Data-driven algorithms for dimension reduction in causal inference

In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest. In order to identify a causal effect, such studies often rely on the unconfoundedness assumption, i.e., that all confounding variables are o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational statistics & data analysis Ročník 105; s. 280 - 292
Hlavní autoři: Persson, Emma, Häggström, Jenny, Waernbaum, Ingeborg, de Luna, Xavier
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2017
Témata:
ISSN:0167-9473, 1872-7352, 1872-7352
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest. In order to identify a causal effect, such studies often rely on the unconfoundedness assumption, i.e., that all confounding variables are observed. The choice of covariates to control for, which is primarily based on subject matter knowledge, may result in a large covariate vector in the attempt to ensure that unconfoundedness holds. However, including redundant covariates can affect bias and efficiency of nonparametric causal effect estimators, e.g., due to the curse of dimensionality. Data-driven algorithms for the selection of sufficient covariate subsets are investigated. Under the assumption of unconfoundedness the algorithms search for minimal subsets of the covariate vector. Based, e.g., on the framework of sufficient dimension reduction or kernel smoothing, the algorithms perform a backward elimination procedure assessing the significance of each covariate. Their performance is evaluated in simulations and an application using data from the Swedish Childhood Diabetes Register is also presented.
AbstractList In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest. In order to identify a causal effect, such studies often rely on the unconfoundedness assumption, i.e., that all confounding variables are observed. The choice of covariates to control for, which is primarily based on subject matter knowledge, may result in a large covariate vector in the attempt to ensure that unconfoundedness holds. However, including redundant covariates can affect bias and efficiency of nonparametric causal effect estimators, e.g., due to the curse of dimensionality. Data-driven algorithms for the selection of sufficient covariate subsets are investigated. Under the assumption of unconfoundedness the algorithms search for minimal subsets of the covariate vector. Based, e.g., on the framework of sufficient dimension reduction or kernel smoothing, the algorithms perform a backward elimination procedure assessing the significance of each covariate. Their performance is evaluated in simulations and an application using data from the Swedish Childhood Diabetes Register is also presented.
In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest. In order to identify a causal effect, such studies often rely on the unconfoundedness assumption, i.e., that all confounding variables are observed. The choice of covariates to control for, which is primarily based on subject matter knowledge, may result in a large covariate vector in the attempt to ensure that unconfoundedness holds. However, including redundant covariates can affect bias and efficiency of nonparametric causal effect estimators, e.g., due to the curse of dimensionality. In this paper, data-driven algo- rithms for the selection of sufficient covariate subsets are investigated. Under the assumption of unconfoundedness we search for minimal subsets of the covariate vector. Based on the framework of sufficient dimension reduction or kernel smoothing, the algorithms perform a backward elim- ination procedure testing the significance of each covariate. Their performance is evaluated in simulations and an application using data from the Swedish Childhood Diabetes Register is also presented.
Author Persson, Emma
de Luna, Xavier
Waernbaum, Ingeborg
Häggström, Jenny
Author_xml – sequence: 1
  givenname: Emma
  surname: Persson
  fullname: Persson, Emma
  email: emma.persson@umu.se
– sequence: 2
  givenname: Jenny
  surname: Häggström
  fullname: Häggström, Jenny
– sequence: 3
  givenname: Ingeborg
  surname: Waernbaum
  fullname: Waernbaum, Ingeborg
– sequence: 4
  givenname: Xavier
  surname: de Luna
  fullname: de Luna, Xavier
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80696$$DView record from Swedish Publication Index (Umeå universitet)
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381277$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNqNkT9P3TAUxa0KpD5ov0CnjB2a1H8S25FYKJQWCakLsF4Z-xr8lMQPOwHx7evoIYYOqNM90v2dM5xzRA6mOCEhXxhtGGXy-7ax2ZmGF91Q3VDGP5AN04rXSnT8gGzKQ9V9q8RHcpTzllLKW6U35Me5mU3tUnjCqTLDfUxhfhhz5WOqXBhxyiFOVUK32HlVYaqsWbIZivKYcLL4iRx6M2T8_HqPyc3Fz-uz3_XVn1-XZ6dXtW07NtdMlCN5b_sOLfat67hQzHe98cikN73ksvOys1xx7oS8Q-29Qulb5wqP4ph82-fmZ9wtd7BLYTTpBaIJcB5uTyGme1gWEJpxpf4THxfQVPay4F_3-C7FxwXzDGPIFofBTBiXDJx3gmtBlSgo36M2xZwT-rdsRmGdA7awzgHrHEA1lDmKSf9jsmE2a6dzMmF433qyt2Jp9ylggmzD2rwLCe0MLob37H8BMk6owg
CitedBy_id crossref_primary_10_1007_s10654_019_00529_y
crossref_primary_10_1016_j_landusepol_2021_105950
crossref_primary_10_1080_01621459_2020_1811099
crossref_primary_10_1002_pst_70008
crossref_primary_10_1080_07350015_2019_1609974
crossref_primary_10_1111_biom_12788
crossref_primary_10_1002_pst_2104
crossref_primary_10_1016_j_aap_2021_106163
crossref_primary_10_3102_1076998619872001
crossref_primary_10_1016_j_ejor_2017_11_020
Cites_doi 10.1198/jcgs.2010.08162
10.1080/01621459.1994.10476459
10.1214/009053604000000292
10.1093/biomet/70.1.41
10.1080/00273171.2011.570164
10.1037/1082-989X.9.4.403
10.1198/jbes.2009.0015
10.1093/biomet/87.3.706
10.1037/h0037350
10.1111/j.1541-0420.2007.00836.x
10.1177/0962280210387717
10.1111/j.1467-9868.2005.00502.x
10.1080/01621459.1996.10476968
10.1002/sim.1903
10.2337/db10-0813
10.18637/jss.v068.i01
10.1257/jel.47.1.5
10.1080/01621459.2013.869498
10.1097/00001648-199901000-00008
10.1198/016214503000000828
10.1093/aje/kwj149
10.1162/003465304323023688
10.1111/j.1468-0262.2006.00655.x
10.1093/biomet/asr041
10.1093/biomet/asm021
10.1080/10485250902928435
10.1162/rest.89.4.784
10.1162/REST_a_00153
10.1198/016214504000000548
10.3102/10769986002001001
10.1080/01621459.1991.10475035
10.7326/0003-4819-127-8_Part_2-199710151-00064
10.2202/1557-4679.1181
10.18637/jss.v033.i01
10.2307/27917241
10.1111/j.1541-0420.2011.01619.x
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DF2
DOI 10.1016/j.csda.2016.08.012
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Statistics
EISSN 1872-7352
EndPage 292
ExternalDocumentID oai_DiVA_org_uu_381277
oai_DiVA_org_umu_80696
10_1016_j_csda_2016_08_012
S0167947316302018
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HMJ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
VH1
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DF2
ID FETCH-LOGICAL-c451t-13451629c95ece94d52371f59afe16fa96265f65c2722d36be8ff7e6f4ddce9e3
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385604500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9473
1872-7352
IngestDate Tue Nov 04 16:37:58 EST 2025
Tue Nov 04 16:46:14 EST 2025
Sun Sep 28 10:36:13 EDT 2025
Sat Nov 29 03:40:45 EST 2025
Tue Nov 18 21:07:10 EST 2025
Fri Feb 23 02:23:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Matching
Marginal co-ordinate hypothesis test
Covariate selection
Kernel smoothing
Type 1 diabetes mellitus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-13451629c95ece94d52371f59afe16fa96265f65c2722d36be8ff7e6f4ddce9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80696
PQID 2253283073
PQPubID 24069
PageCount 13
ParticipantIDs swepub_primary_oai_DiVA_org_uu_381277
swepub_primary_oai_DiVA_org_umu_80696
proquest_miscellaneous_2253283073
crossref_primary_10_1016_j_csda_2016_08_012
crossref_citationtrail_10_1016_j_csda_2016_08_012
elsevier_sciencedirect_doi_10_1016_j_csda_2016_08_012
PublicationCentury 2000
PublicationDate January 2017
2017-01-00
20170101
2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: January 2017
PublicationDecade 2010
PublicationTitle Computational statistics & data analysis
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li (br000105) 1991; 86
Robins (br000155) 1997; vol. 120
de Luna, Waernbaum, Richardson (br000040) 2011; 98
Li, Cook, Nachtsheim (br000110) 2005; 67
Imbens (br000085) 2000; 87
Hall, Li, Racine (br000065) 2007; 89
Cook (br000020) 1994; 89
Vansteelandt, Bekaert, Claeskens (br000195) 2012; 21
Berhan, Waernbaum, Lind, Möllsten, Dahlquist (br000010) 2011; 60
de Luna, X., Waernbaum, I., 2005. Covariate Selection for non-Parametric Estimation of Treatment Effects. IFAU Working Paper, Institute for Labour Market Policy Evaluation, Uppsala.
Brookhart, Schneeweiss, Rothman, Glynn, Avorn, Stürmer (br000015) 2006; 163
Hjort, Claeskens (br000080) 2003; 98
Li, Ouyang, Racine (br000115) 2009; 21
Li, Yin (br000125) 2008; 64
VanderWeele, Shpitser (br000190) 2011; 67
Häggström, Persson, Waernbaum, de Luna (br000055) 2015; 68
R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL
Cook (br000025) 1996; 91
Lunceford, Davidian (br000130) 2004; 23
McCaffrey, Ridgeway, Morral (br000135) 2004; 9
White, Lu (br000205) 2011; 93
Hall, Racine, Li (br000070) 2004; 99
Rubin (br000170) 1977; 2
van der Laan, Gruber (br000185) 2010; 6
Abadie, Imbens (br000005) 2006; 74
Rubin (br000175) 1997; 127
Shao, Cook, Weisberg (br000180) 2007; 94
Zigler, Dominici (br000210) 2014; 109
ISBN 3-900051-07-0.
Rubin (br000165) 1974; 66
Venables, Ripley (br000200) 2002
Langenskiöld, Rubin (br000100) 2008
Neyman (br000140) 1923; X
Greenland, Pearl, Robins (br000050) 1999; 1
Li, Racine, Wooldridge (br000120) 2009; 27
Kelcey (br000095) 2011; 46
Cook (br000030) 2004; 32
Hahn (br000060) 2004; 1
Friedman, Hastie, Tibshirani (br000045) 2010; 33
Hill (br000075) 2012; 20
Rosenbaum, Rubin (br000160) 1983; 70
Imbens, Wooldridge (br000090) 2009; 1
Pearl (br000145) 2009
VanderWeele (10.1016/j.csda.2016.08.012_br000190) 2011; 67
de Luna (10.1016/j.csda.2016.08.012_br000040) 2011; 98
Hjort (10.1016/j.csda.2016.08.012_br000080) 2003; 98
Lunceford (10.1016/j.csda.2016.08.012_br000130) 2004; 23
Hall (10.1016/j.csda.2016.08.012_br000070) 2004; 99
Langenskiöld (10.1016/j.csda.2016.08.012_br000100) 2008
Häggström (10.1016/j.csda.2016.08.012_br000055) 2015; 68
Kelcey (10.1016/j.csda.2016.08.012_br000095) 2011; 46
Rosenbaum (10.1016/j.csda.2016.08.012_br000160) 1983; 70
Li (10.1016/j.csda.2016.08.012_br000115) 2009; 21
Li (10.1016/j.csda.2016.08.012_br000125) 2008; 64
Hahn (10.1016/j.csda.2016.08.012_br000060) 2004; 1
Vansteelandt (10.1016/j.csda.2016.08.012_br000195) 2012; 21
Berhan (10.1016/j.csda.2016.08.012_br000010) 2011; 60
Venables (10.1016/j.csda.2016.08.012_br000200) 2002
Pearl (10.1016/j.csda.2016.08.012_br000145) 2009
Cook (10.1016/j.csda.2016.08.012_br000030) 2004; 32
Robins (10.1016/j.csda.2016.08.012_br000155) 1997; vol. 120
Greenland (10.1016/j.csda.2016.08.012_br000050) 1999; 1
Imbens (10.1016/j.csda.2016.08.012_br000085) 2000; 87
Hall (10.1016/j.csda.2016.08.012_br000065) 2007; 89
van der Laan (10.1016/j.csda.2016.08.012_br000185) 2010; 6
Cook (10.1016/j.csda.2016.08.012_br000025) 1996; 91
McCaffrey (10.1016/j.csda.2016.08.012_br000135) 2004; 9
Zigler (10.1016/j.csda.2016.08.012_br000210) 2014; 109
Rubin (10.1016/j.csda.2016.08.012_br000170) 1977; 2
Rubin (10.1016/j.csda.2016.08.012_br000175) 1997; 127
Shao (10.1016/j.csda.2016.08.012_br000180) 2007; 94
Imbens (10.1016/j.csda.2016.08.012_br000090) 2009; 1
Friedman (10.1016/j.csda.2016.08.012_br000045) 2010; 33
Brookhart (10.1016/j.csda.2016.08.012_br000015) 2006; 163
10.1016/j.csda.2016.08.012_br000035
Rubin (10.1016/j.csda.2016.08.012_br000165) 1974; 66
Li (10.1016/j.csda.2016.08.012_br000105) 1991; 86
Li (10.1016/j.csda.2016.08.012_br000110) 2005; 67
White (10.1016/j.csda.2016.08.012_br000205) 2011; 93
Li (10.1016/j.csda.2016.08.012_br000120) 2009; 27
Cook (10.1016/j.csda.2016.08.012_br000020) 1994; 89
Neyman (10.1016/j.csda.2016.08.012_br000140) 1923; X
Hill (10.1016/j.csda.2016.08.012_br000075) 2012; 20
10.1016/j.csda.2016.08.012_br000150
Abadie (10.1016/j.csda.2016.08.012_br000005) 2006; 74
References_xml – volume: 21
  start-page: 697
  year: 2009
  end-page: 711
  ident: br000115
  article-title: Nonparametric regression with weakly dependent data: the discrete and continuous regressor case
  publication-title: J. Nonparametr. Stat.
– volume: 66
  start-page: 688
  year: 1974
  end-page: 701
  ident: br000165
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J. Educ. Psychol.
– start-page: 107
  year: 2008
  end-page: 125
  ident: br000100
  article-title: Outcome-free design of observational studies: Peer influence on smoking
  publication-title: Ann. Économ. Statist.
– volume: 23
  start-page: 2937
  year: 2004
  end-page: 2960
  ident: br000130
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Stat. Med.
– volume: 1
  start-page: 37
  year: 1999
  end-page: 48
  ident: br000050
  article-title: Causal diagrams for epidemiologic research
  publication-title: Epidemiology
– year: 2002
  ident: br000200
  article-title: Modern Applied Statistics with S
– volume: 2
  start-page: 1
  year: 1977
  end-page: 26
  ident: br000170
  article-title: Assignment to treatment group on the basis of a covariate
  publication-title: J. Educ. Stat.
– volume: 127
  start-page: 757
  year: 1997
  end-page: 763
  ident: br000175
  article-title: Estimating causal effects from large data sets using propensity scores
  publication-title: Ann. Intern. Med.
– volume: 67
  start-page: 1406
  year: 2011
  end-page: 1413
  ident: br000190
  article-title: A new criterion for confounder selection
  publication-title: Biometrics
– reference: R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. URL:
– volume: 98
  start-page: 879
  year: 2003
  end-page: 899
  ident: br000080
  article-title: Frequentist model average estimators
  publication-title: J. Amer. Statist. Assoc.
– volume: vol. 120
  start-page: 69
  year: 1997
  end-page: 117
  ident: br000155
  article-title: Causal inference from complex longitudinal data
  publication-title: Latent Variable Modeling and Applications to Causality
– volume: 89
  start-page: 177
  year: 1994
  end-page: 189
  ident: br000020
  article-title: On the interpretation of regression plots
  publication-title: J. Amer. Statist. Assoc.
– reference: ISBN 3-900051-07-0.
– volume: 70
  start-page: 41
  year: 1983
  end-page: 55
  ident: br000160
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
– reference: de Luna, X., Waernbaum, I., 2005. Covariate Selection for non-Parametric Estimation of Treatment Effects. IFAU Working Paper, Institute for Labour Market Policy Evaluation, Uppsala.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: br000045
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
– volume: 27
  start-page: 206
  year: 2009
  end-page: 223
  ident: br000120
  article-title: Efficient estimation of average treatment effects with mixed categorical and continuous data
  publication-title: J. Bus. Econom. Statist.
– volume: 68
  start-page: 1
  year: 2015
  end-page: 20
  ident: br000055
  article-title: CovSel: An R package for covariate selection when estimating average causal effects
  publication-title: J. Stat. Softw.
– year: 2009
  ident: br000145
  article-title: Causality
– volume: 60
  start-page: 577
  year: 2011
  end-page: 581
  ident: br000010
  article-title: Thirty years of prospective nationwide incidence of childhood type 1 diabetes: The accelerating increase by time tends to level off in Sweden
  publication-title: Diabetes
– volume: 87
  start-page: 706
  year: 2000
  end-page: 710
  ident: br000085
  article-title: The role of the propensity score in estimating dose–response functions
  publication-title: Biometrika
– volume: 64
  start-page: 124
  year: 2008
  end-page: 131
  ident: br000125
  article-title: Sliced inverse regression with regularizations
  publication-title: Biometrics
– volume: 1
  start-page: 73
  year: 2004
  end-page: 76
  ident: br000060
  article-title: Functional restriction and efficiency in causal inference
  publication-title: Rev. Econ. Stat.
– volume: 21
  start-page: 7
  year: 2012
  end-page: 30
  ident: br000195
  article-title: On model selection and model misspecification in causal inference
  publication-title: Stat. Methods Med. Res.
– volume: 99
  start-page: 1015
  year: 2004
  end-page: 1026
  ident: br000070
  article-title: Cross-validation and the estimation of conditional probability densities
  publication-title: J. Amer. Statist. Assoc.
– volume: 1
  start-page: 5
  year: 2009
  end-page: 86
  ident: br000090
  article-title: Recent developments in the econometrics of program evaluation
  publication-title: J. Econ. Lit.
– volume: 46
  start-page: 453
  year: 2011
  end-page: 476
  ident: br000095
  article-title: Covariate selection in propensity scores using outcome proxies
  publication-title: Multivariate Behav. Res.
– volume: 163
  start-page: 1149
  year: 2006
  end-page: 1156
  ident: br000015
  article-title: Variable selection for propensity score models
  publication-title: Am. J. Epidemiol.
– volume: 32
  start-page: 1061
  year: 2004
  end-page: 1092
  ident: br000030
  article-title: Testing predictor contributions in sufficient dimension reduction
  publication-title: Ann. Statist.
– volume: 20
  start-page: 217
  year: 2012
  end-page: 240
  ident: br000075
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Statist.
– volume: 89
  start-page: 784
  year: 2007
  end-page: 789
  ident: br000065
  article-title: Nonparametric estimation of regression functions in the presence of irrelevant regressors
  publication-title: Rev. Econ. Stat.
– volume: 9
  start-page: 403
  year: 2004
  end-page: 425
  ident: br000135
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychol. Methods
– volume: 74
  start-page: 235
  year: 2006
  end-page: 267
  ident: br000005
  article-title: Large sample properties of matching estimators for average treatment effects
  publication-title: Econometrica
– volume: 67
  start-page: 285
  year: 2005
  end-page: 299
  ident: br000110
  article-title: Model-free variable selection
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 98
  start-page: 861
  year: 2011
  end-page: 875
  ident: br000040
  article-title: Covariate selection for the nonparametric estimation of an average treatment effect
  publication-title: Biometrika
– volume: 86
  start-page: 316
  year: 1991
  end-page: 327
  ident: br000105
  article-title: Sliced inverse regression for dimension reduction
  publication-title: J. Amer. Statist. Assoc.
– volume: 109
  start-page: 95
  year: 2014
  end-page: 107
  ident: br000210
  article-title: Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects
  publication-title: J. Amer. Statist. Assoc.
– volume: 6
  start-page: 1
  year: 2010
  end-page: 68
  ident: br000185
  article-title: Collaborative double robust targeted maximum likelihood estimation
  publication-title: Int. J. Biostat.
– volume: 94
  start-page: 285
  year: 2007
  end-page: 296
  ident: br000180
  article-title: Marginal tests with sliced average variance estimation
  publication-title: Biometrika
– volume: 93
  start-page: 1453
  year: 2011
  end-page: 1459
  ident: br000205
  article-title: Causal diagrams for treatment effect estimation with application to efficient covariate selection
  publication-title: Rev. Econ. Stat.
– volume: 91
  start-page: 983
  year: 1996
  end-page: 992
  ident: br000025
  article-title: Graphics for regressions with a binary response
  publication-title: J. Amer. Statist. Assoc.
– volume: X
  start-page: 1
  year: 1923
  end-page: 51
  ident: br000140
  article-title: On the application of probability theory to agricultural experiments, essay on principles
  publication-title: Rocz. Nauk Roln.
– volume: 20
  start-page: 217
  year: 2012
  ident: 10.1016/j.csda.2016.08.012_br000075
  article-title: Bayesian nonparametric modeling for causal inference
  publication-title: J. Comput. Graph. Statist.
  doi: 10.1198/jcgs.2010.08162
– ident: 10.1016/j.csda.2016.08.012_br000150
– volume: 89
  start-page: 177
  year: 1994
  ident: 10.1016/j.csda.2016.08.012_br000020
  article-title: On the interpretation of regression plots
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1994.10476459
– volume: 32
  start-page: 1061
  year: 2004
  ident: 10.1016/j.csda.2016.08.012_br000030
  article-title: Testing predictor contributions in sufficient dimension reduction
  publication-title: Ann. Statist.
  doi: 10.1214/009053604000000292
– volume: 70
  start-page: 41
  year: 1983
  ident: 10.1016/j.csda.2016.08.012_br000160
  article-title: The central role of the propensity score in observational studies for causal effects
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.41
– volume: 46
  start-page: 453
  year: 2011
  ident: 10.1016/j.csda.2016.08.012_br000095
  article-title: Covariate selection in propensity scores using outcome proxies
  publication-title: Multivariate Behav. Res.
  doi: 10.1080/00273171.2011.570164
– volume: 9
  start-page: 403
  year: 2004
  ident: 10.1016/j.csda.2016.08.012_br000135
  article-title: Propensity score estimation with boosted regression for evaluating causal effects in observational studies
  publication-title: Psychol. Methods
  doi: 10.1037/1082-989X.9.4.403
– volume: 27
  start-page: 206
  year: 2009
  ident: 10.1016/j.csda.2016.08.012_br000120
  article-title: Efficient estimation of average treatment effects with mixed categorical and continuous data
  publication-title: J. Bus. Econom. Statist.
  doi: 10.1198/jbes.2009.0015
– volume: 87
  start-page: 706
  year: 2000
  ident: 10.1016/j.csda.2016.08.012_br000085
  article-title: The role of the propensity score in estimating dose–response functions
  publication-title: Biometrika
  doi: 10.1093/biomet/87.3.706
– volume: 66
  start-page: 688
  year: 1974
  ident: 10.1016/j.csda.2016.08.012_br000165
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0037350
– volume: 64
  start-page: 124
  year: 2008
  ident: 10.1016/j.csda.2016.08.012_br000125
  article-title: Sliced inverse regression with regularizations
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2007.00836.x
– volume: 21
  start-page: 7
  year: 2012
  ident: 10.1016/j.csda.2016.08.012_br000195
  article-title: On model selection and model misspecification in causal inference
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280210387717
– volume: 67
  start-page: 285
  year: 2005
  ident: 10.1016/j.csda.2016.08.012_br000110
  article-title: Model-free variable selection
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00502.x
– ident: 10.1016/j.csda.2016.08.012_br000035
– volume: 91
  start-page: 983
  year: 1996
  ident: 10.1016/j.csda.2016.08.012_br000025
  article-title: Graphics for regressions with a binary response
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1996.10476968
– volume: 23
  start-page: 2937
  year: 2004
  ident: 10.1016/j.csda.2016.08.012_br000130
  article-title: Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study
  publication-title: Stat. Med.
  doi: 10.1002/sim.1903
– volume: 60
  start-page: 577
  year: 2011
  ident: 10.1016/j.csda.2016.08.012_br000010
  article-title: Thirty years of prospective nationwide incidence of childhood type 1 diabetes: The accelerating increase by time tends to level off in Sweden
  publication-title: Diabetes
  doi: 10.2337/db10-0813
– volume: 68
  start-page: 1
  year: 2015
  ident: 10.1016/j.csda.2016.08.012_br000055
  article-title: CovSel: An R package for covariate selection when estimating average causal effects
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v068.i01
– volume: 1
  start-page: 5
  year: 2009
  ident: 10.1016/j.csda.2016.08.012_br000090
  article-title: Recent developments in the econometrics of program evaluation
  publication-title: J. Econ. Lit.
  doi: 10.1257/jel.47.1.5
– volume: 109
  start-page: 95
  year: 2014
  ident: 10.1016/j.csda.2016.08.012_br000210
  article-title: Uncertainty in propensity score estimation: Bayesian methods for variable selection and model-averaged causal effects
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2013.869498
– volume: 1
  start-page: 37
  year: 1999
  ident: 10.1016/j.csda.2016.08.012_br000050
  article-title: Causal diagrams for epidemiologic research
  publication-title: Epidemiology
  doi: 10.1097/00001648-199901000-00008
– year: 2002
  ident: 10.1016/j.csda.2016.08.012_br000200
– volume: 98
  start-page: 879
  year: 2003
  ident: 10.1016/j.csda.2016.08.012_br000080
  article-title: Frequentist model average estimators
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214503000000828
– volume: 163
  start-page: 1149
  year: 2006
  ident: 10.1016/j.csda.2016.08.012_br000015
  article-title: Variable selection for propensity score models
  publication-title: Am. J. Epidemiol.
  doi: 10.1093/aje/kwj149
– volume: 1
  start-page: 73
  year: 2004
  ident: 10.1016/j.csda.2016.08.012_br000060
  article-title: Functional restriction and efficiency in causal inference
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/003465304323023688
– volume: X
  start-page: 1
  year: 1923
  ident: 10.1016/j.csda.2016.08.012_br000140
  article-title: On the application of probability theory to agricultural experiments, essay on principles
  publication-title: Rocz. Nauk Roln.
– year: 2009
  ident: 10.1016/j.csda.2016.08.012_br000145
– volume: 74
  start-page: 235
  year: 2006
  ident: 10.1016/j.csda.2016.08.012_br000005
  article-title: Large sample properties of matching estimators for average treatment effects
  publication-title: Econometrica
  doi: 10.1111/j.1468-0262.2006.00655.x
– volume: 98
  start-page: 861
  year: 2011
  ident: 10.1016/j.csda.2016.08.012_br000040
  article-title: Covariate selection for the nonparametric estimation of an average treatment effect
  publication-title: Biometrika
  doi: 10.1093/biomet/asr041
– volume: 94
  start-page: 285
  year: 2007
  ident: 10.1016/j.csda.2016.08.012_br000180
  article-title: Marginal tests with sliced average variance estimation
  publication-title: Biometrika
  doi: 10.1093/biomet/asm021
– volume: 21
  start-page: 697
  year: 2009
  ident: 10.1016/j.csda.2016.08.012_br000115
  article-title: Nonparametric regression with weakly dependent data: the discrete and continuous regressor case
  publication-title: J. Nonparametr. Stat.
  doi: 10.1080/10485250902928435
– volume: vol. 120
  start-page: 69
  year: 1997
  ident: 10.1016/j.csda.2016.08.012_br000155
  article-title: Causal inference from complex longitudinal data
– volume: 89
  start-page: 784
  year: 2007
  ident: 10.1016/j.csda.2016.08.012_br000065
  article-title: Nonparametric estimation of regression functions in the presence of irrelevant regressors
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/rest.89.4.784
– volume: 93
  start-page: 1453
  year: 2011
  ident: 10.1016/j.csda.2016.08.012_br000205
  article-title: Causal diagrams for treatment effect estimation with application to efficient covariate selection
  publication-title: Rev. Econ. Stat.
  doi: 10.1162/REST_a_00153
– volume: 99
  start-page: 1015
  year: 2004
  ident: 10.1016/j.csda.2016.08.012_br000070
  article-title: Cross-validation and the estimation of conditional probability densities
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1198/016214504000000548
– volume: 2
  start-page: 1
  year: 1977
  ident: 10.1016/j.csda.2016.08.012_br000170
  article-title: Assignment to treatment group on the basis of a covariate
  publication-title: J. Educ. Stat.
  doi: 10.3102/10769986002001001
– volume: 86
  start-page: 316
  year: 1991
  ident: 10.1016/j.csda.2016.08.012_br000105
  article-title: Sliced inverse regression for dimension reduction
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1991.10475035
– volume: 127
  start-page: 757
  year: 1997
  ident: 10.1016/j.csda.2016.08.012_br000175
  article-title: Estimating causal effects from large data sets using propensity scores
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-127-8_Part_2-199710151-00064
– volume: 6
  start-page: 1
  year: 2010
  ident: 10.1016/j.csda.2016.08.012_br000185
  article-title: Collaborative double robust targeted maximum likelihood estimation
  publication-title: Int. J. Biostat.
  doi: 10.2202/1557-4679.1181
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.csda.2016.08.012_br000045
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– start-page: 107
  year: 2008
  ident: 10.1016/j.csda.2016.08.012_br000100
  article-title: Outcome-free design of observational studies: Peer influence on smoking
  publication-title: Ann. Économ. Statist.
  doi: 10.2307/27917241
– volume: 67
  start-page: 1406
  year: 2011
  ident: 10.1016/j.csda.2016.08.012_br000190
  article-title: A new criterion for confounder selection
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2011.01619.x
SSID ssj0002478
Score 2.2562408
Snippet In observational studies, the causal effect of a treatment may be confounded with variables that are related to both the treatment and the outcome of interest....
SourceID swepub
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 280
SubjectTerms algorithms
childhood
Covariate selection
diabetes
Kernel smoothing
Marginal co-ordinate hypothesis test
Matching
observational studies
Statistics
statistik
Type 1 diabetes mellitus
Title Data-driven algorithms for dimension reduction in causal inference
URI https://dx.doi.org/10.1016/j.csda.2016.08.012
https://www.proquest.com/docview/2253283073
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-80696
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-381277
Volume 105
WOSCitedRecordID wos000385604500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7352
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002478
  issn: 1872-7352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg42E8IBggypeCBE9RUPNp-7FjRRsaExJj6pvl2k62aU2npEH787mLnTRjYowHXqIqdRLL9_P5zr77HSHv80maZzyiATVgviWGxYE04LWqyUJTcHzCvK1DdnJIj47YfM6_uXDbui0nQMuSXV3xy_8qargHwsbU2X8Qd_9SuAG_QehwBbHD9U6C35NrGegKtZgvL4oVeP-nlnXB10jlj9tjfoWMrV2co5JN3XJvuNy_ocFqqz50O4aYfuSYnREyGF7qS0drslGyVe3SuGbLjdbfb4_kk6Ko1-3p_G627KJrBrv6pioX0pZePigL1IVF96c2_mFjM9jmElfz4YaFzcx02pVRMOfj9Lr6naRDBWrrOt1Q7HaP4fyjqjWyRYVZS7zqIrBvEmbvnZ1MBXRRNI0AmySi9D7ZimjK2YhsTQ9m8y_9ch0ldrlGAnietCEJfT9dlpUNCPz903-yZIaeypB9trVYjh-TR87V8KYWIk_IPVPukIdfe57eeodsf-8F-pTsDpDjbZDjAXK8HjlejxzvrPQscrweOc_Ij8-z40_7gSuxEagkDddBGGOh5ogrnhpleKJhelKYn1zmJsxyycHfhcmcqohGkY6zhWF5Tk2WJ1pDexM_J6NyVZoXxMMTaLNgmiXxIklNDi-jMVWZopxFlMsxCbvhEsrxz2MZlAvRBRqeCxxigUMssDZqGI2J3z9zadlXbm2ddlIQzn60dqEAFN363LtOZAKUK56YydKsmlrAYhcjQx6Nx-SDlWXfj-swWzaCTTKe_a1dB8eXd2z3imzjHLKbfq_JaF015g15oH4COKq3Dsu_ANknuEk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+algorithms+for+dimension+reduction+in+causal+inference&rft.jtitle=Computational+statistics+%26+data+analysis&rft.au=Persson%2C+Emma&rft.au=H%C3%A4ggstr%C3%B6m%2C+Jenny&rft.au=Waernbaum%2C+Ingeborg&rft.au=de+Luna%2C+Xavier&rft.date=2017&rft.issn=1872-7352&rft.volume=105&rft.spage=280&rft_id=info:doi/10.1016%2Fj.csda.2016.08.012&rft.externalDocID=oai_DiVA_org_uu_381277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9473&client=summon