On differential privacy for federated learning in wireless systems with multiple base stations

In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IET communications Jg. 18; H. 20; S. 1853 - 1867
Hauptverfasser: Tavangaran, Nima, Chen, Mingzhe, Yang, Zhaohui, Da Silva, José Mairton B., Poor, H. Vincent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Wiley 01.12.2024
Schlagworte:
ISSN:1751-8628, 1751-8636, 1751-8636
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system where each user is equipped with a classifier and communication cells have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. In particular, the results show an improvement of over 6%. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage. Here, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase and analyse the performance of such a system.
AbstractList In this work, we consider a federated learning model in a wireless system with multiple base stations and inter-cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system where each user is equipped with a classifier and communication cells have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. In particular, the results show an improvement of over 6%. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage.
In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system where each user is equipped with a classifier and communication cells have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. In particular, the results show an improvement of over 6%. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage. Here, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase and analyse the performance of such a system.
Abstract In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially private scheme to transmit information from users to their corresponding base station during the learning phase. We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap. Furthermore, we define an optimization problem to reduce this upper bound and the total privacy leakage. To find the locally optimal solutions of this problem, we first propose an algorithm that schedules the resource blocks and users. We then extend this scheme to reduce the total privacy leakage by optimizing the differential privacy artificial noise. We apply the solutions of these two procedures as parameters of a federated learning system where each user is equipped with a classifier and communication cells have mostly fewer resource blocks than numbers of users. The simulation results show that our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler. In particular, the results show an improvement of over 6%. Furthermore, its extended version with noise optimizer significantly reduces the amount of privacy leakage.
Author Tavangaran, Nima
Yang, Zhaohui
Da Silva, José Mairton B.
Poor, H. Vincent
Chen, Mingzhe
Author_xml – sequence: 1
  givenname: Nima
  orcidid: 0000-0002-7397-4194
  surname: Tavangaran
  fullname: Tavangaran, Nima
  organization: Princeton University
– sequence: 2
  givenname: Mingzhe
  surname: Chen
  fullname: Chen, Mingzhe
  organization: University of Miami
– sequence: 3
  givenname: Zhaohui
  surname: Yang
  fullname: Yang, Zhaohui
  organization: Zhejiang University
– sequence: 4
  givenname: José Mairton B.
  orcidid: 0000-0002-4503-4242
  surname: Da Silva
  fullname: Da Silva, José Mairton B.
  organization: Uppsala University
– sequence: 5
  givenname: H. Vincent
  surname: Poor
  fullname: Poor, H. Vincent
  email: poor@princeton.edu
  organization: Princeton University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-521476$$DView record from Swedish Publication Index (Uppsala universitet)
BookMark eNp9kc1rGzEQxUVJoUmaS_8CnUPsSlppP47GzYchxZemx4hZaeQqyLtG0sb4v8_G2wYaSk8zPN77DcM7Iydd3yEhXzibcyabr2Y7iDkXlRAfyCmvFJ_VZVGevO2i_kTOUnpiTKlSylPyuO6o9c5hxC57CHQX_TOYA3V9pA4tRshoaUCIne821Hd07yMGTImmQ8q4TaOQf9HtELLfBaQtJKQpQ_Z9lz6Tjw5Cwovf85w83Fz_WN7N7te3q-Xifmak4mJWG6cAueNWKNmwltXcQVsLiagaKEcJgTeoTFsa12BVi0JY3lSiqKwpZVWck9XEtT086fGHLcSD7sHro9DHjYaYvQmo20bZsuUFk8BkiziynaqUUdYUinExsq4mVtrjbmj_on3zPxdH2jBoJbisytHOJruJfUoRnTZ--j5H8EFzpl-r0a_V6GM1Y-TyXeTPjX-a-WTe-4CH_zj18vuDmDIvTnSiQg
CitedBy_id crossref_primary_10_1109_JIOT_2024_3452549
crossref_primary_10_1109_TNSE_2025_3545912
Cites_doi 10.1109/MWC.011.2100003
10.23919/ECC.2013.6669541
10.1109/JIOT.2022.3151193
10.1109/TNET.2022.3143495
10.1145/2976749.2978318
10.1109/TWC.2020.3024629
10.1007/11681878_14
10.1109/TCOMM.2019.2956472
10.1561/2000000114
10.1109/TIFS.2016.2594132
10.1109/JSAC.2021.3118354
10.1109/JSAC.2022.3180799
10.1109/JSAC.2021.3118408
10.1109/JIOT.2021.3089054
10.1109/TMC.2022.3216837
10.1109/JIOT.2021.3085429
10.1109/TNSE.2022.3188571
10.1109/35.339880
10.1109/TWC.2007.06106
10.1017/9781108966559
10.1080/23307706.2017.1397554
10.1109/MSP.2020.2975749
10.1109/JSAC.2019.2904348
10.1109/INFOCOM.2019.8737464
10.1109/JSAC.2021.3126052
10.1109/LWC.2021.3069541
10.1109/TII.2022.3145010
10.1109/MCSE.2007.55
10.1109/ICCWorkshops49005.2020.9145118
10.1109/TIFS.2020.2988575
10.1561/0400000042
10.1109/LCOMM.2022.3167088
10.1007/978-3-662-53641-4_24
10.1109/JIOT.2021.3126828
10.1137/110830629
10.1109/TWC.2020.2974748
10.1109/JIOT.2021.3050163
10.1038/s41586-020-2649-2
10.1109/TWC.2020.3037554
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOA
DOI 10.1049/cmu2.12722
DatabaseName Wiley Online Library Open Access
CrossRef
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Open Access资源_DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8636
EndPage 1867
ExternalDocumentID oai_doaj_org_article_b95d6b1304a04bee90ef575c5dc35012
oai_DiVA_org_uu_521476
10_1049_cmu2_12722
CMU212722
Genre article
GrantInformation_xml – fundername: National Science Foundation
  funderid: CCF‐1908308; CNS‐2128448; CNS‐2312139
– fundername: Hans Werthén Foundation
– fundername: Deutsche Forschungsgemeinschaft
  funderid: TA 1431/1‐1
– fundername: European Union’s Horizon Europe research and innovation program under the Marie Skłodowska‐Curie project FLASH
  funderid: 101067652
– fundername: Ericsson Research Foundation
GroupedDBID .DC
0R~
0ZK
1OC
24P
29I
2QL
4.4
4IJ
5GY
6IK
6OB
8FE
8FG
8VB
96U
AAHHS
AAHJG
AAJGR
ABJCF
ABQXS
ACCFJ
ACCMX
ACESK
ACGFO
ACGFS
ACIWK
ACXQS
ADEYR
AEEZP
AEGXH
AENEX
AEQDE
AFAZI
AFKRA
AIAGR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
AVUZU
BENPR
BGLVJ
CCPQU
CS3
DU5
EBS
EJD
ESX
F8P
GOZPB
GROUPED_DOAJ
GRPMH
HCIFZ
HZ~
IAO
IFIPE
IPLJI
ITC
JAVBF
K1G
L6V
LAI
M43
M7S
MCNEO
MS~
NADUK
NXXTH
O9-
OCL
OK1
P62
PTHSS
QWB
RIE
RNS
ROL
RUI
S0W
U5U
UNMZH
ZL0
~ZZ
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
IDLOA
PHGZM
PHGZT
PQGLB
WIN
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
ID FETCH-LOGICAL-c4512-8cf5ae1f1d25490b081fab824ee59a6490ea19e5cb6cf9e78232d197237dc6473
IEDL.DBID 24P
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001143284600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1751-8628
1751-8636
IngestDate Fri Oct 03 12:53:21 EDT 2025
Tue Nov 04 17:01:57 EST 2025
Wed Oct 29 21:24:18 EDT 2025
Tue Nov 18 22:29:58 EST 2025
Wed Jan 22 17:11:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4512-8cf5ae1f1d25490b081fab824ee59a6490ea19e5cb6cf9e78232d197237dc6473
ORCID 0000-0002-7397-4194
0000-0002-4503-4242
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12722
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_b95d6b1304a04bee90ef575c5dc35012
swepub_primary_oai_DiVA_org_uu_521476
crossref_citationtrail_10_1049_cmu2_12722
crossref_primary_10_1049_cmu2_12722
wiley_primary_10_1049_cmu2_12722_CMU212722
PublicationCentury 2000
PublicationDate December 2024
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle IET communications
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2021; 9
2021; 8
2021; 20
2020; 20
2012
2021; 28
2019; 37
1995; 33
2022; 23
1998
2020; 37
2020; 15
2006
2022; 26
2020; 585
2016; 17
2012; 34
2020; 19
2016; 11
2021; 10
2018; 5
2020; 2
2023
2022
2022; 40
2020
2019; 68
2021; 39
2022; 9
2019
2007; 9
2007; 6
2022; 15
2017
2016
2022; 30
2015
2013
2014; 9
2003; 87
2022; 18
e_1_2_12_4_1
e_1_2_12_6_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_38_1
Diamond S. (e_1_2_12_36_1) 2016; 17
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_24_1
e_1_2_12_26_1
Nesterov Y. (e_1_2_12_45_1) 2003
e_1_2_12_47_1
Bazaraa M.S. (e_1_2_12_51_1) 2013
Dahlman E. (e_1_2_12_48_1) 2020
e_1_2_12_28_1
e_1_2_12_49_1
e_1_2_12_31_1
e_1_2_12_52_1
e_1_2_12_33_1
e_1_2_12_35_1
e_1_2_12_37_1
e_1_2_12_14_1
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_50_1
e_1_2_12_3_1
e_1_2_12_5_1
e_1_2_12_18_1
e_1_2_12_16_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_21_1
e_1_2_12_44_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_25_1
e_1_2_12_40_1
e_1_2_12_27_1
e_1_2_12_29_1
e_1_2_12_30_1
e_1_2_12_53_1
e_1_2_12_32_1
e_1_2_12_34_1
e_1_2_12_15_1
e_1_2_12_13_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_9_1
References_xml – volume: 9
  start-page: 16592
  issue: 17
  year: 2022
  end-page: 16605
  article-title: Federated learning over wireless IoT networks with optimized communication and resources
  publication-title: IEEE Internet Things J.
– volume: 39
  start-page: 3821
  issue: 12
  year: 2021
  end-page: 3835
  article-title: Privacy amplification for federated learning via user sampling and wireless aggregation
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 23
  start-page: 812
  issue: 1
  year: 2022
  end-page: 822
  article-title: Scalable and low‐latency federated learning with cooperative mobile edge networking
  publication-title: IEEE Trans. Mob. Comput.
– start-page: 265
  year: 2006
  end-page: 284
  article-title: Calibrating noise to sensitivity in private data analysis
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  end-page: 5
  article-title: CVXPY: A Python‐embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 2807
  issue: 8
  year: 2007
  end-page: 2812
  article-title: A resource allocator for the uplink of multi‐cell OFDMA systems
  publication-title: IEEE Trans. Wireless Commun.
– volume: 37
  start-page: 50
  issue: 3
  year: 2020
  end-page: 60
  article-title: Federated learning: Challenges, methods, and future directions
  publication-title: IEEE Signal Process. Mag.
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
  article-title: Matplotlib: A 2D graphics environment
  publication-title: IEEE Comput. Sci. Eng.
– volume: 10
  start-page: 1434
  issue: 7
  year: 2021
  end-page: 1438
  article-title: Online client scheduling for fast federated learning
  publication-title: IEEE Wireless Commun. Lett.
– volume: 40
  start-page: 290
  issue: 1
  year: 2022
  end-page: 307
  article-title: Low‐latency federated learning over wireless channels with differential privacy
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 20
  start-page: 1935
  issue: 3
  year: 2021
  end-page: 1949
  article-title: Energy efficient federated learning over wireless communication networks
  publication-title: IEEE Trans. Wireless Commun.
– volume: 87
  year: 2003
– year: 1998
– start-page: 635
  year: 2016
  end-page: 658
  article-title: Concentrated differential privacy: Simplifications, extensions, and lower bounds
– year: 2020
  article-title: Concentrated differentially private and utility preserving federated learning
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 34
  start-page: A1380
  issue: 3
  year: 2012
  end-page: A1405
  article-title: Hybrid deterministic‐stochastic methods for data fitting
  publication-title: SIAM J. Sci. Comput.
– year: 2016
  article-title: Federated optimization: Distributed machine learning for on‐device intelligence
– year: 2022
– volume: 15
  start-page: 290
  issue: 4
  year: 2022
  end-page: 399
  article-title: Wireless for machine learning: A survey
  publication-title: Found. Trends Signal Process.
– volume: 28
  start-page: 192
  issue: 5
  year: 2021
  end-page: 198
  article-title: Dispersed federated learning: Vision, taxonomy, and future directions
  publication-title: IEEE Wireless Commun.
– start-page: 3071
  year: 2013
  end-page: 3076
  article-title: ECOS: An SOCP solver for embedded systems
– volume: 26
  start-page: 1489
  issue: 7
  year: 2022
  end-page: 1493
  article-title: Privacy‐preserving federated edge learning: Modelling and optimization
  publication-title: IEEE Commun. Lett.
– volume: 18
  start-page: 6273
  issue: 9
  year: 2022
  end-page: 6282
  article-title: Decentralized wireless federated learning with differential privacy
  publication-title: IEEE Trans. Industr. Inform.
– volume: 9
  start-page: 572
  issue: 1
  year: 2022
  end-page: 588
  article-title: Edge‐assisted democratized learning toward federated analytics
  publication-title: IEEE Internet Things J.
– year: 2015
– volume: 68
  start-page: 1146
  issue: 2
  year: 2019
  end-page: 1159
  article-title: Distributed federated learning for ultra‐reliable low‐latency vehicular communications
  publication-title: IEEE Trans. Commun.
– volume: 19
  start-page: 3546
  issue: 5
  year: 2020
  end-page: 3557
  article-title: Federated learning over wireless fading channels
  publication-title: IEEE Trans. Wireless Commun.
– start-page: 1
  year: 2022
  end-page: 12
  article-title: A dispersed federated learning framework for 6G‐enabled autonomous driving cars
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 8
  start-page: 10639
  issue: 13
  year: 2021
  end-page: 10651
  article-title: Incentivizing differentially private federated learning: A multi‐dimensional contract approach
  publication-title: IEEE Internet Things J.
– volume: 30
  start-page: 1569
  issue: 4
  year: 2022
  end-page: 1584
  article-title: Multi‐stage hybrid federated learning over large‐scale D2D‐enabled fog networks
  publication-title: IEEE/ACM Trans. Netw.
– volume: 9
  start-page: 11085
  issue: 13
  year: 2022
  end-page: 11097
  article-title: THF: 3‐way hierarchical framework for efficient client selection and resource management in federated learning
  publication-title: IEEE Internet Things J.
– start-page: 1
  year: 2019
  end-page: 15
  article-title: Towards federated learning at scale: System design
– volume: 11
  start-page: 2648
  issue: 12
  year: 2016
  end-page: 2663
  article-title: Reconstruction attacks against mobile‐based continuous authentication systems in the cloud
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 1387
  year: 2019
  end-page: 1395
  article-title: Federated learning over wireless networks: Optimization model design and analysis
– volume: 33
  start-page: 42
  issue: 1
  year: 1995
  end-page: 49
  article-title: Propagation measurements and models for wireless communications channels
  publication-title: IEEE Commun. Mag.
– volume: 37
  start-page: 1205
  issue: 6
  year: 2019
  end-page: 1221
  article-title: Adaptive federated learning in resource constrained edge computing systems
  publication-title: IEEE J. Sel. Areas Commun.
– volume: 9
  start-page: 211
  issue: 3‐4
  year: 2014
  end-page: 407
  article-title: The algorithmic foundations of differential privacy
  publication-title: Found. Trends Theo. Comput. Sci.
– start-page: 1
  year: 2020
  end-page: 6
  article-title: Energy‐efficient radio resource allocation for federated edge learning
– volume: 9
  start-page: 92
  issue: 1
  year: 2021
  end-page: 103
  article-title: Federated learning over energy harvesting wireless networks
  publication-title: IEEE Internet Things J.
– volume: 5
  start-page: 42
  issue: 1
  year: 2018
  end-page: 60
  article-title: A rewriting system for convex optimization problems
  publication-title: J. Contr. Dec.
– start-page: 308
  year: 2016
  end-page: 318
  article-title: Deep learning with differential privacy
– volume: 40
  start-page: 2361
  issue: 8
  year: 2022
  end-page: 2377
  article-title: Interference management for over‐the‐air federated learning in multi‐cell wireless networks
  publication-title: IEEE J. Sel. Areas Commun.
– year: 2012
– volume: 15
  start-page: 3454
  year: 2020
  end-page: 3469
  article-title: Federated learning with differential privacy: Algorithms and performance analysis
  publication-title: IEEE Trans. Inf. Forensics Secur.
– volume: 2
  start-page: 429
  year: 2020
  end-page: 450
  article-title: Federated optimization in heterogeneous networks
– start-page: 1273
  year: 2017
  end-page: 1282
  article-title: Communication‐efficient learning of deep networks from decentralized data
– volume: 20
  start-page: 269
  issue: 1
  year: 2020
  end-page: 283
  article-title: A joint learning and communications framework for federated learning over wireless networks
  publication-title: IEEE Trans. Wireless Commun.
– year: 2020
– volume: 39
  start-page: 3805
  issue: 12
  year: 2021
  end-page: 3820
  article-title: Pain‐FL: Personalized privacy‐preserving incentive for federated learning
  publication-title: IEEE J. Sel. Areas Commun.
– year: 2023
– year: 2013
– ident: e_1_2_12_52_1
– volume-title: Introductory Lectures on Convex Optimization: A Basic Course
  year: 2003
  ident: e_1_2_12_45_1
– ident: e_1_2_12_20_1
  doi: 10.1109/MWC.011.2100003
– ident: e_1_2_12_40_1
  doi: 10.23919/ECC.2013.6669541
– ident: e_1_2_12_14_1
  doi: 10.1109/JIOT.2022.3151193
– ident: e_1_2_12_19_1
  doi: 10.1109/TNET.2022.3143495
– ident: e_1_2_12_46_1
  doi: 10.1145/2976749.2978318
– ident: e_1_2_12_9_1
  doi: 10.1109/TWC.2020.3024629
– ident: e_1_2_12_26_1
  doi: 10.1007/11681878_14
– ident: e_1_2_12_5_1
– ident: e_1_2_12_8_1
  doi: 10.1109/TCOMM.2019.2956472
– ident: e_1_2_12_3_1
  doi: 10.1561/2000000114
– ident: e_1_2_12_25_1
  doi: 10.1109/TIFS.2016.2594132
– ident: e_1_2_12_30_1
  doi: 10.1109/JSAC.2021.3118354
– ident: e_1_2_12_13_1
  doi: 10.1109/JSAC.2022.3180799
– ident: e_1_2_12_33_1
  doi: 10.1109/JSAC.2021.3118408
– ident: e_1_2_12_12_1
  doi: 10.1109/JIOT.2021.3089054
– ident: e_1_2_12_53_1
– ident: e_1_2_12_4_1
– ident: e_1_2_12_22_1
  doi: 10.1109/TMC.2022.3216837
– ident: e_1_2_12_23_1
  doi: 10.1109/JIOT.2021.3085429
– ident: e_1_2_12_21_1
  doi: 10.1109/TNSE.2022.3188571
– ident: e_1_2_12_50_1
  doi: 10.1109/35.339880
– ident: e_1_2_12_49_1
  doi: 10.1109/TWC.2007.06106
– ident: e_1_2_12_2_1
  doi: 10.1017/9781108966559
– ident: e_1_2_12_37_1
  doi: 10.1080/23307706.2017.1397554
– ident: e_1_2_12_7_1
  doi: 10.1109/MSP.2020.2975749
– ident: e_1_2_12_16_1
  doi: 10.1109/JSAC.2019.2904348
– ident: e_1_2_12_17_1
  doi: 10.1109/INFOCOM.2019.8737464
– ident: e_1_2_12_32_1
  doi: 10.1109/JSAC.2021.3126052
– ident: e_1_2_12_18_1
  doi: 10.1109/LWC.2021.3069541
– ident: e_1_2_12_34_1
  doi: 10.1109/TII.2022.3145010
– ident: e_1_2_12_43_1
  doi: 10.1109/MCSE.2007.55
– volume-title: 5G NR: The Next Generation Wireless Access Technology
  year: 2020
  ident: e_1_2_12_48_1
– ident: e_1_2_12_15_1
  doi: 10.1109/ICCWorkshops49005.2020.9145118
– ident: e_1_2_12_31_1
  doi: 10.1109/TIFS.2020.2988575
– ident: e_1_2_12_38_1
– ident: e_1_2_12_27_1
  doi: 10.1561/0400000042
– ident: e_1_2_12_35_1
  doi: 10.1109/LCOMM.2022.3167088
– ident: e_1_2_12_44_1
  doi: 10.1007/978-3-662-53641-4_24
– ident: e_1_2_12_6_1
– ident: e_1_2_12_24_1
  doi: 10.1109/JIOT.2021.3126828
– ident: e_1_2_12_47_1
  doi: 10.1137/110830629
– ident: e_1_2_12_10_1
  doi: 10.1109/TWC.2020.2974748
– ident: e_1_2_12_29_1
  doi: 10.1109/JIOT.2021.3050163
– ident: e_1_2_12_42_1
  doi: 10.1038/s41586-020-2649-2
– volume-title: Nonlinear Programming: Theory and Algorithms
  year: 2013
  ident: e_1_2_12_51_1
– ident: e_1_2_12_39_1
– ident: e_1_2_12_28_1
– volume: 17
  start-page: 1
  issue: 83
  year: 2016
  ident: e_1_2_12_36_1
  article-title: CVXPY: A Python‐embedded modeling language for convex optimization
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_12_11_1
  doi: 10.1109/TWC.2020.3037554
– ident: e_1_2_12_41_1
SSID ssj0055644
Score 2.4118292
Snippet In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a differentially...
In this work, we consider a federated learning model in a wireless system with multiple base stations and inter-cell interference. We apply a differentially...
Abstract In this work, we consider a federated learning model in a wireless system with multiple base stations and inter‐cell interference. We apply a...
SourceID doaj
swepub
crossref
wiley
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1853
SubjectTerms Computer Science with specialization in Computer Communication
data privacy
Datavetenskap med inriktning mot datorkommunikation
differential privacy
federated learning
optimization
scheduling
wireless channels
wireless communications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9EVAPCtU2bdrmqKuLFx8HFU-WPKWw1mW7Ffz3TpJ2cUH04q2kIYTJZOabJHwfQoeZyWNltA5SHsaBDXgBlEFZQEgeGfhHRSyc2ER2e5s_P7P7b1Jf9k2Ypwf2hjsTjKpUQKRNeJgIrVmoDUAMSZW0d2Iu-oYZ64opH4MpTZ2MK-TGKADMnnfEpAk7k28NOY1IRshMKnKM_VO-0Fmo6nLNYAUttyARn_vJraI5Xa2hpW_Ugevo5a7CnbgJbNIhHo3LDy4_MYBQbCxDBIBIhVtRiFdcVtiyEg8hsGHP3lxjewaLuxeF2OYzXPub-XoDPQ6uHvrXQauVEMgEcnaQS0O5jkykbMUXCsj0houcJFpTxlNo0jximkqRSsM04IKYKCc5limZJlm8iear90pvISxgk-cmJlRBraQ5yy0G4rHiWkH5wkQPHXdmK2RLJG71LIaFu9BOWGFNXDgT99DBtO_I02f82OvCWn_aw1JeuwZwhKJ1hOIvR-ihI792M8Nclk_nbpimKajVZEp76MQt7S_zKfo3j8R9bf_HzHbQIgEo5B_B7KL5ybjRe2hBfkzKerzvHPcLQgfxAg
  priority: 102
  providerName: Directory of Open Access Journals
Title On differential privacy for federated learning in wireless systems with multiple base stations
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fcmu2.12722
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-521476
https://doaj.org/article/b95d6b1304a04bee90ef575c5dc35012
Volume 18
WOSCitedRecordID wos001143284600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Open Access资源_DOAJ
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: P5Z
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: M7S
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (Activated by CARLI)
  customDbUrl:
  eissn: 1751-8636
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055644
  issn: 1751-8636
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS-RAFH6IehgPbqPYLk3B6GEGop1KKkmBF1ecg20j4-jJUKs0tLHpRfDf-6qStDaIIF5CqLwUlVre-2rJ9wHspjaLtDUmSEQrCpzDC3AalAaUZqHFZ0xG0otNpO12dnfHOzNwWP8LU_JDTBbc3Mjw_toNcCFLFRIEtdiI6nFM90OaUnTAc2EYpa5P07hT-2HGEi_livExDBC3ZzU5acwP3t6dCkeetX_CGToNV328OV_6XkmXYbHCmeSo7BgrMGOKVVh4xz74E-6vClLro-A475H-oPss1AtBHEusI5lAHKpJpSvxQLoFccTGPfSNpCSAHhK3jEvqQ4nEhUQyLDf3h2twc3727-QiqOQWAhVj2A8yZZkwoQ21mzS2JIIFK2RGY2MYFwkmGRFyw5RMlOUGoUVEtVctS7VK4jRah9niqTAbQCT6icxGlGmcbhnBMwejRKSF0TgD4rIBv-taz1XFRe4kMXq53xOPee7qLPd11oBfE9t-ycDxodWxa7yJhWPN9glPg4e8GoS55EwnEqN2LFqxNAa_yCJcVUwrt7-KmeyVTT-VzWn3_5HPZjzOmZN1Shrwx7f3J-XJTy5vqL_b_IrxFvygiJrK8zLbMDsajM0OzKvnUXc4aPr-3YS547N257rplw_wevu3_Qr6dADj
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQRaI9lEdbdYFSS8ABpNCNYyfxkaeogIUDVJxq-YlWWgLaZZH498w4ydKVUKWqt8hxrMT2zHxjO99HyGYRyswF75Ncd7MEHV4CaVCRMFamAe4Jk5koNlH0euXNjbxszubgvzA1P8RkwQ0tI_prNHBckK4TTo4kmfZuzHZTVjDwwO84hBkUMGD8snXEQuRRyxUCZJoAcC9bdlIuf7w-OxWPIm3_hDR0Gq_GgHO88J-vukg-NkiT7tVTY4nM-GqZfPiDf_AT-X1R0VYhBSx9QB-G_SdtnykgWRqQZgKQqKONssQt7VcUqY0H4B1pTQE9oriQS9tjiRSDIh3V2_ujz-T6-Ojq4CRpBBcSyyHwJ6UNQvs0pA7Txq4BuBC0KRn3XkidQ5HXqfTCmtwG6QFcZMxF3bLC2ZwX2RcyW91X_iuhBjxFGTImHCRcXssSgZTOnPYOciBpOmS77XZlGzZyFMUYqLgrzqXCPlOxzzpkY1L3oebgeLPWPo7epAbyZseC--GtasxQGSlcbiBuc93lxnv4ogCA1QpncYcVGtmqx36qmcP-r73YzHisBAo75R2yEwf8L--jDs6vWbxa-ZfK38n8ydX5mTr72TtdJe8ZYKj69MwamX0cjv03MmefHvuj4Xqc7C8OmwEn
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFLYmNiF4YBtsWtnNEvAAUrbGsZP4kcEq0KD0ARBPWL6iSiVULUXav985TlJWCU2aeIucEyvx5Zzv2M73EbJdhDJzwfsk190sQYeXQBpUJIyVaYB7wmQmik0U_X55dSUHzdkc_Bem5oeYL7jhzIj-Gie4H7tQJ5wcSTLt7Yx9S1nBwAO_5AKcLBI780HriIXIo5YrBMg0AeBetuykXH5_fHYhHkXa_jlp6CJejQGn9_qZr_qGrDVIk-7XQ-MteeGrdbL6F__gBrk-q2irkAIzfUTHk-GDtr8pIFkakGYCkKijjbLEDR1WFKmNR-AdaU0BPaW4kEvbY4kUgyKd1tv703fkovfz_OAoaQQXEssh8CelDUL7NKQO08auAbgQtCkZ915InUOR16n0wprcBukBXGTMRd2ywtmcF9l7slTdVf4DoQY8RRkyJhwkXF7LEoGUzpz2DnIgaTpkt212ZRs2chTFGKm4K86lwjZTsc06ZGtuO645OJ60-oG9N7dA3uxYcDe5Uc00VEYKlxuI21x3ufEevigAYLXCWdxhhUp26r5fqOZweLkfq5nNlEBhp7xD9mKH_-N91MHpBYtXm_9j_JUsDw576uS4_-sjWWEAoerDM5_I0v1k5j-TV_bhfjidfIlj_Q-yTwCr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+differential+privacy+for+federated+learning+in+wireless+systems+with+multiple+base+stations&rft.jtitle=IET+communications&rft.au=Tavangaran%2C+Nima&rft.au=Chen%2C+Mingzhe&rft.au=Yang%2C+Zhaohui&rft.au=Da+Silva+Jr%2C+Jos%C3%A9+Mairton+B.&rft.date=2024-12-01&rft.issn=1751-8636&rft.volume=18&rft.issue=20&rft.spage=1853&rft_id=info:doi/10.1049%2Fcmu2.12722&rft.externalDocID=oai_DiVA_org_uu_521476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8628&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8628&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8628&client=summon