HemiPy: A Python module for automated estimation of forest biophysical variables and uncertainties from digital hemispherical photographs
Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority...
Uložené v:
| Vydané v: | Methods in ecology and evolution Ročník 14; číslo 9; s. 2329 - 2340 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
John Wiley & Sons, Inc
01.09.2023
Wiley |
| Predmet: | |
| ISSN: | 2041-210X, 2041-210X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority of software packages for processing DHP data are based on a graphical user interface, making programmatic analysis difficult. Meanwhile, few natively support analysis of RAW image formats, while none incorporate the propagation or provision of uncertainties.
To address these limitations, we present HemiPy, an open‐source Python module for deriving forest biophysical variables and uncertainties from DHP images in an automated manner. We assess HemiPy using simulated hemispherical images, in addition to multiannual time‐series and litterfall data from several forested National Ecological Observatory Network (NEON) sites, as well as comparison against the CAN‐EYE software package.
Multiannual time‐series of PAI, FIPAR and FCOVER demonstrate HemiPy's outputs realistically represent expected temporal patterns. Comparison against litterfall data reveals reasonable accuracies are achievable, with RMSE values close to the error of ~1 unit typically attributed to optical LAI measurement approaches. HemiPy's PAI, FIPAR and FCOVER outputs demonstrate good agreement with CAN‐EYE. Consistent with previous studies, when compared to simulated hemispherical images, better agreement is observed for PAI derived using gap fraction near the hinge angle of 57.5° only, as opposed to values derived using gap fraction over a wider range of zenith angles.
HemiPy should prove a useful tool for processing DHP images, and its open‐source nature means that it can be adopted, extended and further refined by the user community. |
|---|---|
| AbstractList | Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority of software packages for processing DHP data are based on a graphical user interface, making programmatic analysis difficult. Meanwhile, few natively support analysis of RAW image formats, while none incorporate the propagation or provision of uncertainties. To address these limitations, we present HemiPy, an open‐source Python module for deriving forest biophysical variables and uncertainties from DHP images in an automated manner. We assess HemiPy using simulated hemispherical images, in addition to multiannual time‐series and litterfall data from several forested National Ecological Observatory Network (NEON) sites, as well as comparison against the CAN‐EYE software package. Multiannual time‐series of PAI, FIPAR and FCOVER demonstrate HemiPy's outputs realistically represent expected temporal patterns. Comparison against litterfall data reveals reasonable accuracies are achievable, with RMSE values close to the error of ~1 unit typically attributed to optical LAI measurement approaches. HemiPy's PAI, FIPAR and FCOVER outputs demonstrate good agreement with CAN‐EYE. Consistent with previous studies, when compared to simulated hemispherical images, better agreement is observed for PAI derived using gap fraction near the hinge angle of 57.5° only, as opposed to values derived using gap fraction over a wider range of zenith angles. HemiPy should prove a useful tool for processing DHP images, and its open‐source nature means that it can be adopted, extended and further refined by the user community. Abstract Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority of software packages for processing DHP data are based on a graphical user interface, making programmatic analysis difficult. Meanwhile, few natively support analysis of RAW image formats, while none incorporate the propagation or provision of uncertainties. To address these limitations, we present HemiPy, an open‐source Python module for deriving forest biophysical variables and uncertainties from DHP images in an automated manner. We assess HemiPy using simulated hemispherical images, in addition to multiannual time‐series and litterfall data from several forested National Ecological Observatory Network (NEON) sites, as well as comparison against the CAN‐EYE software package. Multiannual time‐series of PAI, FIPAR and FCOVER demonstrate HemiPy's outputs realistically represent expected temporal patterns. Comparison against litterfall data reveals reasonable accuracies are achievable, with RMSE values close to the error of ~1 unit typically attributed to optical LAI measurement approaches. HemiPy's PAI, FIPAR and FCOVER outputs demonstrate good agreement with CAN‐EYE. Consistent with previous studies, when compared to simulated hemispherical images, better agreement is observed for PAI derived using gap fraction near the hinge angle of 57.5° only, as opposed to values derived using gap fraction over a wider range of zenith angles. HemiPy should prove a useful tool for processing DHP images, and its open‐source nature means that it can be adopted, extended and further refined by the user community. Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI), the fraction of intercepted photosynthetically active radiation (FIPAR), and the fraction of vegetation cover (FCOVER). However, the majority of software packages for processing DHP data are based on a graphical user interface, making programmatic analysis difficult. Meanwhile, few natively support analysis of RAW image formats, while none incorporate the propagation or provision of uncertainties. To address these limitations, we present HemiPy, an open‐source Python module for deriving forest biophysical variables and uncertainties from DHP images in an automated manner. We assess HemiPy using simulated hemispherical images, in addition to multiannual time‐series and litterfall data from several forested National Ecological Observatory Network (NEON) sites, as well as comparison against the CAN‐EYE software package. Multiannual time‐series of PAI, FIPAR and FCOVER demonstrate HemiPy's outputs realistically represent expected temporal patterns. Comparison against litterfall data reveals reasonable accuracies are achievable, with RMSE values close to the error of ~1 unit typically attributed to optical LAI measurement approaches. HemiPy's PAI, FIPAR and FCOVER outputs demonstrate good agreement with CAN‐EYE. Consistent with previous studies, when compared to simulated hemispherical images, better agreement is observed for PAI derived using gap fraction near the hinge angle of 57.5° only, as opposed to values derived using gap fraction over a wider range of zenith angles. HemiPy should prove a useful tool for processing DHP images, and its open‐source nature means that it can be adopted, extended and further refined by the user community. |
| Author | Dash, Jadunandan Brown, Luke A. Morris, Harry Leblanc, Sylvain Meier, Courtney Bai, Gabriele Lanconelli, Christian Gobron, Nadine |
| Author_xml | – sequence: 1 givenname: Luke A. orcidid: 0000-0003-4807-9056 surname: Brown fullname: Brown, Luke A. email: l.a.brown4@salford.ac.uk organization: University of Southampton – sequence: 2 givenname: Harry orcidid: 0000-0001-9049-2819 surname: Morris fullname: Morris, Harry organization: National Physical Laboratory – sequence: 3 givenname: Sylvain orcidid: 0000-0003-2456-7119 surname: Leblanc fullname: Leblanc, Sylvain organization: Natural Resources Canada – sequence: 4 givenname: Gabriele orcidid: 0000-0003-2965-4131 surname: Bai fullname: Bai, Gabriele organization: ACRI‐ST – sequence: 5 givenname: Christian orcidid: 0000-0002-9545-1255 surname: Lanconelli fullname: Lanconelli, Christian organization: UniSystems – sequence: 6 givenname: Nadine orcidid: 0000-0002-0584-4195 surname: Gobron fullname: Gobron, Nadine organization: European Commission Joint Research Centre – sequence: 7 givenname: Courtney orcidid: 0000-0003-3576-883X surname: Meier fullname: Meier, Courtney organization: Batelle – sequence: 8 givenname: Jadunandan orcidid: 0000-0002-5444-2109 surname: Dash fullname: Dash, Jadunandan organization: University of Southampton |
| BookMark | eNqFUcFu1DAQtVCRKKVnrpY4b2s7zjrmVlULrVREDyBxsxx7vPEqGwfbAeUT-GucDaoQhzIXj97MezOe9xqdDWEAhN5SckVLXDPC6YZR8u2KcirlC3T-hJz9lb9ClykdSImqkYTxc_TrDo7-cX6Pb_DjnLsw4GOwUw_YhYj1lMNRZ7AYUvYl86Ue3FIrAG59GLs5eaN7_ENHr9seEtaDxdNgIGbth-wL4mI4Yuv3PpfGrsxLYwfxRBu7kMM-6rFLb9BLp_sEl3_eC_T1w-7L7d3m4fPH-9ubh43hNZUbwakFaoiUVV07Ao1ouXXcMl4JIoijrTBSVDVoQg24pm1qzpyQYmt5RSirLtD9qmuDPqgxln_FWQXt1QkIca90zN70oMARB0WQOs05005TTVpjibMCGmProvVu1Rpj-D6Vm6hDmOJQ1lcVkaxsVDfyuS7WbCnhjDeidF2vXSaGlCK4p90oUYvJarFRLTaqk8mFUf_DMOXEi0k5at8_w9uuvJ--h_l_Y9Sn3a5aib8BpPO9vg |
| CitedBy_id | crossref_primary_10_3390_rs16234547 crossref_primary_10_1016_j_agrformet_2025_110395 crossref_primary_10_1016_j_isprsjprs_2025_04_006 crossref_primary_10_1016_j_ecoinf_2023_102441 crossref_primary_10_1016_j_tree_2023_11_005 crossref_primary_10_1109_LGRS_2023_3319528 crossref_primary_10_3390_geomatics5010011 crossref_primary_10_1016_j_rse_2025_114766 crossref_primary_10_1016_j_agrformet_2024_110326 crossref_primary_10_1016_j_agrformet_2025_110612 crossref_primary_10_1016_j_rse_2025_114797 crossref_primary_10_3390_rs16122066 |
| Cites_doi | 10.1016/j.agrformet.2004.09.006 10.1016/j.agrformet.2018.11.033 10.1093/jxb/erg263 10.1071/BT9670141 10.1016/j.agrformet.2005.06.003 10.1016/j.compag.2008.03.009 10.3390/rs13163194 10.1016/j.agrformet.2020.108273 10.1016/j.agrformet.2010.04.011 10.1016/j.isprsjprs.2020.02.019 10.3390/rs13163325 10.1016/j.isprsjprs.2021.02.020 10.1111/j.1365‐2486.2005.00917.x 10.1080/01431160902929271 10.3832/ifor0775‐005 10.1016/S0034‐4257(99)00056‐5 10.1016/0168‐1923(86)90010‐9 10.1016/j.agrformet.2014.05.014 10.5589/m02‐092 10.1016/j.rse.2007.02.018 10.1016/j.agrformet.2007.11.015 10.1029/2007JG000635 10.1016/j.agrformet.2017.09.024 10.1016/j.agrformet.2008.02.014 10.1016/j.agrformet.2003.08.001 10.1016/j.agrformet.2007.02.004 10.1109/TGRS.2006.876030 10.3390/rs6054190 10.1016/S0168‐1923(01)00284‐2 10.2134/agronj1991.00021962008300050009x 10.1016/j.agrformet.2007.05.001 10.1016/j.agrformet.2011.05.009 10.1109/TSMC.1978.4310039 10.1016/j.agrformet.2005.09.009 10.3390/rs71115494 10.1016/j.rse.2013.02.030 10.1016/0168‐1923(86)90033‐X 10.1016/j.rse.2020.111935 10.1016/j.agrformet.2014.03.016 10.1071/BT9630095 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2023 The Authors. published by John Wiley & Sons Ltd on behalf of British Ecological Society. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7QG 7SN 8FD C1K FR3 P64 RC3 DOA |
| DOI | 10.1111/2041-210X.14199 |
| DatabaseName | Wiley Online Library Open Access CrossRef Animal Behavior Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Genetics Abstracts Technology Research Database Animal Behavior Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Genetics Abstracts Genetics Abstracts CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| EISSN | 2041-210X |
| EndPage | 2340 |
| ExternalDocumentID | oai_doaj_org_article_ef0fe1b71fa442afa1a0bcd0fd7e8cd5 10_1111_2041_210X_14199 MEE314199 |
| Genre | technicalNote |
| GrantInformation_xml | – fundername: European Space Agency funderid: 4000139939 – fundername: National Science Foundation – fundername: Joint Research Centre funderid: FWC 932059 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 33P 4.4 4P2 50Y 5DZ 702 8-1 A00 AAESR AAFWJ AAHBH AAHHS AAZKR ABCUV ABLJU ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACPRK ACXQS ADBBV ADKYN ADXAS ADZMN AEEZP AENEX AEQDE AEUYN AFBPY AFKRA AFPKN AFRAH AIAGR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ATCPS AVUZU AZVAB BBNVY BENPR BFHJK BHPHI BMXJE BRXPI CAG CCPQU COF DCZOG DPXWK EBD EBS EDH EJD F1Z G-S GODZA GROUPED_DOAJ HCIFZ HZ~ LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M7P MY. MY~ M~E O9- P2P P2W P4E PATMY PYCSY R.K ROL RX1 SUPJJ V8K WBKPD WOHZO WYJ ZZTAW ~S- AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY BANNL CITATION PHGZM PHGZT PQGLB WIN 7QG 7SN 8FD C1K FR3 P64 RC3 |
| ID | FETCH-LOGICAL-c4519-741de1c099355f0e87b4df4d2437070f1b7c9735ea01cef8b8542f7976d430123 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001044406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-210X |
| IngestDate | Tue Oct 14 19:09:12 EDT 2025 Sat Aug 23 14:10:29 EDT 2025 Wed Aug 13 03:43:29 EDT 2025 Thu Nov 20 01:47:21 EST 2025 Tue Nov 18 22:37:36 EST 2025 Mon Feb 17 09:40:32 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4519-741de1c099355f0e87b4df4d2437070f1b7c9735ea01cef8b8542f7976d430123 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-2456-7119 0000-0002-0584-4195 0000-0001-9049-2819 0000-0003-4807-9056 0000-0003-3576-883X 0000-0002-9545-1255 0000-0003-2965-4131 0000-0002-5444-2109 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.14199 |
| PQID | 2861042487 |
| PQPubID | 1016379 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ef0fe1b71fa442afa1a0bcd0fd7e8cd5 proquest_journals_3092370589 proquest_journals_2861042487 crossref_primary_10_1111_2041_210X_14199 crossref_citationtrail_10_1111_2041_210X_14199 wiley_primary_10_1111_2041_210X_14199_MEE314199 |
| PublicationCentury | 2000 |
| PublicationDate | September 2023 2023-09-00 20230901 2023-09-01 |
| PublicationDateYYYYMMDD | 2023-09-01 |
| PublicationDate_xml | – month: 09 year: 2023 text: September 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Methods in ecology and evolution |
| PublicationYear | 2023 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2004; 121 2007; 146 2020; 162 2005; 132 2018; 248 2005; 133 2007; 144 1986; 36 1986; 37 2020; 247 2008; 148 2011; 151 1978; 8 2003; 54 1991; 83 2010; 150 2008; 63 1967; 15 2008; 113 2014; 6 2010; 31 2008 2005 2014; 194 2015; 7 2014; 197 2019; 265 1999 2021; 13 2001; 110 1963; 11 2023 2019c 2006; 44 2019b 2007; 110 2019a 2013; 137 2005; 129 2019 2018 2017 2021; 175 2016 2003; 29 2014 2021; 297 2013 1999; 70 2012; 5 2005; 11 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_51_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_2_1 Baret F. (e_1_2_11_5_1) 2005 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_15_1 e_1_2_11_38_1 e_1_2_11_19_1 Weiss M. (e_1_2_11_49_1) 2017 e_1_2_11_50_1 Campbell J. L. (e_1_2_11_13_1) 1999 Working Group 1 of the Joint Committee for Guides in Metrology (e_1_2_11_53_1) 2008 e_1_2_11_10_1 Fernandes R. (e_1_2_11_17_1) 2014 e_1_2_11_31_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_26_1 e_1_2_11_3_1 Meier C. (e_1_2_11_36_1) 2018 Weiss M. (e_1_2_11_48_1) 2016 LI‐COR (e_1_2_11_32_1) 2013 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 |
| References_xml | – volume: 113 year: 2008 article-title: Validation and intercomparison of global leaf area index products derived from remote sensing data publication-title: Journal of Geophysical Research – volume: 132 start-page: 96 year: 2005 end-page: 114 article-title: Assessment of automatic gap fraction estimation of forests from digital hemispherical photography publication-title: Agricultural and Forest Meteorology – volume: 13 year: 2021 article-title: Comparative evaluation of algorithms for leaf area index estimation from digital hemispherical photography through virtual forests publication-title: Remote Sensing – volume: 148 start-page: 1193 year: 2008 end-page: 1209 article-title: Intercomparison and sensitivity analysis of leaf area index retrievals from LAI‐2000, AccuPAR, and digital hemispherical photography over croplands publication-title: Agricultural and Forest Meteorology – year: 2005 – volume: 83 start-page: 818 year: 1991 end-page: 825 article-title: Instrument for indirect measurement of canopy architecture publication-title: Agronomy Journal – volume: 11 start-page: 95 year: 1963 end-page: 105 article-title: Estimation of foliage denseness and foliage angle by inclined point quadrats publication-title: Australian Journal of Botany – volume: 148 start-page: 644 year: 2008 end-page: 655 article-title: Estimation of leaf area and clumping indexes of crops with hemispherical photographs publication-title: Agricultural and Forest Meteorology – volume: 121 start-page: 37 year: 2004 end-page: 53 article-title: Review of methods for in situ leaf area index (LAI) determination part II: Estimation of LAI, errors and sampling publication-title: Agricultural and Forest Meteorology – volume: 162 start-page: 184 year: 2020 end-page: 199 article-title: Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – volume: 31 start-page: 2009 year: 2010 end-page: 2042 article-title: It's all about the format—Unleashing the power of RAW aerial photography publication-title: International Journal of Remote Sensing – year: 2019a – year: 2018 – volume: 11 start-page: 378 year: 2005 end-page: 397 article-title: Model‐data synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications publication-title: Global Change Biology – year: 2014 – volume: 194 start-page: 64 year: 2014 end-page: 76 article-title: Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index publication-title: Agricultural and Forest Meteorology – volume: 137 start-page: 310 year: 2013 end-page: 329 article-title: GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products publication-title: Remote Sensing of Environment – volume: 5 start-page: 290 year: 2012 end-page: 295 article-title: Digital hemispherical photography for estimating forest canopy properties: Current controversies and opportunities publication-title: iForest‐Biogeosciences and Forestry – volume: 247 year: 2020 article-title: Evaluation of global leaf area index and fraction of absorbed photosynthetically active radiation products over North America using Copernicus Ground Based Observations for Validation data publication-title: Remote Sensing of Environment – volume: 44 start-page: 1794 year: 2006 end-page: 1803 article-title: Evaluation of the representativeness of networks of sites for the global validation and intercomparison of land biophysical products: Proposition of the CEOS‐BELMANIP publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 36 start-page: 317 year: 1986 end-page: 321 article-title: Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution publication-title: Agricultural and Forest Meteorology – volume: 197 start-page: 244 year: 2014 end-page: 253 article-title: Digital canopy photography: Exposed and in the raw publication-title: Agricultural and Forest Meteorology – volume: 7 start-page: 15494 year: 2015 end-page: 15516 article-title: A generic algorithm to estimate LAI, FAPAR and FCOVER variables from SPOT4_HRVIR and Landsat sensors: Evaluation of the consistency and comparison with ground measurements publication-title: Remote Sensing – year: 2008 – volume: 29 start-page: 241 year: 2003 end-page: 258 article-title: Landsat‐5 TM and Landsat‐7 ETM+ based accuracy assessment of leaf area index products for Canada derived from SPOT‐4 VEGETATION data publication-title: Canadian Journal of Remote Sensing – volume: 110 start-page: 125 year: 2001 end-page: 139 article-title: A practical scheme for correcting multiple scattering effects on optical LAI measurements publication-title: Agricultural and Forest Meteorology – year: 2019b – volume: 175 start-page: 71 year: 2021 end-page: 87 article-title: Validation of baseline and modified Sentinel‐2 Level 2 Prototype Processor leaf area index retrievals over the United States publication-title: ISPRS Journal of Photogrammetry and Remote Sensing – year: 2019 – volume: 8 start-page: 630 year: 1978 end-page: 632 article-title: Picture thresholding using an iterative selection method publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 151 start-page: 1287 year: 2011 end-page: 1292 article-title: Leaf area index uncertainty estimates for model–data fusion applications publication-title: Agricultural and Forest Meteorology – volume: 15 start-page: 141 year: 1967 end-page: 144 article-title: A formula for average foliage density publication-title: Australian Journal of Botany – volume: 129 start-page: 187 year: 2005 end-page: 207 article-title: Methodology comparison for canopy structure parameters extraction from digital hemispherical photography in boreal forests publication-title: Agricultural and Forest Meteorology – volume: 110 start-page: 275 year: 2007 end-page: 286 article-title: LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION publication-title: Remote Sensing of Environment – volume: 265 start-page: 390 year: 2019 end-page: 411 article-title: Review of indirect optical measurements of leaf area index: Recent advances, challenges, and perspectives publication-title: Agricultural and Forest Meteorology – volume: 297 year: 2021 article-title: Critical analysis of methods to estimate the fraction of absorbed or intercepted photosynthetically active radiation from ground measurements: Application to rice crops publication-title: Agricultural and Forest Meteorology – volume: 146 start-page: 1 year: 2007 end-page: 12 article-title: Estimating forest leaf area using cover and fullframe fisheye photography: Thinking inside the circle publication-title: Agricultural and Forest Meteorology – volume: 54 start-page: 2403 year: 2003 end-page: 2417 article-title: Ground‐based measurements of leaf area index: A review of methods, instruments and current controversies publication-title: Journal of Experimental Botany – year: 2019c – year: 2016 – volume: 133 start-page: 166 year: 2005 end-page: 181 article-title: Determining digital hemispherical photograph exposure for leaf area index estimation publication-title: Agricultural and Forest Meteorology – volume: 150 start-page: 1393 year: 2010 end-page: 1401 article-title: GAI estimates of row crops from downward looking digital photos taken perpendicular to rows at 57.5° zenith angle: Theoretical considerations based on 3D architecture models and application to wheat crops publication-title: Agricultural and Forest Meteorology – volume: 144 start-page: 236 year: 2007 end-page: 242 article-title: Correcting non‐linearity and slope effects in the estimation of the leaf area index of forests from hemispherical photographs publication-title: Agricultural and Forest Meteorology – volume: 248 start-page: 197 year: 2018 end-page: 204 article-title: A robust leaf area index algorithm accounting for the expected errors in gap fraction observations publication-title: Agricultural and Forest Meteorology – volume: 63 start-page: 282 year: 2008 end-page: 293 article-title: Verification of color vegetation indices for automated crop imaging applications publication-title: Computers and Electronics in Agriculture – volume: 13 year: 2021 article-title: Fiducial reference measurements for vegetation bio‐geophysical variables: An end‐to‐end uncertainty evaluation framework publication-title: Remote Sensing – year: 2023 – volume: 6 start-page: 4190 year: 2014 end-page: 4216 article-title: On line validation exercise (OLIVE): A web based service for the validation of medium resolution land products. Application to FAPAR products publication-title: Remote Sensing – volume: 37 start-page: 229 year: 1986 end-page: 243 article-title: Estimation of leaf area index from transmission of direct sunlight in discontinuous canopies publication-title: Agricultural and Forest Meteorology – volume: 70 start-page: 29 year: 1999 end-page: 51 article-title: Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems publication-title: Remote Sensing of Environment – year: 2017 – year: 1999 – year: 2013 – volume-title: Best practice for satellite‐derived land product validation. Land product validation subgroup year: 2014 ident: e_1_2_11_17_1 – ident: e_1_2_11_41_1 – ident: e_1_2_11_28_1 doi: 10.1016/j.agrformet.2004.09.006 – ident: e_1_2_11_54_1 doi: 10.1016/j.agrformet.2018.11.033 – ident: e_1_2_11_6_1 doi: 10.1093/jxb/erg263 – ident: e_1_2_11_38_1 doi: 10.1071/BT9670141 – ident: e_1_2_11_24_1 doi: 10.1016/j.agrformet.2005.06.003 – volume-title: VALERI: A network of sites and a methodology for the validation of medium spatial resolution land satellite products year: 2005 ident: e_1_2_11_5_1 – ident: e_1_2_11_37_1 doi: 10.1016/j.compag.2008.03.009 – ident: e_1_2_11_39_1 – volume-title: CAN‐EYE V6.4.91 user manual year: 2017 ident: e_1_2_11_49_1 – ident: e_1_2_11_8_1 doi: 10.3390/rs13163194 – ident: e_1_2_11_40_1 – ident: e_1_2_11_30_1 doi: 10.1016/j.agrformet.2020.108273 – volume-title: TOS protocol and procedure: Measurement of leaf area index year: 2018 ident: e_1_2_11_36_1 – ident: e_1_2_11_2_1 doi: 10.1016/j.agrformet.2010.04.011 – ident: e_1_2_11_23_1 doi: 10.1016/j.isprsjprs.2020.02.019 – ident: e_1_2_11_33_1 doi: 10.3390/rs13163325 – ident: e_1_2_11_9_1 doi: 10.1016/j.isprsjprs.2021.02.020 – ident: e_1_2_11_42_1 doi: 10.1111/j.1365‐2486.2005.00917.x – ident: e_1_2_11_46_1 doi: 10.1080/01431160902929271 – ident: e_1_2_11_14_1 doi: 10.3832/ifor0775‐005 – ident: e_1_2_11_22_1 doi: 10.1016/S0034‐4257(99)00056‐5 – ident: e_1_2_11_12_1 doi: 10.1016/0168‐1923(86)90010‐9 – ident: e_1_2_11_35_1 doi: 10.1016/j.agrformet.2014.05.014 – volume-title: LAI‐2200C Plant Canopy Analyser instruction manual year: 2013 ident: e_1_2_11_32_1 – volume-title: BigFoot: Characterizing land cover, LAI and NPP at the landscape scale for EOS/MODIS validation—Field manual year: 1999 ident: e_1_2_11_13_1 – ident: e_1_2_11_16_1 doi: 10.5589/m02‐092 – volume-title: Evaluation of measurement data—Guide to the expression of uncertainty in measurement year: 2008 ident: e_1_2_11_53_1 – ident: e_1_2_11_3_1 doi: 10.1016/j.rse.2007.02.018 – ident: e_1_2_11_15_1 doi: 10.1016/j.agrformet.2007.11.015 – ident: e_1_2_11_18_1 doi: 10.1029/2007JG000635 – ident: e_1_2_11_21_1 doi: 10.1016/j.agrformet.2017.09.024 – ident: e_1_2_11_19_1 doi: 10.1016/j.agrformet.2008.02.014 – ident: e_1_2_11_51_1 doi: 10.1016/j.agrformet.2003.08.001 – ident: e_1_2_11_45_1 doi: 10.1016/j.agrformet.2007.02.004 – ident: e_1_2_11_4_1 doi: 10.1109/TGRS.2006.876030 – ident: e_1_2_11_50_1 doi: 10.3390/rs6054190 – ident: e_1_2_11_27_1 doi: 10.1016/S0168‐1923(01)00284‐2 – ident: e_1_2_11_52_1 doi: 10.2134/agronj1991.00021962008300050009x – ident: e_1_2_11_34_1 doi: 10.1016/j.agrformet.2007.05.001 – ident: e_1_2_11_43_1 doi: 10.1016/j.agrformet.2011.05.009 – ident: e_1_2_11_44_1 doi: 10.1109/TSMC.1978.4310039 – ident: e_1_2_11_55_1 doi: 10.1016/j.agrformet.2005.09.009 – ident: e_1_2_11_31_1 doi: 10.3390/rs71115494 – ident: e_1_2_11_20_1 – ident: e_1_2_11_26_1 – ident: e_1_2_11_11_1 doi: 10.1016/j.rse.2013.02.030 – ident: e_1_2_11_25_1 doi: 10.1016/0168‐1923(86)90033‐X – ident: e_1_2_11_10_1 doi: 10.1016/j.rse.2020.111935 – ident: e_1_2_11_7_1 – volume-title: S2ToolBox level 2 products: LAI, FAPAR, FCOVER year: 2016 ident: e_1_2_11_48_1 – ident: e_1_2_11_29_1 doi: 10.1016/j.agrformet.2014.03.016 – ident: e_1_2_11_47_1 doi: 10.1071/BT9630095 |
| SSID | ssj0000389024 |
| Score | 2.4450047 |
| Snippet | Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI and GAI),... Abstract Digital hemispherical photography (DHP) is widely used to derive forest biophysical variables including leaf, plant, and green area index (LAI, PAI... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2329 |
| SubjectTerms | Automation Batch processing Classification digital hemispherical photography Eye Forests fraction of absorbed photosynthetically active radiation fraction of intercepted photosynthetically active radiation fraction of vegetation cover Graphical user interface green area index Image processing leaf area index Litter fall Modules Neon Photography Photosynthetically active radiation plant area index Propagation Radiation Root-mean-square errors Software Software packages Uncertainty Uncertainty analysis Variables Vegetation Vegetation cover |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1LaxsxEMdFCSn0EpI-iJO06NBDL9tIu3K06s0tDjm0wYcm-CZW0qgxJF4T2wF_hHzrzkjr1IUWX3Jb9ACh0eM_rOY3jH30dROEU64o5RmggxKgMDEK_PImnOGdIxOJ6fq7vrysx2Mz2kj1RW_CMh44T9wpRBFBOi1jo1TZxEY2wvkgYtBQ-5DopUKbDWcqncEV_T9THcuHnu6UQkkckBjj2ZBJr3-uoUTr_0tibgrVdNOc77O9TiLyQR7aAXsB09fs5TDhpVdv2OMF3E1Gqy98wEcrivznd21Y3gJH-cmb5aJFDQqBEz0jhyXyNlIdFnA3aWedYfgDeskUNzXnzTRwvN7y4wACrHIKOuFh8osyivCUEo7oA6nb7KZdZMz1_C27Oh_-_HZRdAkVCk8UmQLVQwDpURSiyogCau1UiCoQlBC3fsRp9kZXfWiE9BBrV_dVGTUqlqAqEl_v2M60ncIh49qUMhpXo8BBD9uBIfAbKAHKxH5w_R77vJ5f6zvaOCW9uLVrr4MMYskgNhmkxz49dZhl0Mb_m34lgz01I0J2KsB1Y7t1Y7etmx47WZvbdtt2bssa1aQq0Yn7Z3UlUA5rSsTYY6dphWwbqv0xHFbp6-g5Bn3MXlG6-_zG7YTtLO6X8J7t-ofFZH7_IW2B312fCsQ priority: 102 providerName: Directory of Open Access Journals |
| Title | HemiPy: A Python module for automated estimation of forest biophysical variables and uncertainties from digital hemispherical photographs |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F2041-210X.14199 https://www.proquest.com/docview/2861042487 https://www.proquest.com/docview/3092370589 https://doaj.org/article/ef0fe1b71fa442afa1a0bcd0fd7e8cd5 |
| Volume | 14 |
| WOSCitedRecordID | wos001044406200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: M7P dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley-Blackwell Open Access Backfiles customDbUrl: eissn: 2041-210X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000389024 issn: 2041-210X databaseCode: WIN dateStart: 20100101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZt0kIvSZ9002TRoYde3Eq2NrZ6S4JDCu1iSh97E3omC8l6We8G9tJ7_3VnZK9JQksp9GKEHrYsaTTfiNE3hLy2hXbMCJOk_NCDgeJ8IkNgkLLSHYLO4ZGJ6dvHfDwuJhNZdd6EeBem5YfoD9xQMuJ-jQKuTXNDyFMmOHyBTUDYuZT3yTbnWY4LOxVVf8yC_HEshrbt63cEP-jPc-cdt3RTpPC_hTtvoteofk53_0PHH5OdDnvSo3axPCH3_OwpeVhG3ur1M_LzzF9Nq_V7ekSrNVIK0KvarS49BVxL9WpZA7j1jiItR3vfkdYByyCDmmk972acXoP5jReyGqpnjoLebL0OkLmV4m0W6qbnGKqExlhzSGsQm80v6mXLn908J19Pyy8nZ0kXqSGxSE-TACxxnltAmwBfAvNFboQLwiHbIewpgZvcyjwbec249aEwxUikIQco5ESGqO4F2ZrVM_-S0FymPEhTAHIC0914iYxyXjAvZBg5MxqQt5s5UrajMcdoGpdqY87g-CocXxXHd0De9A3mLYPHn6se46T31ZB6O2bUi3PVSbLygQUPP8SDFiLVQXPNjHUsuNwX1kEH9zdLRnX7QaPSAmCqSME6_G1xxgBn5xjhcUDexbXzt66qT2WZxdTeP7d4RR6lANVaT7l9srVcrPwBeWCvl9NmMYzyMyTbx-W4-jyMZxRD9Iit8PmjhOf3D-NfSkUdig |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxELaggOiFNyJQwAcOXBZsx-muuRWUKog0yqGg3Ky1PW4jtdkoj0r5Cf3XzHg3qxSBEBI3y2vvem2P5xtr5hvG3vmiDMJplyl5CGigBMhMjAJL3oRD1DkyMTH9GOajUTGZmN1YmJofor1wI8lI5zUJOF1I70i5ElriJ8QEpV0ac5vd0aibyK1P6XF7z0IEciLltm3bNww_5NDzyztuKKfE4X8DeO7C16R_jh_-j5E_Yg8a9MmP6u3ymN2C2RN2r5-YqzdP2fUALqfjzSd-xMcbIhXgl1VYXwBHZMvL9apCeAuBEzFHHfHIq0jPsIK7aTVv1pxfoQFOIVlLXs4CR81Z-x0QdyuneBYepmeUrISnbHNEbJC6zc-rVc2gvXzGvh_3T78MsiZXQ-aJoCZDYBJAesSbCGCigCJ3OkQdiO8QT5UoXe5N3u1BKaSHWLiip1XMEQwF3SVc95ztzaoZvGA8N0pG4wrETmi8OzDEKQdagDaxF1yvwz5sF8n6hsic8mlc2K1BQ_NraX5tmt8Oe992mNccHn9u-plWvW1G5Nupolqc2UaWLUQRAX9IxlJrVcZSlsL5IGLIofABB3iw3TO2ORGWVhUIVLVC-_C3j7sCkXZOOR477GPaPH8bqj3p97up9PKfe7xl9wenJ0M7_Dr69ortKwRutd_cAdtbLdbwmt31V6vpcvEmCdNPmjMbqg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Lj9MwEMctWB7aC2-0hQV84MAlYLvOJua2QKtFLFUPgHqzYnu8VNptqj5W6kfgWzPjpFEXgRAStyixE8f22P-x7N8w9tKXVRBOu0zJI0AHJUBmYhR45U04wjlHJhLTt9NiNConE7N7FqbhQ3QLbmQZabwmA4d5iDtWroSW-AkxQWuXxlxnN3ReJONUetytsxBATqTYtl36lvBDG3p-eceVySkx_K8Iz135muaf4d3_UfJ77E6rPvlx013us2swe8BuDRK5evOQ_TiBi-l485Yf8_GGoAL8og7rc-CobHm1XtUobyFwAnM0Jx55HekZ3uBuWs_bNueX6IDTkawlr2aB48zZ7Dsgdiun8yw8TM8oWAlP0eYIbJCyzb_Xq4agvXzEvg4HX96fZG2shswToCZDYRJAetSbKGCigLJwOkQdiHeIo0qUrvCm6OdQCekhlq7MtYoFiqGg-6TrHrO9WT2DA8YLo2Q0rkTthM67A0NMOdACtIl5cHmPvd42kvUtyJziaZzbrUND9Wupfm2q3x571WWYNwyPPyd9R63eJSP4drpRL85sa8sWooiAPyRjpbWqYiUr4XwQMRRQ-oAFPNz2GduOCEurShSqWqF_-NvHfYFKu6AYjz32JnWevxXVfh4M-unqyT_neMFujz8M7enH0aenbF-hbmu2zR2yvdViDc_YTX-5mi4Xz5Mt_QT54xsl |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HemiPy+%3A+A+Python+module+for+automated+estimation+of+forest+biophysical+variables+and+uncertainties+from+digital+hemispherical+photographs&rft.jtitle=Methods+in+ecology+and+evolution&rft.au=Brown%2C+Luke+A.&rft.au=Morris%2C+Harry&rft.au=Leblanc%2C+Sylvain&rft.au=Bai%2C+Gabriele&rft.date=2023-09-01&rft.issn=2041-210X&rft.eissn=2041-210X&rft.volume=14&rft.issue=9&rft.spage=2329&rft.epage=2340&rft_id=info:doi/10.1111%2F2041-210X.14199&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_2041_210X_14199 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-210X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-210X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-210X&client=summon |