Conversion of the Nitrate Nitrogen and Nitrogen Dioxide to Nitrous Oxides in Plants

Tobacco and wheat are known to emit nitrous oxide (N2O). Provided that N2O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for global warming, it is an intriguing and important subject, whether this activity is commonly present in other plants. In this study, 17 plant...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta Biotechnologica Ročník 23; číslo 2-3; s. 249 - 257
Hlavní autoři: Hakata, M., Takahashi, M., Zumft, W., Sakamoto, A., Morikawa, H.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin WILEY-VCH Verlag 01.07.2003
Wiley
WILEY‐VCH Verlag
Témata:
ISSN:0138-4988, 1521-3846
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Tobacco and wheat are known to emit nitrous oxide (N2O). Provided that N2O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for global warming, it is an intriguing and important subject, whether this activity is commonly present in other plants. In this study, 17 plant taxa that had been cultured aseptically were fed with 15N‐labelled nitrate for one week (feeding period). The plant taxa were then transferred to a medium with non‐labelled nitrate in gas‐sealed pots and cultured for another week (emission period). The amount of labelled N2O emitted from the plants during the emission period was determined. This value reflects only a part of the capability of plants to convert nitrate to N2O, because the amount of N2O determined here does not correspond to the total N2O emission from plants, but to only an 15N‐labelled N2O fraction emitted during the emission period from nitrate taken up into the plants during the feeding period. It was discovered that all of the 17 plant taxa analysed, except for Eucalyptus viminalis, showed emission of 15N2O. The emission ranged from 0.45 ± 0.20 ng N2O/g fresh weight (kenaf) to − 0.012 ± 0.12 ng N2O/g fresh weight (Eucalyptus viminalis). This activity of converting nitrate to N2O is obviously common in plants with some exceptions. There was more than a 58‐fold variation between the highest (Hibiscus cannabinus) and the second lowest (Nicotiana tabacum) capability to convert nitrate to N2O among the 17 plant taxa. The present result indicates that the potential of plants to convert nitrate to N2O highly varies among the plant species as in the case of the assimilation of nitrogen dioxide (N2O) where more than a 600‐fold variation was observed among 217 plant taxa. A negative correlation was obtained for N2O emission and NO2 assimilation (r = 0.72). This is the first report where there was a competitive interaction between the assimilation and dissimilation activities in plants. It was also found that wild type and transgenic tobacco are able to convert NO2 to N2O when they were fumigated with 15N‐labelled NO2. However since the N2O emission values observed in this study were approximately three orders of magnitude smaller than those observed with wheat leaves, the evaluation of the environmental significance of the N2O emission by plants must await quantitative analysis using the present system to figure out the full N2O emission capability of plants.
AbstractList Tobacco and wheat are known to emit nitrous oxide (N sub(2)O). Provided that N sub(2)O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for global warming, it is an intriguing and important subject, whether this activity is commonly present in other plants. In this study, 17 plant taxa that had been cultured aseptically were fed with super(15)N-labelled nitrate for one week (feeding period). The plant taxa were then transferred to a medium with non-labelled nitrate in gas-sealed pots and cultured for another week (emission period). The amount of labelled N sub(2)O emitted from the plants during the emission period was determined. This value reflects only a part of the capability of plants to convert nitrate to N sub(2)O, because the amount of N sub(2)O determined here does not correspond to the total N sub(2)O emission from plants, but to only an super(15)N-labelled N sub(2)O fraction emitted during the emission period from nitrate taken up into the plants during the feeding period. It was discovered that all of the 17 plant taxa analysed, except for Eucalyptus viminalis, showed emission of super(15)N sub(2)O. The emission ranged from 0.45 +/- 0.20 ng N sub(2)O/g fresh weight (kenaf) to-0.012 +/- 0.12 ng N sub(2)O/g fresh weight (Eucalyptus viminalis). This activity of converting nitrate to N sub(2)O is obviously common in plants with some exceptions. There was more than a 58-fold variation between the highest (Hibiscus cannabinus) and the second lowest (Nicotiana tabacum) capability to convert nitrate to N sub(2)O among the 17 plant taxa. The present result indicates that the potential of plants to convert nitrate to N sub(2)O highly varies among the plant species as in the case of the assimilation of nitrogen dioxide (N sub(2)O) where more than a 600-fold variation was observed among 217 plant taxa. A negative correlation was obtained for N sub(2)O emission and NO sub(2) assimilation (r = 0.72). This is the first report where there was a competitive interaction between the assimilation and dissimilation activities in plants. It was also found that wild type and transgenic tobacco are able to convert NO sub(2) to N sub(2)O when they were fumigated with super(15)N-labelled NO sub(2). However since the N sub(2)O emission values observed in this study were approximately three orders of magnitude smaller than those observed with wheat leaves, the evaluation of the environmental significance of the N sub(2)O emission by plants must await quantitative analysis using the present system to figure out the full N sub(2)O emission capability of plants.
Tobacco and wheat are known to emit nitrous oxide (N 2 O). Provided that N 2 O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for global warming, it is an intriguing and important subject, whether this activity is commonly present in other plants. In this study, 17 plant taxa that had been cultured aseptically were fed with 15 N‐labelled nitrate for one week (feeding period). The plant taxa were then transferred to a medium with non‐labelled nitrate in gas‐sealed pots and cultured for another week (emission period). The amount of labelled N 2 O emitted from the plants during the emission period was determined. This value reflects only a part of the capability of plants to convert nitrate to N 2 O, because the amount of N 2 O determined here does not correspond to the total N 2 O emission from plants, but to only an 15 N‐labelled N 2 O fraction emitted during the emission period from nitrate taken up into the plants during the feeding period. It was discovered that all of the 17 plant taxa analysed, except for Eucalyptus viminalis, showed emission of 15 N 2 O. The emission ranged from 0.45 ± 0.20 ng N 2 O/g fresh weight (kenaf) to − 0.012 ± 0.12 ng N 2 O/g fresh weight ( Eucalyptus viminalis ). This activity of converting nitrate to N 2 O is obviously common in plants with some exceptions. There was more than a 58‐fold variation between the highest ( Hibiscus cannabinus ) and the second lowest ( Nicotiana tabacum ) capability to convert nitrate to N 2 O among the 17 plant taxa. The present result indicates that the potential of plants to convert nitrate to N 2 O highly varies among the plant species as in the case of the assimilation of nitrogen dioxide (N 2 O) where more than a 600‐fold variation was observed among 217 plant taxa. A negative correlation was obtained for N 2 O emission and NO 2 assimilation ( r = 0.72). This is the first report where there was a competitive interaction between the assimilation and dissimilation activities in plants. It was also found that wild type and transgenic tobacco are able to convert NO 2 to N 2 O when they were fumigated with 15 N‐labelled NO 2 . However since the N 2 O emission values observed in this study were approximately three orders of magnitude smaller than those observed with wheat leaves, the evaluation of the environmental significance of the N 2 O emission by plants must await quantitative analysis using the present system to figure out the full N 2 O emission capability of plants.
Tobacco and wheat are known to emit nitrous oxide (N2O). Provided that N2O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for global warming, it is an intriguing and important subject, whether this activity is commonly present in other plants. In this study, 17 plant taxa that had been cultured aseptically were fed with 15N‐labelled nitrate for one week (feeding period). The plant taxa were then transferred to a medium with non‐labelled nitrate in gas‐sealed pots and cultured for another week (emission period). The amount of labelled N2O emitted from the plants during the emission period was determined. This value reflects only a part of the capability of plants to convert nitrate to N2O, because the amount of N2O determined here does not correspond to the total N2O emission from plants, but to only an 15N‐labelled N2O fraction emitted during the emission period from nitrate taken up into the plants during the feeding period. It was discovered that all of the 17 plant taxa analysed, except for Eucalyptus viminalis, showed emission of 15N2O. The emission ranged from 0.45 ± 0.20 ng N2O/g fresh weight (kenaf) to − 0.012 ± 0.12 ng N2O/g fresh weight (Eucalyptus viminalis). This activity of converting nitrate to N2O is obviously common in plants with some exceptions. There was more than a 58‐fold variation between the highest (Hibiscus cannabinus) and the second lowest (Nicotiana tabacum) capability to convert nitrate to N2O among the 17 plant taxa. The present result indicates that the potential of plants to convert nitrate to N2O highly varies among the plant species as in the case of the assimilation of nitrogen dioxide (N2O) where more than a 600‐fold variation was observed among 217 plant taxa. A negative correlation was obtained for N2O emission and NO2 assimilation (r = 0.72). This is the first report where there was a competitive interaction between the assimilation and dissimilation activities in plants. It was also found that wild type and transgenic tobacco are able to convert NO2 to N2O when they were fumigated with 15N‐labelled NO2. However since the N2O emission values observed in this study were approximately three orders of magnitude smaller than those observed with wheat leaves, the evaluation of the environmental significance of the N2O emission by plants must await quantitative analysis using the present system to figure out the full N2O emission capability of plants.
Author Hakata, M.
Takahashi, M.
Sakamoto, A.
Zumft, W.
Morikawa, H.
Author_xml – sequence: 1
  givenname: M.
  surname: Hakata
  fullname: Hakata, M.
  organization: Hiroshima University, Department of Mathematical and Life Science, Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
– sequence: 2
  givenname: M.
  surname: Takahashi
  fullname: Takahashi, M.
  organization: Hiroshima University, Department of Mathematical and Life Science, Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
– sequence: 3
  givenname: W.
  surname: Zumft
  fullname: Zumft, W.
  organization: Universität Karlsruhe, Lehrstuhl für Mikrobiologie, 76128 Karlsruhe, Germany
– sequence: 4
  givenname: A.
  surname: Sakamoto
  fullname: Sakamoto, A.
  organization: Hiroshima University, Department of Mathematical and Life Science, Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
– sequence: 5
  givenname: H.
  surname: Morikawa
  fullname: Morikawa, H.
  email: hmorikaw@sci.hiroshima-u.ac.jp
  organization: Hiroshima University, Department of Mathematical and Life Science, Graduate School of Science, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526, Japan
BackLink https://cir.nii.ac.jp/crid/1872272492737226368$$DView record in CiNii
BookMark eNqFkMFPwyAUxonRxDm9eu7BeOuEB23hqFOncXEmajwSbKmiHcyCuv330tSoMTEe4D1evh_fy7eF1q2zGqFdgkcEYzhQ98aNAGMq4oE1NCAZkJRylq-jASaUp0xwvom2vH_CmBBMYICux86-6dYbZxNXJ-FRJ5cmtCr01T1omyhbfT-OjVuaSifB9bNXn8y6gU-MTa4aZYPfRhu1arze-axDdHt6cjM-S6ezyfn4cJqWLCOQAq8rVlElKFUV1lBqzXhFRV6UBQFRCMi7Fgta8lrcQ8ZplgPHVVFkmlaMDtF-_--idS-v2gc5N77UTVxCx70k4YJlkIkoHPXCsnXet7qWi9bMVbuSBMsuO9llJ7-yiwD7BZQmqBBDitGY5m9M9Ni7afTqHxN5eHQ--8nu9aw1Jrp1N-EFQAFMQEFjl9OcR1nay4wPevllodpnmUdVJu8uJxIDu7hiUyxP6Qcb5p3q
CitedBy_id crossref_primary_10_1007_s11270_010_0404_2
crossref_primary_10_1016_S1002_0160_11_60197_5
crossref_primary_10_1016_j_scitotenv_2021_150262
crossref_primary_10_1016_j_scitotenv_2024_173122
crossref_primary_10_1038_s41598_017_13781_7
crossref_primary_10_1016_j_scitotenv_2016_08_026
crossref_primary_10_1016_j_agrformet_2016_03_022
crossref_primary_10_1051_matecconf_202338603018
crossref_primary_10_1016_S1001_0742_08_60033_9
crossref_primary_10_1038_s41467_019_12976_y
crossref_primary_10_1111_j_1469_8137_2005_01542_x
crossref_primary_10_3389_fpls_2022_994149
crossref_primary_10_2136_sssaj2005_0035
crossref_primary_10_3389_fpls_2020_01177
crossref_primary_10_1016_j_envpol_2022_119706
crossref_primary_10_1038_s41598_018_21881_1
crossref_primary_10_3390_plants9020180
crossref_primary_10_3390_agronomy14122875
crossref_primary_10_3390_agronomy8070108
crossref_primary_10_3389_fpls_2022_905537
crossref_primary_10_3390_ijms23169412
crossref_primary_10_1016_j_soilbio_2020_107738
crossref_primary_10_1016_j_soilbio_2013_12_005
crossref_primary_10_1007_s12155_022_10408_2
crossref_primary_10_1111_nph_15455
crossref_primary_10_1111_gcb_12995
crossref_primary_10_1016_j_jembe_2013_06_010
crossref_primary_10_1016_j_soilbio_2012_01_016
crossref_primary_10_3390_w17071027
crossref_primary_10_1007_s10705_009_9313_4
crossref_primary_10_1016_j_scitotenv_2024_170062
crossref_primary_10_1007_s12649_020_01190_3
crossref_primary_10_1007_s11104_013_1879_6
crossref_primary_10_1111_gcb_17181
crossref_primary_10_1007_s11104_008_9673_6
crossref_primary_10_1016_j_agee_2021_107557
crossref_primary_10_1002_pei3_10015
crossref_primary_10_1007_s00376_009_8191_7
crossref_primary_10_1016_j_atmosenv_2009_07_068
crossref_primary_10_1016_j_atmosenv_2014_09_077
crossref_primary_10_1007_s11104_004_0484_0
Cites_doi 10.1104/pp.68.6.1488
10.1104/pp.30.4.388
10.1016/S0092-8674(01)00495-0
10.1111/j.1399-3054.1962.tb08052.x
10.1111/j.1574-6968.1992.tb05331.x
10.1038/scientificamerican0797-76
10.5511/plantbiotechnology.19.135
10.1016/S0014-5793(02)02414-6
10.1016/S1369-5266(99)00007-2
10.1111/j.1399-3054.1979.tb01702.x
10.1016/B978-0-444-82884-2.50018-2
10.1046/j.1365-2958.2002.02875.x
10.1029/92GB02124
10.1007/978-3-642-59233-1_1
10.1016/S1360-1385(99)01393-X
10.1104/pp.126.2.731
10.1128/AEM.68.5.2261-2268.2002
10.1007/s004250000447
10.1542/peds.107.5.1024
10.1046/j.1365-3040.1998.00255.x
10.1093/jexbot/53.366.103
10.1104/pp.76.1.118
10.1104/pp.82.3.718
10.2307/2405271
10.1046/j.1365-313X.1999.00494.x
10.5511/plantbiotechnology.20.145
10.1104/pp.93.1.26
10.1128/MMBR.60.4.609-640.1996
10.1073/pnas.97.16.8841
10.1029/96JD02968
10.1093/oxfordjournals.pcp.a029027
10.1038/35068596
10.1046/j.1365-313X.1992.t01-25-00999.x
10.1038/29087
10.1073/pnas.131572798
ContentType Journal Article
Copyright Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
RYH
AAYXX
CITATION
7QO
8FD
FR3
P64
DOI 10.1002/abio.200390032
DatabaseName Istex
CiNii Complete
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 1521-3846
EndPage 257
ExternalDocumentID 10_1002_abio_200390032
ABIO200390032
ark_67375_WNG_024KP4L0_F
Genre article
GroupedDBID 0R~
1OB
1OC
1ZS
23M
24P
31~
53G
5GY
5VS
6J9
8-1
AAHBH
AAMMB
AANHP
AAZKR
ABCUV
ABIJN
ABJNI
ACBWZ
ACCMX
ACGFS
ACPOU
ACRPL
ACXQS
ACYXJ
ADEOM
ADMGS
ADNMO
AEFGJ
AFBPY
AFGKR
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ASPBG
AVWKF
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR1
EBS
EJD
FEDTE
HVGLF
LAW
LH4
LH6
LITHE
LOXES
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
O9-
OK1
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
W99
WIH
WIK
WIN
WXSBR
XV2
~02
RYH
AAYXX
CITATION
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4512-28fd4d3a933ad0e2cee48d3967c7129792667c7093c8f9b258356280d775e3d43
IEDL.DBID 24P
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000184660700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0138-4988
IngestDate Mon Oct 06 18:05:57 EDT 2025
Sat Nov 29 02:22:06 EST 2025
Tue Nov 18 21:58:20 EST 2025
Sun Sep 21 06:22:16 EDT 2025
Mon Nov 10 09:09:07 EST 2025
Tue Nov 11 03:30:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2-3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4512-28fd4d3a933ad0e2cee48d3967c7129792667c7093c8f9b258356280d775e3d43
Notes istex:4EC16E0F74525FB2C96A4BE9EA1308BEB0A8CB6C
ArticleID:ABIO200390032
ark:/67375/WNG-024KP4L0-F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ORCID 0000-0001-9771-4103
0000-0001-5710-1900
PQID 18945259
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_18945259
crossref_primary_10_1002_abio_200390032
crossref_citationtrail_10_1002_abio_200390032
wiley_primary_10_1002_abio_200390032_ABIO200390032
nii_cinii_1872272492737226368
istex_primary_ark_67375_WNG_024KP4L0_F
PublicationCentury 2000
PublicationDate July 2003
PublicationDateYYYYMMDD 2003-07-01
PublicationDate_xml – month: 07
  year: 2003
  text: July 2003
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Acta Biotechnologica
PublicationTitleAlternate Acta Biotechnol
PublicationYear 2003
Publisher WILEY-VCH Verlag
Wiley
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: Wiley
– name: WILEY‐VCH Verlag
References Reiter, B., Pfeifer, U., Schwab, H., Sessitsch, A.: Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 68 (2002), 2261-2268.
Yamasaki, H., Sakihama, Y., Takahashi, S.: An alternative pathway for nitric oxide production in plants: new features of old enzyme. Trends Plant Sci. 4 (1999), 128-129.
Kawamura, Y., Takahashi, M., Arimura, G., Isayama, T., Irifune, K., Goshima, N., Morikawa, H.: Determination of levels of NO3−, NO2−, and NH4+ ions in leaves of various plants by capillary electrophoresis. Plant Cell Physiol. 37 (1996), 878-880.
Erkin, O.C., Takahashi, M., Sakamoto, A., Morikawa, H.: Development of regeneration and transformation systems for Raphiolepis umbellata L. plants using particle bombardment. Plant Biotechnol. 20 (2003), 145-152.
Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J.S.: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410 (2001), 410-494.
Mulvaney, C.S., Hageman, R.H.: Acetaldehyde oxime, a product formed during the in vivo nitrate reductase assay of soybean leaves. Plant Physiol. 76 (1984), 118-124.
Harper, J.E.: Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol. 68 (1981), 1488-1493.
Dean, J.V., Harper, J.E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol. 82 (1986), 718-723.
Sakamoto, A., Ueda, M., Morikawa, H.: Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett. 515 (2002), 20-24.
Klepper, L.: Comparison between NOx evolution mechanisms of wild-type and nr1 mutant soybean leaves. Plant Physiol. 93 (1990), 26-32.
Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15 (1962), 473-497.
Vanecko, S., Varner, J.E.: Studies on nitrite metabolism in higher plants. Plant Physiol. 30 (1955), 388-390.
Bruning-Fann, C.S., Kaneene, J.B.: The effects of nitrate, nitrite and N-nitroso compounds on animal health: a review. Vet. Hum. Toxicol. 35 (1993), 521-538.
Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance. Nature 394 (1998), 585-588.
Smart, D.R., Bloom, A.J.: Wheat leaves emit nitrous oxide during nitrate assimilation. Proc. Natl. Acad. Sci. USA. 98 (2001), 7875-7878.
Shoun, H., Kim, D.H., Uchiyama, H., Sugiyama, J.: Denitrification by fungi. FEMS Microbiol. Lett. 73 (1992), 277-281.
Zumft, W.G.: Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61 (1997), 533-616.
Nathan, C., Shiloh, M.U.: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97 (2000), 8841-8848.
Goshima, N., Mukai, T., Suemori, M., Takahashi, M., Caboche, M., Morikawa, H.: Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J. 19 (1999), 75-80.
Durner, J., Klessig, D.F.: Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2 (1999), 369-374.
Stohr, C., Strube, F., Marx, G., Ullrich, W.R., Rockel, P.: A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212 (2001), 835-841.
Wildt, J., Kley, D., Rockel, A., Rockel, P., Segschneider, H.J.: Emission of NO from several higher plant species. J. Geophys. Res. 102 (1997), 5919-5927.
Yoneyama, T., Sasakawa, H.: Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol. 20 (1979), 263-266.
Morikawa, H., Higaki, A., Nohno, M., Takahashi, M., Kamada, M., Nakata, M., Toyohara, G., Okamura, Y., Matsui, K., Kitani, S., Fujita, K., Irifune, K., Goshima, N.: More than a 600-fold variation in nitrogen dioxide assimilation among 217 planta taxa. Plant Cell Environ. 21 (1998), 180-190.
Rockel, P., Strube, F., Rockel, A., Wildt, J., Kaiser, W.M.: Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53 (2002), 103-110.
Takahashi, M., Kohama, S., Hakata, M., Hase, Y., Shikazono, N., Tanaka, A., Morikawa, H.: Production of mutants that have high ability to assimilate nitrogen dioxide by the irradiation of ion beams in Ficus stipulata. Annual Reports of TIARA 39 (2001), 62-63.
Williams, E.J., Hutchinson, G.L., Fehsenfeld, F.C.: NOx and N2O emissions from soil. Global Biogeochemical Cyc. 6 (1992), 351-388.
Kondo, K., Takahashi, M., Morikawa, H.: Regeneration and transformation of a roadside tree Pittosporum tobira A. Plant Biotechnol. 19 (2002), 135-139.
Bourgin, J.P., Chupeau, Y., Missonier, C.: Plant regeneration from mesophyll protoplasts of several Nicotiana species. Plant Physiol. 45 (1979), 288-292.
Vaucheret, H., Kronenberger, J., Lepingle, A., Vilaine, F., Boutin, J.-P., Caboche, M.: Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 2 (1992), 559-569.
Sanchez-Echaniz, J., Benito-Fernandea, J., Mintegui-Raso, S.: Methemoglobinemia and consumption of vegetables in infants. Pediatrics 107 (2001), 1024-1028.
Takahashi, M., Sasaki, Y., Ida, S., Morikawa, H.: Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiol. 126 (2001), 731-741.
Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60 (1996), 609-640.
Stamler, J.S., Lamas, S., Fang, F.C.: Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106 (2001), 675-683.
1997; 61
2002; 19
2002; 53
1981; 68
1962; 15
1999; 4
1999; 2
2002; 515
2001; 107
1998; 21
1996; 37
2001; 126
1992; 73
2001; 106
1998; 394
1992; 6
1997; 102
1993; 35
2001; 212
2001; 410
1986; 82
1979; 45
1999; 19
1984; 76
2002; 68
2000; 97
1996; 60
2001; 39
1979; 20
1955; 30
2003; 20
1992; 2
1990; 93
2001; 98
Bruning‐Fann C.S. (e_1_2_1_4_2) 1993; 35
e_1_2_1_41_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Vaucheret H. (e_1_2_1_40_2) 1992; 2
Yoneyama T. (e_1_2_1_9_2) 1979; 20
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
Takahashi M. (e_1_2_1_34_2) 2001; 39
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Kondo, K., Takahashi, M., Morikawa, H.: Regeneration and transformation of a roadside tree Pittosporum tobira A. Plant Biotechnol. 19 (2002), 135-139.
– reference: Zumft, W.G.: Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61 (1997), 533-616.
– reference: Delledonne, M., Xia, Y., Dixon, R.A., Lamb, C.: Nitric oxide functions as a signal in plant disease resistance. Nature 394 (1998), 585-588.
– reference: Stamler, J.S., Lamas, S., Fang, F.C.: Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106 (2001), 675-683.
– reference: Murashige, T., Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 15 (1962), 473-497.
– reference: Yamasaki, H., Sakihama, Y., Takahashi, S.: An alternative pathway for nitric oxide production in plants: new features of old enzyme. Trends Plant Sci. 4 (1999), 128-129.
– reference: Nathan, C., Shiloh, M.U.: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97 (2000), 8841-8848.
– reference: Bruning-Fann, C.S., Kaneene, J.B.: The effects of nitrate, nitrite and N-nitroso compounds on animal health: a review. Vet. Hum. Toxicol. 35 (1993), 521-538.
– reference: Sanchez-Echaniz, J., Benito-Fernandea, J., Mintegui-Raso, S.: Methemoglobinemia and consumption of vegetables in infants. Pediatrics 107 (2001), 1024-1028.
– reference: Williams, E.J., Hutchinson, G.L., Fehsenfeld, F.C.: NOx and N2O emissions from soil. Global Biogeochemical Cyc. 6 (1992), 351-388.
– reference: Wildt, J., Kley, D., Rockel, A., Rockel, P., Segschneider, H.J.: Emission of NO from several higher plant species. J. Geophys. Res. 102 (1997), 5919-5927.
– reference: Bourgin, J.P., Chupeau, Y., Missonier, C.: Plant regeneration from mesophyll protoplasts of several Nicotiana species. Plant Physiol. 45 (1979), 288-292.
– reference: Goshima, N., Mukai, T., Suemori, M., Takahashi, M., Caboche, M., Morikawa, H.: Emission of nitrous oxide (N2O) from transgenic tobacco expressing antisense NiR mRNA. Plant J. 19 (1999), 75-80.
– reference: Reiter, B., Pfeifer, U., Schwab, H., Sessitsch, A.: Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl. Environ. Microbiol. 68 (2002), 2261-2268.
– reference: Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J.S.: A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410 (2001), 410-494.
– reference: Smart, D.R., Bloom, A.J.: Wheat leaves emit nitrous oxide during nitrate assimilation. Proc. Natl. Acad. Sci. USA. 98 (2001), 7875-7878.
– reference: Takahashi, M., Sasaki, Y., Ida, S., Morikawa, H.: Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in Arabidopsis. Plant Physiol. 126 (2001), 731-741.
– reference: Mulvaney, C.S., Hageman, R.H.: Acetaldehyde oxime, a product formed during the in vivo nitrate reductase assay of soybean leaves. Plant Physiol. 76 (1984), 118-124.
– reference: Rockel, P., Strube, F., Rockel, A., Wildt, J., Kaiser, W.M.: Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J. Exp. Bot. 53 (2002), 103-110.
– reference: Kawamura, Y., Takahashi, M., Arimura, G., Isayama, T., Irifune, K., Goshima, N., Morikawa, H.: Determination of levels of NO3−, NO2−, and NH4+ ions in leaves of various plants by capillary electrophoresis. Plant Cell Physiol. 37 (1996), 878-880.
– reference: Conrad, R.: Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol. Rev. 60 (1996), 609-640.
– reference: Shoun, H., Kim, D.H., Uchiyama, H., Sugiyama, J.: Denitrification by fungi. FEMS Microbiol. Lett. 73 (1992), 277-281.
– reference: Vaucheret, H., Kronenberger, J., Lepingle, A., Vilaine, F., Boutin, J.-P., Caboche, M.: Inhibition of tobacco nitrite reductase activity by expression of antisense RNA. Plant J. 2 (1992), 559-569.
– reference: Takahashi, M., Kohama, S., Hakata, M., Hase, Y., Shikazono, N., Tanaka, A., Morikawa, H.: Production of mutants that have high ability to assimilate nitrogen dioxide by the irradiation of ion beams in Ficus stipulata. Annual Reports of TIARA 39 (2001), 62-63.
– reference: Sakamoto, A., Ueda, M., Morikawa, H.: Arabidopsis glutathione-dependent formaldehyde dehydrogenase is an S-nitrosoglutathione reductase. FEBS Lett. 515 (2002), 20-24.
– reference: Morikawa, H., Higaki, A., Nohno, M., Takahashi, M., Kamada, M., Nakata, M., Toyohara, G., Okamura, Y., Matsui, K., Kitani, S., Fujita, K., Irifune, K., Goshima, N.: More than a 600-fold variation in nitrogen dioxide assimilation among 217 planta taxa. Plant Cell Environ. 21 (1998), 180-190.
– reference: Dean, J.V., Harper, J.E.: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay. Plant Physiol. 82 (1986), 718-723.
– reference: Erkin, O.C., Takahashi, M., Sakamoto, A., Morikawa, H.: Development of regeneration and transformation systems for Raphiolepis umbellata L. plants using particle bombardment. Plant Biotechnol. 20 (2003), 145-152.
– reference: Stohr, C., Strube, F., Marx, G., Ullrich, W.R., Rockel, P.: A plasma membrane-bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. Planta 212 (2001), 835-841.
– reference: Yoneyama, T., Sasakawa, H.: Transformation of atmospheric NO2 absorbed in spinach leaves. Plant Cell Physiol. 20 (1979), 263-266.
– reference: Vanecko, S., Varner, J.E.: Studies on nitrite metabolism in higher plants. Plant Physiol. 30 (1955), 388-390.
– reference: Harper, J.E.: Evolution of nitrogen oxide(s) during in vivo nitrate reductase assay of soybean leaves. Plant Physiol. 68 (1981), 1488-1493.
– reference: Klepper, L.: Comparison between NOx evolution mechanisms of wild-type and nr1 mutant soybean leaves. Plant Physiol. 93 (1990), 26-32.
– reference: Durner, J., Klessig, D.F.: Nitric oxide as a signal in plants. Curr. Opin. Plant Biol. 2 (1999), 369-374.
– volume: 60
  start-page: 609
  year: 1996
  end-page: 640
  article-title: Soil microorganisms as controllers of atmospheric trace gases (H , CO, CH , OCS, N O, and NO)
  publication-title: Microbiol. Rev.
– volume: 68
  start-page: 1488
  year: 1981
  end-page: 1493
  article-title: Evolution of nitrogen oxide(s) during nitrate reductase assay of soybean leaves
  publication-title: Plant Physiol.
– volume: 2
  start-page: 369
  year: 1999
  end-page: 374
  article-title: Nitric oxide as a signal in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 2
  start-page: 559
  year: 1992
  end-page: 569
  article-title: Inhibition of tobacco nitrite reductase activity by expression of antisense RNA
  publication-title: Plant J.
– volume: 53
  start-page: 103
  year: 2002
  end-page: 110
  article-title: Regulation of nitric oxide (NO) production by plant nitrate reductase and
  publication-title: J. Exp. Bot.
– volume: 394
  start-page: 585
  year: 1998
  end-page: 588
  article-title: Nitric oxide functions as a signal in plant disease resistance
  publication-title: Nature
– volume: 82
  start-page: 718
  year: 1986
  end-page: 723
  article-title: Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay
  publication-title: Plant Physiol.
– volume: 102
  start-page: 5919
  year: 1997
  end-page: 5927
  article-title: Emission of NO from several higher plant species
  publication-title: J. Geophys. Res.
– volume: 106
  start-page: 675
  year: 2001
  end-page: 683
  article-title: Nitrosylation: the prototypic redox‐based signaling mechanism
  publication-title: Cell
– volume: 61
  start-page: 533
  year: 1997
  end-page: 616
  article-title: Cell biology and molecular basis of denitrification
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 515
  start-page: 20
  year: 2002
  end-page: 24
  article-title: glutathione‐dependent formaldehyde dehydrogenase is an ‐nitrosoglutathione reductase
  publication-title: FEBS Lett.
– volume: 35
  start-page: 521
  year: 1993
  end-page: 538
  article-title: The effects of nitrate, nitrite and ‐nitroso compounds on animal health: a review
  publication-title: Vet. Hum. Toxicol.
– volume: 6
  start-page: 351
  year: 1992
  end-page: 388
  article-title: NO and N O emissions from soil
  publication-title: Global Biogeochemical Cyc.
– volume: 39
  start-page: 62
  year: 2001
  end-page: 63
  article-title: Production of mutants that have high ability to assimilate nitrogen dioxide by the irradiation of ion beams in
  publication-title: Annual Reports of TIARA
– volume: 30
  start-page: 388
  year: 1955
  end-page: 390
  article-title: Studies on nitrite metabolism in higher plants
  publication-title: Plant Physiol.
– volume: 93
  start-page: 26
  year: 1990
  end-page: 32
  article-title: Comparison between NO evolution mechanisms of wild‐type and nr1 mutant soybean leaves
  publication-title: Plant Physiol.
– volume: 68
  start-page: 2261
  year: 2002
  end-page: 2268
  article-title: Response of endophytic bacterial communities in potato plants to infection with subsp.
  publication-title: Appl. Environ. Microbiol.
– volume: 37
  start-page: 878
  year: 1996
  end-page: 880
  article-title: Determination of levels of NO , NO , and NH ions in leaves of various plants by capillary electrophoresis
  publication-title: Plant Cell Physiol.
– volume: 20
  start-page: 145
  year: 2003
  end-page: 152
  article-title: Development of regeneration and transformation systems for L. plants using particle bombardment
  publication-title: Plant Biotechnol.
– volume: 19
  start-page: 135
  year: 2002
  end-page: 139
  article-title: Regeneration and transformation of a roadside tree A
  publication-title: Plant Biotechnol.
– volume: 76
  start-page: 118
  year: 1984
  end-page: 124
  article-title: Acetaldehyde oxime, a product formed during the in vivo nitrate reductase assay of soybean leaves
  publication-title: Plant Physiol.
– volume: 126
  start-page: 731
  year: 2001
  end-page: 741
  article-title: Nitrite reductase gene enrichment improves assimilation of nitrogen dioxide in
  publication-title: Plant Physiol.
– volume: 107
  start-page: 1024
  year: 2001
  end-page: 1028
  article-title: Methemoglobinemia and consumption of vegetables in infants
  publication-title: Pediatrics
– volume: 19
  start-page: 75
  year: 1999
  end-page: 80
  article-title: Emission of nitrous oxide (N O) from transgenic tobacco expressing antisense NiR mRNA
  publication-title: Plant J.
– volume: 45
  start-page: 288
  year: 1979
  end-page: 292
  article-title: Plant regeneration from mesophyll protoplasts of several species
  publication-title: Plant Physiol.
– volume: 20
  start-page: 263
  year: 1979
  end-page: 266
  article-title: Transformation of atmospheric NO absorbed in spinach leaves
  publication-title: Plant Cell Physiol.
– volume: 4
  start-page: 128
  year: 1999
  end-page: 129
  article-title: An alternative pathway for nitric oxide production in plants: new features of old enzyme
  publication-title: Trends Plant Sci.
– volume: 212
  start-page: 835
  year: 2001
  end-page: 841
  article-title: A plasma membrane‐bound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite
  publication-title: Planta
– volume: 97
  start-page: 8841
  year: 2000
  end-page: 8848
  article-title: Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 473
  year: 1962
  end-page: 497
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Plant Physiol.
– volume: 73
  start-page: 277
  year: 1992
  end-page: 281
  article-title: Denitrification by fungi
  publication-title: FEMS Microbiol. Lett.
– volume: 21
  start-page: 180
  year: 1998
  end-page: 190
  article-title: More than a 600‐fold variation in nitrogen dioxide assimilation among 217 planta taxa
  publication-title: Plant Cell Environ.
– volume: 98
  start-page: 7875
  year: 2001
  end-page: 7878
  article-title: Wheat leaves emit nitrous oxide during nitrate assimilation
  publication-title: Proc. Natl. Acad. Sci. USA.
– volume: 410
  start-page: 410
  year: 2001
  end-page: 494
  article-title: A metabolic enzyme for ‐nitrosothiol conserved from bacteria to humans
  publication-title: Nature
– ident: e_1_2_1_18_2
  doi: 10.1104/pp.68.6.1488
– ident: e_1_2_1_17_2
  doi: 10.1104/pp.30.4.388
– ident: e_1_2_1_30_2
  doi: 10.1016/S0092-8674(01)00495-0
– ident: e_1_2_1_38_2
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– ident: e_1_2_1_16_2
  doi: 10.1111/j.1574-6968.1992.tb05331.x
– volume: 20
  start-page: 263
  year: 1979
  ident: e_1_2_1_9_2
  article-title: Transformation of atmospheric NO2 absorbed in spinach leaves
  publication-title: Plant Cell Physiol.
– ident: e_1_2_1_2_2
  doi: 10.1038/scientificamerican0797-76
– ident: e_1_2_1_36_2
  doi: 10.5511/plantbiotechnology.19.135
– ident: e_1_2_1_32_2
  doi: 10.1016/S0014-5793(02)02414-6
– ident: e_1_2_1_25_2
  doi: 10.1016/S1369-5266(99)00007-2
– ident: e_1_2_1_5_2
– ident: e_1_2_1_37_2
  doi: 10.1111/j.1399-3054.1979.tb01702.x
– ident: e_1_2_1_11_2
  doi: 10.1016/B978-0-444-82884-2.50018-2
– ident: e_1_2_1_13_2
  doi: 10.1046/j.1365-2958.2002.02875.x
– ident: e_1_2_1_15_2
  doi: 10.1029/92GB02124
– ident: e_1_2_1_8_2
  doi: 10.1007/978-3-642-59233-1_1
– ident: e_1_2_1_27_2
  doi: 10.1016/S1360-1385(99)01393-X
– ident: e_1_2_1_12_2
  doi: 10.1104/pp.126.2.731
– volume: 39
  start-page: 62
  year: 2001
  ident: e_1_2_1_34_2
  article-title: Production of mutants that have high ability to assimilate nitrogen dioxide by the irradiation of ion beams in Ficus stipulata
  publication-title: Annual Reports of TIARA
– ident: e_1_2_1_41_2
  doi: 10.1128/AEM.68.5.2261-2268.2002
– ident: e_1_2_1_28_2
  doi: 10.1007/s004250000447
– ident: e_1_2_1_3_2
  doi: 10.1542/peds.107.5.1024
– ident: e_1_2_1_10_2
  doi: 10.1046/j.1365-3040.1998.00255.x
– ident: e_1_2_1_29_2
  doi: 10.1093/jexbot/53.366.103
– ident: e_1_2_1_7_2
– ident: e_1_2_1_19_2
  doi: 10.1104/pp.76.1.118
– ident: e_1_2_1_20_2
  doi: 10.1104/pp.82.3.718
– volume: 35
  start-page: 521
  year: 1993
  ident: e_1_2_1_4_2
  article-title: The effects of nitrate, nitrite and N‐nitroso compounds on animal health: a review
  publication-title: Vet. Hum. Toxicol.
– ident: e_1_2_1_6_2
  doi: 10.2307/2405271
– ident: e_1_2_1_22_2
  doi: 10.1046/j.1365-313X.1999.00494.x
– ident: e_1_2_1_35_2
  doi: 10.5511/plantbiotechnology.20.145
– ident: e_1_2_1_21_2
  doi: 10.1104/pp.93.1.26
– ident: e_1_2_1_14_2
  doi: 10.1128/MMBR.60.4.609-640.1996
– ident: e_1_2_1_31_2
  doi: 10.1073/pnas.97.16.8841
– ident: e_1_2_1_24_2
  doi: 10.1029/96JD02968
– ident: e_1_2_1_39_2
  doi: 10.1093/oxfordjournals.pcp.a029027
– ident: e_1_2_1_33_2
  doi: 10.1038/35068596
– volume: 2
  start-page: 559
  year: 1992
  ident: e_1_2_1_40_2
  article-title: Inhibition of tobacco nitrite reductase activity by expression of antisense RNA
  publication-title: Plant J.
  doi: 10.1046/j.1365-313X.1992.t01-25-00999.x
– ident: e_1_2_1_26_2
  doi: 10.1038/29087
– ident: e_1_2_1_23_2
  doi: 10.1073/pnas.131572798
SSID ssj0011012
Score 1.7600331
Snippet Tobacco and wheat are known to emit nitrous oxide (N2O). Provided that N2O is a greenhouse gas about 300 times worse than carbon dioxide in its potential for...
Tobacco and wheat are known to emit nitrous oxide (N 2 O). Provided that N 2 O is a greenhouse gas about 300 times worse than carbon dioxide in its potential...
Tobacco and wheat are known to emit nitrous oxide (N sub(2)O). Provided that N sub(2)O is a greenhouse gas about 300 times worse than carbon dioxide in its...
SourceID proquest
crossref
wiley
nii
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms biology
ddc:570
info:eu-repo/classification/ddc/570
Life sciences
Nicotiana tabacum
Title Conversion of the Nitrate Nitrogen and Nitrogen Dioxide to Nitrous Oxides in Plants
URI https://api.istex.fr/ark:/67375/WNG-024KP4L0-F/fulltext.pdf
https://cir.nii.ac.jp/crid/1872272492737226368
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fabio.200390032
https://www.proquest.com/docview/18945259
Volume 23
WOSCitedRecordID wos000184660700014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1521-3846
  dateEnd: 20031231
  omitProxy: false
  ssIdentifier: ssj0011012
  issn: 0138-4988
  databaseCode: WIN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1521-3846
  dateEnd: 20031231
  omitProxy: false
  ssIdentifier: ssj0011012
  issn: 0138-4988
  databaseCode: 24P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQywEO5S1SWvABwSlqYjt-HNvCQgVKVwLU3iwndqSIKqk2W9Sfz4yzm-4eEBJc8pKdWOMZzxd7_A0hb4MpGhN0lTY5q1IhdQ02VwCQa4RwLMetkzomm1BlqS8vzXxjF__IDzFNuKFlxPEaDdxVw9Edaair2rh5j-NcHAzCu3nOFeo1E_NpHQHZq2IQI5i1MFqvaRszdrRdf8st7aKEb8HbdG27hTw38Wt0QLNH_9_0x2RvBT7p8agtT8i90D0lDzcoCZ-Rb6cYhh7n0GjfUICHtGwjg20896Bv1HX-7uZD29-2PtBlPz67Geg5Phho21FMibQcnpMfs4_fTz-nq8QLaS0AAKRMN1547gznzmeBgSMV2nMjVa0AHygDXh0uM8Nr3ZiKFQDjJNOZV6oI3Av-gux0fRdeEuoyCT94XismlaiFhHc6HhlkALdpLhOSruVu6xUrOSbHuLIjnzKzKCw7CSsh76fy1yMfxx9LvovdOBVzi58YxaYKe1F-soBNvszF18zOEnII_Qxfx2MOLWUKaRQxfw-TXOqEvFlrgAXbwwUV1wUQJxQ2uCxsEsJid_-lRfb45Ox8utv_l0qvyIMYTRjjhQ_IznJxEw7J_frXsh0Wr6Puw_HirPwNjPz9Ow
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFgk4lLcIUOoDglPUrO34cSwtS6su6UoU0ZvlTRwpAiVod4v68zvj7KbdQ4WEuCSxZSfW2OP5Yo-_AXgfbF7bYGZpPeKzVCpTos7lCORqKT0f0dFJE4NN6KIwFxd2uvImpLMwPT_EsOBGmhHna1JwWpDev2EN9bMmnt4TtBiHs_C2RFNDQQy4nA4bCURfFb0YUa-lNWbN25jx_c36G3Zpm0R8heambZoN6HkbwEYLNH78H9r-BHZW8JMd9OPlKdwL7TN4dIuU8Dl8OyRH9LiKxrqaIUBkRRM5bOO9wxHHfFvdJI6a7qqpAlt2fd7lgp1RxoI1LaOgSMvFC_g-_nx-eJyuQi-kpUQIkHJTV7IS3grhqyxwNKXSVMIqXWpECNqiXcfHzIrS1HbGcwRyipus0joPopLiJWy1XRteAfOZwl-8ymiutCylwnd6ETlkELkZoRJI14J35YqXnMJj_HI9ozJ3JCw3CCuBj0P53z0jx50lP8R-HIr5-U_yY9O5-1F8cYhOTqdykrlxArvY0fh1uo6wpVwTkSJF8OFKKJPA3noIONQ-2lLxbUBxYmFLG8M2AR77-y8tcgefTs6G1Ot_qbQHD47Pv07c5KQ4fQMPo29h9B5-C1vL-WXYhfvln2WzmL-LinANsCAAHQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hFiE4lGdFWkp9QHCKmrUdP459LVSt0pUA0ZuVjR0pAiXV7hb15zPj7KbdA6qEuCSxZSfW2OP5Yo-_AfgQbF7bYKZpPeLTVCpToc7lCORqKUs-oqOTJgab0EVhrq7sZOlNSGdhen6IYcGNNCPO16Tg4drXB3esoeW0iaf3BC3G4Sy8KXOcaIncWU6GjQSir4pejKjX0hqz4m3M-MF6_TW7tEkivkVz0zbNGvS8D2CjBRo__w9tfwFbS_jJDvvx8hIehfYVPLtHSvgavh6TI3pcRWNdzRAgsqKJHLbx3uGIY2Xr7xInTXfb-MAWXZ93M2eXlDFnTcsoKNJi_ga-j0-_HX9Jl6EX0koiBEi5qb30orRClD4LHE2pNF5YpSuNCEFbtOv4mFlRmdpOeY5ATnGTea3zILwU27DRdm14C6zMFP7ieaO50rKSCt9Zisghg8jNCJVAuhK8q5a85BQe45frGZW5I2G5QVgJfBrKX_eMHH8t-TH241CsnP0kPzadux_FZ4fo5HwiLzI3TmAPOxq_TtcRtpRrIlKkCD5cCWUS2F8NAYfaR1sqZRtQnFjY0sawTYDH_n6gRe7w6OxySO38S6V9eDI5GbuLs-J8F55G18LoPPwONhazm7AHj6vfi2Y-ex_14A9SIv-S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conversion+of+the+Nitrate+Nitrogen+and+Nitrogen+Dioxide+to+Nitrous+Oxides+in+Plants&rft.jtitle=Acta+biotechnologica&rft.au=Hakata%2C+M&rft.au=Takahashi%2C+M&rft.au=Zumft%2C+W&rft.au=Sakamoto%2C+A&rft.date=2003-07-01&rft.issn=0138-4988&rft.volume=23&rft.issue=2-3&rft.spage=249&rft.epage=257&rft_id=info:doi/10.1002%2Fabio.200390032&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0138-4988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0138-4988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0138-4988&client=summon