Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings

There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Brain (London, England : 1878) Ročník 140; číslo 6; s. 1680
Hlavní autori: Baldassano, Steven N, Brinkmann, Benjamin H, Ung, Hoameng, Blevins, Tyler, Conrad, Erin C, Leyde, Kent, Cook, Mark J, Khambhati, Ankit N, Wagenaar, Joost B, Worrell, Gregory A, Litt, Brian
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.06.2017
Predmet:
ISSN:1460-2156, 1460-2156
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.
AbstractList There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.
There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care.
Author Brinkmann, Benjamin H
Ung, Hoameng
Blevins, Tyler
Conrad, Erin C
Cook, Mark J
Baldassano, Steven N
Khambhati, Ankit N
Litt, Brian
Leyde, Kent
Wagenaar, Joost B
Worrell, Gregory A
Author_xml – sequence: 1
  givenname: Steven N
  surname: Baldassano
  fullname: Baldassano, Steven N
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Benjamin H
  surname: Brinkmann
  fullname: Brinkmann, Benjamin H
  organization: Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
– sequence: 3
  givenname: Hoameng
  surname: Ung
  fullname: Ung, Hoameng
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 4
  givenname: Tyler
  surname: Blevins
  fullname: Blevins, Tyler
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 5
  givenname: Erin C
  surname: Conrad
  fullname: Conrad, Erin C
  organization: Department of Neurology, University of Pennsylvania, PA, USA
– sequence: 6
  givenname: Kent
  surname: Leyde
  fullname: Leyde, Kent
  organization: NeuroVista, Seattle, WA, USA
– sequence: 7
  givenname: Mark J
  surname: Cook
  fullname: Cook, Mark J
  organization: Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
– sequence: 8
  givenname: Ankit N
  surname: Khambhati
  fullname: Khambhati, Ankit N
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 9
  givenname: Joost B
  surname: Wagenaar
  fullname: Wagenaar, Joost B
  organization: Department of Neurology, University of Pennsylvania, PA, USA
– sequence: 10
  givenname: Gregory A
  surname: Worrell
  fullname: Worrell, Gregory A
  organization: Department of Neurology, Mayo Clinic and Mayo Foundation, Rochester, MN 55905, USA
– sequence: 11
  givenname: Brian
  surname: Litt
  fullname: Litt, Brian
  organization: Department of Neurology, University of Pennsylvania, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28459961$$D View this record in MEDLINE/PubMed
BookMark eNpNkN1LwzAUxYNM3Ie--Sx59KUuadPY-CbDLxj4os8lzb3dMtpkJu2m_vV2OEE4cA-HH4fLmZKR8w4JueTshjOVzaugrZvr_SdTxQmZcCFZkvJcjv75MZnGuGGMiyyVZ2ScFiJXSvIJ2SyC30P0fTDWrWhE-90HpIAdms56d0d1s_LBdut2CHfY-G2LrqPaAd3pxoI-UHTQum-1o7bdNtp1CAfaGqQBjQ8wdMdzclrrJuLF8c7I--PD2-I5Wb4-vSzul4kROesSQCkQaqEFAxC8qkRes6zmRZppperBG2RZIQGk4eYWOKtzCarIKxQ85XU6I9e_vdvgP3qMXdnaaLAZ_kLfx5IXSuRcSaEG9OqI9lWLUG6DbXX4Kv_2SX8AxnRs3g
CitedBy_id crossref_primary_10_1088_1741_2552_aced21
crossref_primary_10_1111_epi_16555
crossref_primary_10_3389_fneur_2021_704170
crossref_primary_10_1515_bmt_2017_0233
crossref_primary_10_1016_j_artmed_2023_102754
crossref_primary_10_1016_j_nicl_2019_101684
crossref_primary_10_1088_1741_2552_ab094a
crossref_primary_10_1016_j_neuropharm_2019_107751
crossref_primary_10_1038_s41440_019_0267_x
crossref_primary_10_1088_1741_2552_abef8a
crossref_primary_10_1111_epi_17044
crossref_primary_10_3389_fneur_2021_675728
crossref_primary_10_1111_epi_17047
crossref_primary_10_1109_JBHI_2020_3022211
crossref_primary_10_1016_j_neurol_2019_12_012
crossref_primary_10_1109_JTEHM_2018_2869398
crossref_primary_10_1088_1741_2552_aae5ab
crossref_primary_10_1109_JETCAS_2018_2842761
crossref_primary_10_1186_s12911_018_0693_8
crossref_primary_10_1097_WNP_0000000000000819
crossref_primary_10_3390_s18061720
crossref_primary_10_3389_fvets_2022_1014269
crossref_primary_10_1093_brain_awad007
crossref_primary_10_1109_TBCAS_2024_3456825
crossref_primary_10_2196_42723
crossref_primary_10_1016_j_procs_2020_04_010
crossref_primary_10_1016_j_clinph_2020_12_009
crossref_primary_10_1016_j_ebiom_2021_103275
crossref_primary_10_1016_j_yebeh_2019_106456
crossref_primary_10_1016_j_yebeh_2019_106457
crossref_primary_10_1111_epi_17833
crossref_primary_10_3389_fnsys_2018_00043
crossref_primary_10_1016_j_neuroscience_2021_11_017
crossref_primary_10_1097_WCO_0000000000000658
crossref_primary_10_1111_epi_16541
crossref_primary_10_1002_epi4_12704
crossref_primary_10_1016_j_ebr_2021_100467
crossref_primary_10_1111_epi_16628
crossref_primary_10_1088_1741_2552_add76f
crossref_primary_10_4049_jimmunol_1900033
crossref_primary_10_1038_s41598_021_03555_7
crossref_primary_10_1088_1741_2552_addd49
crossref_primary_10_1186_s12911_020_01307_7
crossref_primary_10_3389_fneur_2021_690404
crossref_primary_10_1016_j_compbiomed_2020_103671
crossref_primary_10_3389_fneur_2018_00639
crossref_primary_10_3390_bios11070203
crossref_primary_10_5698_1535_7597_18_2_89
crossref_primary_10_5698_1535_7597_18_1_37
crossref_primary_10_1097_WCO_0000000000000533
crossref_primary_10_1088_1361_6579_aca6ca
crossref_primary_10_1186_s40249_020_0622_9
crossref_primary_10_1038_s41591_018_0103_x
crossref_primary_10_1088_1741_2552_ac23bf
crossref_primary_10_1093_nsr_nwaf086
crossref_primary_10_1088_1741_2552_abc1b7
crossref_primary_10_1155_2020_7902072
crossref_primary_10_3389_fneur_2021_728484
crossref_primary_10_3389_fphys_2018_01767
crossref_primary_10_1038_s41582_024_00965_9
crossref_primary_10_1111_epi_13909
crossref_primary_10_1016_j_jneumeth_2021_109220
crossref_primary_10_1109_TBME_2019_2919137
crossref_primary_10_1111_epi_16818
crossref_primary_10_5698_1535_7597_18_4_236
crossref_primary_10_1088_1741_2552_aaf92e
crossref_primary_10_1515_bmt_2018_0012
crossref_primary_10_1016_j_mri_2021_12_007
crossref_primary_10_1016_j_yebeh_2019_106556
crossref_primary_10_1111_epi_17415
crossref_primary_10_3389_fneur_2022_837893
crossref_primary_10_1016_j_compbiomed_2019_02_005
crossref_primary_10_1016_j_clinph_2024_09_017
crossref_primary_10_1109_TBME_2019_2921448
crossref_primary_10_1016_j_yebeh_2022_108806
crossref_primary_10_1097_CCE_0000000000000476
crossref_primary_10_1109_TBCAS_2023_3312300
crossref_primary_10_1016_j_seizure_2018_09_013
crossref_primary_10_1016_j_yebeh_2023_109518
crossref_primary_10_1016_S1474_4422_18_30038_3
crossref_primary_10_3389_fneur_2021_703797
crossref_primary_10_1016_j_neulet_2018_10_062
crossref_primary_10_1038_s44335_025_00025_5
crossref_primary_10_1088_1741_2552_ade402
crossref_primary_10_1016_j_compbiomed_2019_05_025
crossref_primary_10_1016_j_clinthera_2020_05_017
crossref_primary_10_1109_TMC_2018_2883451
ContentType Journal Article
Copyright The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awx098
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
ExternalDocumentID 28459961
Genre Validation Studies
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS092882
– fundername: NINDS NIH HHS
  grantid: UH2 NS095495
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
NU-
NVLIB
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
7X8
ABPQP
ABUFD
ABXZS
ADNBA
AEMQT
AFYAG
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c450t-de64edf4a40dd41bb45f03f1823a99ff03ce0386dd6c1c7d10f56d985be4121f2
IEDL.DBID 7X8
ISICitedReferencesCount 145
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402726600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2156
IngestDate Sun Nov 09 13:51:50 EST 2025
Wed Feb 19 02:43:48 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords epilepsy
crowdsourcing
experimental models
seizure detection
intracranial EEG
Language English
License The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-de64edf4a40dd41bb45f03f1823a99ff03ce0386dd6c1c7d10f56d985be4121f2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://academic.oup.com/brain/article-pdf/140/6/1680/25417270/awx098.pdf
PMID 28459961
PQID 1894519649
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1894519649
pubmed_primary_28459961
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2017
SSID ssj0014326
Score 2.5773847
Snippet There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1680
SubjectTerms Adult
Algorithms
Animals
Crowdsourcing - methods
Crowdsourcing - standards
Disease Models, Animal
Electrocorticography - methods
Electrocorticography - standards
Equipment Design - methods
Equipment Design - standards
Humans
Prostheses and Implants
Reproducibility of Results
Seizures - diagnosis
Title Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings
URI https://www.ncbi.nlm.nih.gov/pubmed/28459961
https://www.proquest.com/docview/1894519649
Volume 140
WOSCitedRecordID wos000402726600022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qRHzx-2N-EcHXsKZN08YXkeHwZWMPCnsrSZNoZevm2qn413tpO_YkCEIpfUhLyV3uLr-73A-hG-e0REoNUdRKwnjAiAJdItyCuZQsElbKimwiGgzi0UgMG8CtaMoqlzaxMtR6mjqMvENj4TqhcCbuZu_EsUa57GpDobGOWgGEMm5hRqNVFoEFfnO6yCPg2nhT-A6b-I5yBAwd-fnlifj34LJyMr3d__7eHtppwkt8X-vDPloz-QHa6jcJ9EP01oVtt64Qe_BZuDDZ92JusDZlVZKV32I5foHvlq8TrFf1RFjmGoNOZjUDE4arIvfD2WQ2drLRbjTYHFyDPg5-P0LPvYen7iNp6BZIykKvJNpwZrRlknlaM6oUC0FgFjYggRTCwrPjFou51jylaaSpZ0OuRRwqw6hPrX-MNvJpbk4RDkLLOIxUHkSXUaSUZ2KIy3hgHEmRDtvoejmLCaizy1HI3EwXRbKaxzY6qUWRzOq-Gwl4UtdMhp794e1ztO07B1zhJReoZWExm0u0mX6UWTG_qvQE7oNh_wcbs8sf
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crowdsourcing+seizure+detection%3A+algorithm+development+and+validation+on+human+implanted+device+recordings&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Baldassano%2C+Steven+N&rft.au=Brinkmann%2C+Benjamin+H&rft.au=Ung%2C+Hoameng&rft.au=Blevins%2C+Tyler&rft.date=2017-06-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=140&rft.issue=6&rft.spage=1680&rft_id=info:doi/10.1093%2Fbrain%2Fawx098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon