pick-up schedules and transmission line charging schedules. Then in the second stage, a continuous non-linear optimization method based on AC power flow with frequency constraints and load model is established to minimize the restoration duration of the plan generated in the first stage step by step. Case studies are undertaken on a 10-machine 39-bus system and Southeast Hubei Provincial power system of China. Simulation results indicate that the restoration plan obtained from the improved two-stage optimization method is highly effective, while the computational efficient meets the intensive need for restoration scheduling after blackouts.
AbstractList •Proposed an improved two-stage optimization method for network and load recovery.•Decouples integer and continuous decision variables and solves them separately.•Proposed method significantly can improve the computational efficiency.•Verified the advantage in computational efficiency and plan optimality.•Demonstrated potential application through simulation in a practical system. Network and load recovery (NLR) during power system restoration is a multi-step mixed-integer nonlinear programming (MINP) problem. The NLR is difficult to be solved as it is NP-hard. Thus, NLR is commonly solved step by step, which is short-sighted and will result in longer restoration time. To obtain a far-sighted NLR plan, this paper proposes an improved two-stage optimization method for NLR. The first stage adopts a mixed-integer linear programming (MILP) model to obtain optimal solutions of integer variables in NLR, namely the load pick-up schedules and transmission line charging schedules. Then in the second stage, a continuous non-linear optimization method based on AC power flow with frequency constraints and load model is established to minimize the restoration duration of the plan generated in the first stage step by step. Case studies are undertaken on a 10-machine 39-bus system and Southeast Hubei Provincial power system of China. Simulation results indicate that the restoration plan obtained from the improved two-stage optimization method is highly effective, while the computational efficient meets the intensive need for restoration scheduling after blackouts.
Network and load recovery (NLR) during power system restoration is a multi-step mixed-integer nonlinear programming (MINP) problem. The NLR is difficult to be solved as it is NP-hard. Thus, NLR is commonly solved step by step, which is short-sighted and will result in longer restoration time. To obtain a far-sighted NLR plan, this paper proposes an improved two-stage optimization method for NLR. The first stage adopts a mixed-integer linear programming (MILP) model to obtain optimal solutions of integer variables in NLR, namely the load pick-up schedules and transmission line charging schedules. Then in the second stage, a continuous non-linear optimization method based on AC power flow with frequency constraints and load model is established to minimize the restoration duration of the plan generated in the first stage step by step. Case studies are undertaken on a 10-machine 39-bus system and Southeast Hubei Provincial power system of China. Simulation results indicate that the restoration plan obtained from the improved two-stage optimization method is highly effective, while the computational efficient meets the intensive need for restoration scheduling after blackouts.
Author Wen, Jinyu
Han, Xingning
Fang, Jiakun
Liao, Shiwu
Yao, Wei
He, Haibo
Ai, Xiaomeng
Author_xml – sequence: 1
  givenname: Shiwu
  orcidid: 0000-0003-4057-2831
  surname: Liao
  fullname: Liao, Shiwu
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-4054-5916
  surname: Yao
  fullname: Yao, Wei
  email: w.yao@hust.edu.cn
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074, China
– sequence: 3
  givenname: Xingning
  surname: Han
  fullname: Han, Xingning
  organization: State Grid Jiangsu Economic Research Institute, Nanjing 210008, China
– sequence: 4
  givenname: Jiakun
  surname: Fang
  fullname: Fang, Jiakun
  organization: Department of Energy Technology, Aalborg University, Aalborg DK-9220, Denmark
– sequence: 5
  givenname: Xiaomeng
  surname: Ai
  fullname: Ai, Xiaomeng
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074, China
– sequence: 6
  givenname: Jinyu
  surname: Wen
  fullname: Wen, Jinyu
  organization: State Key Lab of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 430074, China
– sequence: 7
  givenname: Haibo
  surname: He
  fullname: He, Haibo
  organization: Department of Electrical, Computer and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881, USA
BookMark eNqFkMFOGzEQhq2KSg20r1D5yGW3Y2djryUOIAS0ElIv7dl17NnI6a692A4oPH1NUi5cOM1h5vtn5jslJyEGJOQrg5YBE9-2rZkxYNrsWw5MtdC1TIoPZMF6yRvFWH9CFrAE0XDB1CdymvMWADjjsCB_rgL105ziIzpanmKTi9kgjXPxk382xcdAh5howNpMf6kJjo7ROJrQVibtqdslHzZ0jk-YaN7nglNt5hLTgf5MPg5mzPjlfz0jv29vfl1_b-5_3v24vrpvbLdipeGohJLSYSfM0vQdKmPE4MRKKGZ6A5KD4-t-DQodB8572TN0qyWqtRzA2uUZOT_m1l8ednW_nny2OI4mYNxlXZEaJaUUdfTiOGpTzDnhoK0vh2NLMn7UDPSLWL3Vr2L1i1gNnWYHXLzB5-Qnk_bvg5dHEKuHR49JZ-sxWHS-2izaRf9exD_iuJvr
CitedBy_id crossref_primary_10_1016_j_ijepes_2022_108610
crossref_primary_10_1016_j_ijepes_2023_109435
crossref_primary_10_1080_15325008_2021_1970056
crossref_primary_10_1109_TSTE_2022_3227166
crossref_primary_10_1049_cds2_1992253
crossref_primary_10_1049_gtd2_12307
crossref_primary_10_1016_j_apenergy_2023_122038
crossref_primary_10_1016_j_esr_2021_100685
crossref_primary_10_1016_j_ijepes_2025_110992
crossref_primary_10_1186_s42400_023_00200_w
crossref_primary_10_1016_j_apenergy_2021_117560
crossref_primary_10_1016_j_ijepes_2022_108168
crossref_primary_10_1049_rpg2_12893
crossref_primary_10_1111_itor_70001
crossref_primary_10_1016_j_ress_2023_109340
crossref_primary_10_1109_TSG_2023_3321108
Cites_doi 10.1109/PESGM.2015.7286349
10.1109/JPROC.2017.2696564
10.1016/j.ijepes.2015.02.027
10.1016/j.eswa.2015.05.001
10.1016/j.ijepes.2016.10.008
10.1109/TPWRD.2007.916112
10.1049/iet-gtd.2015.0240
10.1007/s40565-013-0014-2
10.1109/TPWRS.2011.2157180
10.1109/TPWRS.2013.2267058
10.1109/TII.2017.2712147
10.1109/PSCC.2014.7038386
10.1080/15325008.2013.862326
10.1109/TPWRS.2008.926471
10.1049/iet-gtd.2013.0065
10.1016/j.ijepes.2015.12.033
10.1016/j.apenergy.2017.11.067
10.1109/59.387912
10.1109/PESGM.2012.6344826
10.1016/j.apenergy.2016.10.086
10.1109/TII.2017.2780167
10.1007/s40565-016-0219-2
10.1016/j.renene.2018.11.048
10.1109/ICHQP.2000.897734
10.1016/j.ijepes.2015.03.004
10.1109/TPWRS.2013.2249595
10.1016/j.apenergy.2017.06.059
10.1049/iet-rpg.2015.0164
10.1109/TSG.2016.2539199
10.1016/j.apenergy.2017.06.086
10.1016/j.apenergy.2019.01.192
10.1016/j.ijepes.2018.02.044
10.1109/TPWRS.2010.2089540
10.1016/j.apenergy.2017.05.012
10.1016/j.ijepes.2017.07.007
10.1109/TSTE.2018.2855039
10.1109/SmartGridComm.2015.7436402
10.1016/j.apenergy.2018.04.019
10.1016/j.apenergy.2017.10.004
10.1016/j.ijepes.2018.08.018
10.1109/TSG.2015.2503320
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2019.04.176
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 275
ExternalDocumentID 10_1016_j_apenergy_2019_04_176
S0306261919308359
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c451t-2e96977de46a3a84e9aa6fd65691a8a0720d2b8b09ed20228781ed53e9b7f0cc3
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472692200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-2619
IngestDate Sat Sep 27 20:54:44 EDT 2025
Sat Nov 29 07:25:24 EST 2025
Tue Nov 18 21:19:31 EST 2025
Fri Feb 23 02:16:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Network restoration
Two-stage optimization
Load restoration
Power system restoration
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-2e96977de46a3a84e9aa6fd65691a8a0720d2b8b09ed20228781ed53e9b7f0cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4054-5916
0000-0003-4057-2831
OpenAccessLink https://digitalcommons.uri.edu/ele_facpubs/336
PQID 2286917776
PQPubID 24069
PageCount 11
ParticipantIDs proquest_miscellaneous_2286917776
crossref_citationtrail_10_1016_j_apenergy_2019_04_176
crossref_primary_10_1016_j_apenergy_2019_04_176
elsevier_sciencedirect_doi_10_1016_j_apenergy_2019_04_176
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Wen, Xue (b0155) 2016; 7
Lin, Bie (b0105) 2018; 210
NERC standards for system restoration from blackstart resources, available at
Qiu, Li (b0065) 2017; 105
Golshani, Sun, Zhou, Zheng, Tong (b0205) 2017; 13
Qu, Yin, Lin (b0135) 2014
Jiang, Chen, Liu, Sun, Luo, Liu (b0015) 2017; 86
Khodaei AA, Khator ASK, Han Z. Transmission network restoration considering AC power flow constraints. In: Proc. IEEE Int. Conf. Smart Grid Communications, Miami, FL; 2015. p. 816–21.
Gan, Ai, Fang, Yan, Yao, Zuo (b0195) 2019; 239
Leng, Lu, Liang (b0020) 2018; 100
NERC standards for system restoration plans, available at
Liu, Wen, Yao, Long (b0225) 2016; 10
Coffrin, Van Hentenryck (b0150) 2015; 72
Ganganath, Wang, Xu, Cheng, Tse (b0045) 2018
Liu SS, Podmore R, Hou YH. System restoration navigator: a decision support tool for system restoration. In: Proc. IEEE PES Gen. Meeting, San Diego, CA; 2012. pp. 1–5.
Allen, Stuart, Wiedman (b0005) 2003; 2014
Perez-Guerrero, Heydt, Jack, Keel, Castelhano (b0090) 2008; 23
Ye, Zhang, Sutanto (b0160) 2011; 26
Liu, Lin, Wen, Ledwich (b0040) 2013; 28
Qin, Hou, Liu, Liu, Sun (b0140) 2015; 9
Gholami, Aminifar (b0125) 2017; 8
Zhang, Lin, Wen, Ledwich, Xue (b0210) 2014; 8
Cadini, Agliardi, Zio (b0110) 2017; 185
Huang, Wu, Ren, Tse, Zheng (b0165) 2019
Current practices in Europe on Emergency and restoration, available at
.
Wang, Lin, Wen, Ledwich, Xue, Zhou (b0050) 2016; 79
Shuai, Fang, Ai, Wen, He (b0190) 2019; 10
Li, Li, Sun, Hou, Wen (b0240) 2014; 34
Xue, Xiao (b0010) 2013; 1
Hou, Liu, Sun, Zhang, Liu, Mizumura (b0080) 2011; 26
Qin ZJ, Hou YH, Liu SS, Yan J, Li DH. A branch-and-cut method for computing load restoration plan considering transmission network and discrete load increment. In: Proc. Power System Computation Conf., Wroclaw, Portland; 2014.
Ding, Lin, Bie, Chen (b0100) 2017; 199
Liao, Yao, Han, Wen, Cheng (b0220) 2017; 203
Liao SW, Yao W, Han XN, Wen JY, Hou YH. Two-stage optimization method for network reconfiguration and load recovery during power system restoration. In: Proc. IEEE PES Gen. Meeting, Denver; 2015. p. 1–5.
Jin, Li, Sun, Guo, Chen, Wang (b0180) 2017; 206
Mavromatidis, Orehounig, Carmeliet (b0185) 2018; 222
Liu, Fan, Terzija (b0075) 2016; 4
Hou, Xu, Dong, Wong (b0130) 2014; 42
Fink, Liou, Liu (b0060) 1995; 10
Mousavizadeh, Haghifam, Shariatkhah (b0175) 2018; 211
Sun, Liu, Qiu, Wang (b0055) 2015; 42
Perez-Guerrero, Heydt (b0095) 2008; 23
Liu, Lin, Wen, Chung, Xue, Ledwich (b0200) 2015; 71
Shen, Kaufmann, Hachmann, Braun (b0070) 2018; 94
Xie, Chen, Wu, Zhou (b0115) 2019; 105
Chen, Yao, Zhang, Ren, Jiang (b0230) 2019; 134
Jabr (b0215) 2013; 28
Kremens ZB, Labuzek M. Load flow analysis incorporating frequency as a state vector variable. In: Proc. 9th Int. Conf. on Harmonics and Quality of Power, vol. 2; 2000. p. 526–30.
10.1016/j.apenergy.2019.04.176_b0145
10.1016/j.apenergy.2019.04.176_b0025
Sun (10.1016/j.apenergy.2019.04.176_b0055) 2015; 42
10.1016/j.apenergy.2019.04.176_b0120
Allen (10.1016/j.apenergy.2019.04.176_b0005) 2003; 2014
Liu (10.1016/j.apenergy.2019.04.176_b0075) 2016; 4
Mousavizadeh (10.1016/j.apenergy.2019.04.176_b0175) 2018; 211
10.1016/j.apenergy.2019.04.176_b0085
Fink (10.1016/j.apenergy.2019.04.176_b0060) 1995; 10
Zhang (10.1016/j.apenergy.2019.04.176_b0210) 2014; 8
Gan (10.1016/j.apenergy.2019.04.176_b0195) 2019; 239
Liu (10.1016/j.apenergy.2019.04.176_b0225) 2016; 10
Huang (10.1016/j.apenergy.2019.04.176_b0165) 2019
Wang (10.1016/j.apenergy.2019.04.176_b0050) 2016; 79
Jiang (10.1016/j.apenergy.2019.04.176_b0015) 2017; 86
Chen (10.1016/j.apenergy.2019.04.176_b0230) 2019; 134
Lin (10.1016/j.apenergy.2019.04.176_b0155) 2016; 7
Li (10.1016/j.apenergy.2019.04.176_b0240) 2014; 34
Xue (10.1016/j.apenergy.2019.04.176_b0010) 2013; 1
10.1016/j.apenergy.2019.04.176_b0035
Lin (10.1016/j.apenergy.2019.04.176_b0105) 2018; 210
10.1016/j.apenergy.2019.04.176_b0235
Hou (10.1016/j.apenergy.2019.04.176_b0080) 2011; 26
Perez-Guerrero (10.1016/j.apenergy.2019.04.176_b0095) 2008; 23
Cadini (10.1016/j.apenergy.2019.04.176_b0110) 2017; 185
Xie (10.1016/j.apenergy.2019.04.176_b0115) 2019; 105
Mavromatidis (10.1016/j.apenergy.2019.04.176_b0185) 2018; 222
Gholami (10.1016/j.apenergy.2019.04.176_b0125) 2017; 8
10.1016/j.apenergy.2019.04.176_b0170
Jabr (10.1016/j.apenergy.2019.04.176_b0215) 2013; 28
10.1016/j.apenergy.2019.04.176_b0030
Shuai (10.1016/j.apenergy.2019.04.176_b0190) 2019; 10
Qiu (10.1016/j.apenergy.2019.04.176_b0065) 2017; 105
Perez-Guerrero (10.1016/j.apenergy.2019.04.176_b0090) 2008; 23
Ding (10.1016/j.apenergy.2019.04.176_b0100) 2017; 199
Coffrin (10.1016/j.apenergy.2019.04.176_b0150) 2015; 72
Leng (10.1016/j.apenergy.2019.04.176_b0020) 2018; 100
Liu (10.1016/j.apenergy.2019.04.176_b0040) 2013; 28
Liu (10.1016/j.apenergy.2019.04.176_b0200) 2015; 71
Qin (10.1016/j.apenergy.2019.04.176_b0140) 2015; 9
Ye (10.1016/j.apenergy.2019.04.176_b0160) 2011; 26
Golshani (10.1016/j.apenergy.2019.04.176_b0205) 2017; 13
Shen (10.1016/j.apenergy.2019.04.176_b0070) 2018; 94
Liao (10.1016/j.apenergy.2019.04.176_b0220) 2017; 203
Ganganath (10.1016/j.apenergy.2019.04.176_b0045) 2018
Hou (10.1016/j.apenergy.2019.04.176_b0130) 2014; 42
Qu (10.1016/j.apenergy.2019.04.176_b0135) 2014
Jin (10.1016/j.apenergy.2019.04.176_b0180) 2017; 206
References_xml – volume: 206
  start-page: 1364
  year: 2017
  end-page: 1378
  ident: b0180
  article-title: A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment
  publication-title: Appl Energy
– volume: 1
  start-page: 91
  year: 2013
  end-page: 100
  ident: b0010
  article-title: Generalized congestion of power systems: insights from the massive blackouts in India
  publication-title: J Mod Power Syst Clean Energy
– volume: 42
  start-page: 6795
  year: 2015
  end-page: 6805
  ident: b0055
  article-title: Hybrid multiple attribute group decision-making for power system restoration
  publication-title: Expert Syst Appl
– volume: 72
  start-page: 144
  year: 2015
  end-page: 154
  ident: b0150
  article-title: Transmission system restoration with co-optimization of repairs, load pickups, and generation dispatch
  publication-title: Int J Electr Power Energy Syst
– volume: 100
  start-page: 279
  year: 2018
  end-page: 286
  ident: b0020
  article-title: Black-start decision making based on collaborative filtering for power system restoration
  publication-title: Int J Electr Power Energy Syst
– volume: 105
  start-page: 1234
  year: 2017
  end-page: 1252
  ident: b0065
  article-title: An integrated approach for power system restoration planning
  publication-title: Proc IEEE
– volume: 239
  start-page: 383
  year: 2019
  end-page: 394
  ident: b0195
  article-title: Security constrained co-planning of transmission expansion and energy storage
  publication-title: Appl Energy
– reference: Liu SS, Podmore R, Hou YH. System restoration navigator: a decision support tool for system restoration. In: Proc. IEEE PES Gen. Meeting, San Diego, CA; 2012. pp. 1–5.
– reference: NERC standards for system restoration from blackstart resources, available at:
– volume: 2014
  start-page: 24
  year: 2003
  end-page: 33
  ident: b0005
  article-title: No light in August: power system restoration following the North American blackout
  publication-title: IEEE Power Energy Mag
– volume: 134
  start-page: 478
  year: 2019
  end-page: 495
  ident: b0230
  article-title: Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control
  publication-title: Renew Energy
– volume: 7
  start-page: 2154
  year: 2016
  end-page: 2162
  ident: b0155
  article-title: A Restorative self-healing algorithm for transmission systems based on complex network theory
  publication-title: IEEE Trans Smart Grid
– volume: 86
  start-page: 127
  year: 2017
  end-page: 137
  ident: b0015
  article-title: Blackstart capability planning for power system restoration
  publication-title: Int J Electr Power Energy Syst
– volume: 8
  start-page: 91
  year: 2014
  end-page: 103
  ident: b0210
  article-title: Two-stage power network reconfiguration strategy considering node importance and restored generation capacity
  publication-title: IET Gener Transm Distrib
– reference: Qin ZJ, Hou YH, Liu SS, Yan J, Li DH. A branch-and-cut method for computing load restoration plan considering transmission network and discrete load increment. In: Proc. Power System Computation Conf., Wroclaw, Portland; 2014.
– start-page: 1075
  year: 2014
  end-page: 1079
  ident: b0135
  article-title: Load restoration optimization during last stage of network reconfiguration
  publication-title: Proc. China International Conference on Electricity Distribution (CICED)
– volume: 211
  start-page: 443
  year: 2018
  end-page: 460
  ident: b0175
  article-title: A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources
  publication-title: Appl Energy
– volume: 4
  start-page: 332
  year: 2016
  end-page: 341
  ident: b0075
  article-title: Power system restoration: a literature review from 2006 to 2016
  publication-title: J Mod Power Syst Clean Energy
– volume: 199
  start-page: 205
  year: 2017
  end-page: 216
  ident: b0100
  article-title: A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration
  publication-title: Appl Energy
– volume: 185
  start-page: 267
  year: 2017
  end-page: 279
  ident: b0110
  article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions
  publication-title: Appl Energy
– volume: 26
  start-page: 1399
  year: 2011
  end-page: 1409
  ident: b0080
  article-title: Computation of milestones for decision support during system restoration
  publication-title: IEEE Trans Power Syst
– reference: Current practices in Europe on Emergency and restoration, available at:
– year: 2018
  ident: b0045
  article-title: Agglomerative clustering based network partitioning for parallel power system restoration
  publication-title: IEEE Trans Indust Inform
– volume: 10
  start-page: 931
  year: 2019
  end-page: 942
  ident: b0190
  article-title: Optimal real-time operation strategy for microgrid: an ADP based stochastic nonlinear optimization approach
  publication-title: IEEE Trans Sustain Energy
– volume: 34
  start-page: 4409
  year: 2014
  end-page: 4419
  ident: b0240
  article-title: State reduction combined dynamic programming algorithm for power system black start
  publication-title: Proc CSEE
– volume: 26
  start-page: 2434
  year: 2011
  end-page: 2441
  ident: b0160
  article-title: A hybrid multiagent framework with Q-learning for power grid systems restoration
  publication-title: IEEE Trans Power Syst
– year: 2019
  ident: b0165
  article-title: Sequential restorations of complex networks after cascading failures
  publication-title: IEEE Trans Syst, Man, Cybernet: Syst
– reference: Kremens ZB, Labuzek M. Load flow analysis incorporating frequency as a state vector variable. In: Proc. 9th Int. Conf. on Harmonics and Quality of Power, vol. 2; 2000. p. 526–30.
– volume: 210
  start-page: 1266
  year: 2018
  end-page: 1279
  ident: b0105
  article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding
  publication-title: Appl Energy
– volume: 222
  start-page: 932
  year: 2018
  end-page: 950
  ident: b0185
  article-title: Design of distributed energy systems under uncertainty: a two-stage stochastic programming approach
  publication-title: Appl Energy
– volume: 23
  start-page: 1589
  year: 2008
  end-page: 1596
  ident: b0090
  article-title: Optimal restoration of distribution systems using dynamic programming
  publication-title: IEEE Trans Power Deliv
– volume: 10
  start-page: 745
  year: 1995
  end-page: 752
  ident: b0060
  article-title: From generic restoration actions to specific restoration strategies
  publication-title: IEEE Trans Power Syst
– volume: 8
  start-page: 1700
  year: 2017
  end-page: 1709
  ident: b0125
  article-title: A hierarchical response-based approach to the load restoration problem
  publication-title: IEEE Trans Smart Grid
– volume: 23
  start-page: 1162
  year: 2008
  end-page: 1169
  ident: b0095
  article-title: Distribution system restoration via subgradient-based Lagrangian relaxation
  publication-title: IEEE Trans. Power Syst
– reference: Khodaei AA, Khator ASK, Han Z. Transmission network restoration considering AC power flow constraints. In: Proc. IEEE Int. Conf. Smart Grid Communications, Miami, FL; 2015. p. 816–21.
– volume: 42
  start-page: 361
  year: 2014
  end-page: 371
  ident: b0130
  article-title: Permutation-based power system restoration in smart grid considering load prioritization
  publication-title: Electr Power Compon Syst
– volume: 9
  start-page: 2437
  year: 2015
  end-page: 2446
  ident: b0140
  article-title: Coordinating generation and load pickup during load restoration with discrete load increments and reserve constraints
  publication-title: IET Gener Transm Distrib
– volume: 203
  start-page: 816
  year: 2017
  end-page: 828
  ident: b0220
  article-title: Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data
  publication-title: Appl Energy
– volume: 71
  start-page: 327
  year: 2015
  end-page: 334
  ident: b0200
  article-title: Sectionalizing strategies for minimizing outage durations of critical loads in parallel power system restoration with bi-level programming
  publication-title: Int J Electr Power Energy Syst
– reference: NERC standards for system restoration plans, available at:
– reference: .
– volume: 13
  start-page: 2802
  year: 2017
  end-page: 2812
  ident: b0205
  article-title: Two-stage adaptive restoration decision support system for a self-healing power grid
  publication-title: IEEE Trans Ind Inf
– volume: 28
  start-page: 4558
  year: 2013
  end-page: 4567
  ident: b0215
  article-title: Robust transmission network expansion planning with uncertain renewable generation
  publication-title: IEEE Trans Power Syst
– reference: Liao SW, Yao W, Han XN, Wen JY, Hou YH. Two-stage optimization method for network reconfiguration and load recovery during power system restoration. In: Proc. IEEE PES Gen. Meeting, Denver; 2015. p. 1–5.
– volume: 105
  start-page: 151
  year: 2019
  end-page: 158
  ident: b0115
  article-title: Second-order conic programming model for load restoration considering uncertainty of load increment based on information gap decision theory
  publication-title: Int J Electr Power Energy Syst
– volume: 94
  start-page: 287
  year: 2018
  end-page: 299
  ident: b0070
  article-title: Three-stage power system restoration methodology considering renewable energies
  publication-title: Int J Electr Power Energy Syst
– volume: 10
  start-page: 669
  year: 2016
  end-page: 678
  ident: b0225
  article-title: Solution to short-term frequency response of wind farms by using energy storage systems
  publication-title: IET Renew Power Gener
– volume: 79
  start-page: 34
  year: 2016
  end-page: 41
  ident: b0050
  article-title: Black-start decision-making with interval representations of uncertain factors
  publication-title: Int J Electr Power Energy Syst
– volume: 28
  start-page: 2025
  year: 2013
  end-page: 2034
  ident: b0040
  article-title: A wide area monitoring system based load restoration method
  publication-title: IEEE Trans Power Syst
– ident: 10.1016/j.apenergy.2019.04.176_b0170
  doi: 10.1109/PESGM.2015.7286349
– volume: 105
  start-page: 1234
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0065
  article-title: An integrated approach for power system restoration planning
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2017.2696564
– volume: 72
  start-page: 144
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.176_b0150
  article-title: Transmission system restoration with co-optimization of repairs, load pickups, and generation dispatch
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.02.027
– volume: 42
  start-page: 6795
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.176_b0055
  article-title: Hybrid multiple attribute group decision-making for power system restoration
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.05.001
– volume: 86
  start-page: 127
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0015
  article-title: Blackstart capability planning for power system restoration
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.10.008
– volume: 23
  start-page: 1589
  year: 2008
  ident: 10.1016/j.apenergy.2019.04.176_b0090
  article-title: Optimal restoration of distribution systems using dynamic programming
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2007.916112
– volume: 34
  start-page: 4409
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.176_b0240
  article-title: State reduction combined dynamic programming algorithm for power system black start
  publication-title: Proc CSEE
– volume: 9
  start-page: 2437
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.176_b0140
  article-title: Coordinating generation and load pickup during load restoration with discrete load increments and reserve constraints
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2015.0240
– volume: 1
  start-page: 91
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.176_b0010
  article-title: Generalized congestion of power systems: insights from the massive blackouts in India
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-013-0014-2
– volume: 26
  start-page: 2434
  issue: 4
  year: 2011
  ident: 10.1016/j.apenergy.2019.04.176_b0160
  article-title: A hybrid multiagent framework with Q-learning for power grid systems restoration
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2157180
– volume: 2014
  start-page: 24
  issue: 12
  year: 2003
  ident: 10.1016/j.apenergy.2019.04.176_b0005
  article-title: No light in August: power system restoration following the North American blackout
  publication-title: IEEE Power Energy Mag
– volume: 28
  start-page: 4558
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.176_b0215
  article-title: Robust transmission network expansion planning with uncertain renewable generation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2267058
– volume: 13
  start-page: 2802
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0205
  article-title: Two-stage adaptive restoration decision support system for a self-healing power grid
  publication-title: IEEE Trans Ind Inf
  doi: 10.1109/TII.2017.2712147
– ident: 10.1016/j.apenergy.2019.04.176_b0120
  doi: 10.1109/PSCC.2014.7038386
– volume: 42
  start-page: 361
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.176_b0130
  article-title: Permutation-based power system restoration in smart grid considering load prioritization
  publication-title: Electr Power Compon Syst
  doi: 10.1080/15325008.2013.862326
– ident: 10.1016/j.apenergy.2019.04.176_b0035
– volume: 23
  start-page: 1162
  year: 2008
  ident: 10.1016/j.apenergy.2019.04.176_b0095
  article-title: Distribution system restoration via subgradient-based Lagrangian relaxation
  publication-title: IEEE Trans. Power Syst
  doi: 10.1109/TPWRS.2008.926471
– volume: 8
  start-page: 91
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.176_b0210
  article-title: Two-stage power network reconfiguration strategy considering node importance and restored generation capacity
  publication-title: IET Gener Transm Distrib
  doi: 10.1049/iet-gtd.2013.0065
– volume: 79
  start-page: 34
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.176_b0050
  article-title: Black-start decision-making with interval representations of uncertain factors
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.12.033
– volume: 211
  start-page: 443
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0175
  article-title: A linear two-stage method for resiliency analysis in distribution systems considering renewable energy and demand response resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.067
– volume: 10
  start-page: 745
  year: 1995
  ident: 10.1016/j.apenergy.2019.04.176_b0060
  article-title: From generic restoration actions to specific restoration strategies
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.387912
– ident: 10.1016/j.apenergy.2019.04.176_b0085
  doi: 10.1109/PESGM.2012.6344826
– start-page: 1075
  year: 2014
  ident: 10.1016/j.apenergy.2019.04.176_b0135
  article-title: Load restoration optimization during last stage of network reconfiguration
– year: 2019
  ident: 10.1016/j.apenergy.2019.04.176_b0165
  article-title: Sequential restorations of complex networks after cascading failures
  publication-title: IEEE Trans Syst, Man, Cybernet: Syst
– volume: 185
  start-page: 267
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0110
  article-title: A modeling and simulation framework for the reliability/availability assessment of a power transmission grid subject to cascading failures under extreme weather conditions
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.086
– year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0045
  article-title: Agglomerative clustering based network partitioning for parallel power system restoration
  publication-title: IEEE Trans Indust Inform
  doi: 10.1109/TII.2017.2780167
– volume: 4
  start-page: 332
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.176_b0075
  article-title: Power system restoration: a literature review from 2006 to 2016
  publication-title: J Mod Power Syst Clean Energy
  doi: 10.1007/s40565-016-0219-2
– volume: 134
  start-page: 478
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.176_b0230
  article-title: Design of robust MPPT controller for grid-connected PMSG-Based wind turbine via perturbation observation based nonlinear adaptive control
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.11.048
– ident: 10.1016/j.apenergy.2019.04.176_b0235
  doi: 10.1109/ICHQP.2000.897734
– ident: 10.1016/j.apenergy.2019.04.176_b0025
– volume: 71
  start-page: 327
  year: 2015
  ident: 10.1016/j.apenergy.2019.04.176_b0200
  article-title: Sectionalizing strategies for minimizing outage durations of critical loads in parallel power system restoration with bi-level programming
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2015.03.004
– volume: 28
  start-page: 2025
  year: 2013
  ident: 10.1016/j.apenergy.2019.04.176_b0040
  article-title: A wide area monitoring system based load restoration method
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2013.2249595
– volume: 210
  start-page: 1266
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0105
  article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.059
– volume: 10
  start-page: 669
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.176_b0225
  article-title: Solution to short-term frequency response of wind farms by using energy storage systems
  publication-title: IET Renew Power Gener
  doi: 10.1049/iet-rpg.2015.0164
– volume: 7
  start-page: 2154
  issue: 4
  year: 2016
  ident: 10.1016/j.apenergy.2019.04.176_b0155
  article-title: A Restorative self-healing algorithm for transmission systems based on complex network theory
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2539199
– volume: 203
  start-page: 816
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0220
  article-title: Chronological operation simulation framework for regional power system under high penetration of renewable energy using meteorological data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.086
– volume: 239
  start-page: 383
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.176_b0195
  article-title: Security constrained co-planning of transmission expansion and energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.192
– volume: 100
  start-page: 279
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0020
  article-title: Black-start decision making based on collaborative filtering for power system restoration
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.02.044
– volume: 26
  start-page: 1399
  year: 2011
  ident: 10.1016/j.apenergy.2019.04.176_b0080
  article-title: Computation of milestones for decision support during system restoration
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2010.2089540
– volume: 199
  start-page: 205
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0100
  article-title: A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.05.012
– volume: 94
  start-page: 287
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0070
  article-title: Three-stage power system restoration methodology considering renewable energies
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2017.07.007
– volume: 10
  start-page: 931
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.176_b0190
  article-title: Optimal real-time operation strategy for microgrid: an ADP based stochastic nonlinear optimization approach
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2018.2855039
– ident: 10.1016/j.apenergy.2019.04.176_b0030
– ident: 10.1016/j.apenergy.2019.04.176_b0145
  doi: 10.1109/SmartGridComm.2015.7436402
– volume: 222
  start-page: 932
  year: 2018
  ident: 10.1016/j.apenergy.2019.04.176_b0185
  article-title: Design of distributed energy systems under uncertainty: a two-stage stochastic programming approach
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.04.019
– volume: 206
  start-page: 1364
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0180
  article-title: A robust aggregate model and the two-stage solution method to incorporate energy intensive enterprises in power system unit commitment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.004
– volume: 105
  start-page: 151
  year: 2019
  ident: 10.1016/j.apenergy.2019.04.176_b0115
  article-title: Second-order conic programming model for load restoration considering uncertainty of load increment based on information gap decision theory
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2018.08.018
– volume: 8
  start-page: 1700
  year: 2017
  ident: 10.1016/j.apenergy.2019.04.176_b0125
  article-title: A hierarchical response-based approach to the load restoration problem
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2503320
SSID ssj0002120
Score 2.4286501
Snippet •Proposed an improved two-stage optimization method for network and load recovery.•Decouples integer and continuous decision variables and solves them...
Network and load recovery (NLR) during power system restoration is a multi-step mixed-integer nonlinear programming (MINP) problem. The NLR is difficult to be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 265
SubjectTerms case studies
China
linear programming
Load restoration
Network restoration
Power system restoration
Two-stage optimization
Title An improved two-stage optimization for network and load recovery during power system restoration
URI https://dx.doi.org/10.1016/j.apenergy.2019.04.176
https://www.proquest.com/docview/2286917776
Volume 249
WOSCitedRecordID wos000472692200022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaGlgMcEBQqyiYjIS5VSnbHxxGaClA1IDEVczNO4qgpgxNma_n3PG9JBEUtBy7RKBOPk3zfvMV-C0Kvci5EEAWRR4JYeDEFnzUHNeTl2ngGi75KK91sgkyn2XxOP41GrcuF2S6IlNnlJW3_K9RwDsBWqbP_AHf3o3ACPgPocATY4Xgj4MdSpT4umy2YkuuLxgPzTy0MgGj4bnMudWihNPHfevNg0XCVxFKocM6fLnOxVf3TbKXnw6VuQNOj6OrWWhtW6AzCLrin5noB9vNZfbHpxIo590XUvdDTEm8Ok0mnQHVZSBskXPNvGzlclQj6sKsuGwtQV97ZUNKCq3fYHoU6Cy4ZSk3TLsIqYPvdH7LdLDOcH_HWPJSKy6OqTm1AriimPf3Ijk9PTthsMp-9bn94qs-Y2o-3TVduoV2Yh4Io3x2_n8w_dNo7tKU83f0PssqvnvpvBs1vql3bK7P76J51NPDYEOQBGgm5h-4Oyk_uof1Jn-UIl1oxv3qIvo4ldhzCHYfwkEMYOIQthzBwCCsOYcchbDiENYew4RAecOgROj2ezN6-82wrDq-Ik2DthYKm4CmUIk55xLNYUM7TqgRngAY84z4J_TLMs9ynogxVSSWSBaJMIkFzUvlFEe2jHdlI8RhhVeWrLMsUtEcVFyLJK1LyLFXraj6t_OAAJe59ssLWqVftUhbMBSSeM4cDUzgwP2aAwwF6041rTaWWa0dQBxez9qaxIxlQ7tqxLx2-DASy2mXjUjSbFYOHh5dCCEmf3OCap-hO__d5hnbWy414jm4X23W9Wr6w5PwFMZSyCg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+two-stage+optimization+for+network+and+load+recovery+during+power+system+restoration&rft.jtitle=Applied+energy&rft.au=Liao%2C+Shiwu&rft.au=Yao%2C+Wei&rft.au=Han%2C+Xingning&rft.au=Fang%2C+Jiakun&rft.date=2019-09-01&rft.issn=0306-2619&rft.volume=249+p.265-275&rft.spage=265&rft.epage=275&rft_id=info:doi/10.1016%2Fj.apenergy.2019.04.176&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon