SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients
Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are co...
Uložené v:
| Vydané v: | Journal of molecular cell biology Ročník 14; číslo 4 |
|---|---|
| Hlavní autori: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Oxford University Press
17.08.2022
Oxford UP |
| Predmet: | |
| ISSN: | 1674-2788, 1759-4685, 1759-4685 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host. |
|---|---|
| AbstractList | Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host. Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that appears as both signature and prognosis of disease severity outcome. Although cytokine storm and a sustained inflammatory state are commonly associated with immune cell depletion, it is still unclear whether direct SARS-CoV-2 infection of immune cells could also play a role in this scenario by harboring viral replication. We found that monocytes, as well as both B and T lymphocytes, were susceptible to SARS-CoV-2 infection in vitro, accumulating double-stranded RNA consistent with viral RNA replication and ultimately leading to expressive T cell apoptosis. In addition, flow cytometry and immunofluorescence analysis revealed that SARS-CoV-2 was frequently detected in monocytes and B lymphocytes from coronavirus disease 2019 (COVID-19) patients. The rates of SARS-CoV-2-infected monocytes in peripheral blood mononuclear cells from COVID-19 patients increased over time from symptom onset, with SARS-CoV-2-positive monocytes, B cells, and CD4+ T lymphocytes also detected in postmortem lung tissue. These results indicated that SARS-CoV-2 infection of blood-circulating leukocytes in COVID-19 patients might have important implications for disease pathogenesis and progression, immune dysfunction, and virus spread within the host. |
| Author | Lopes, Maria I F Veras, Flávio P Souza, Juliano P Gomes, Rogério Caetité, Diego B Toller-Kawahisa, Juliana E de Lima, Mikhael H F Luppino-Assad, Rodrigo Whelan, Sean P J Castro, Ítalo A Calado, Rodrigo T Oliveira, Rene D R Martins, Ronaldo B Bloyet, Louis-Marie Almeida, Sergio C L Vitti, Brenda C Vilar, Fernando C Shi, Pei-Yong Giannini, Marcela C Alves-Filho, José C Fabro, Alexandre T Cunha, Fernando Q Siyuan, Li Pontes, Lorena L F Benatti, Maíra N La Serra, Leonardo Cardoso, Ricardo S Auxiliadora-Martins, Maria Louzada-Junior, Paulo Pontelli, Marjorie C Bonjorno, Letícia P Nascimento, Daniele C Silva, Camila M Rosales, Roberta Thompson, Cassandra E Arruda, Eurico Stumpf, Spencer D Batah, Sabrina S Lima, Thais M Santana, Rodrigo C Zamboni, Dario S Oliveira, Fabiola R Cunha, Thiago M |
| Author_xml | – sequence: 1 givenname: Marjorie C orcidid: 0000-0003-3173-5977 surname: Pontelli fullname: Pontelli, Marjorie C email: cmarjorie@wustl.edu – sequence: 2 givenname: Ítalo A orcidid: 0000-0001-7885-7547 surname: Castro fullname: Castro, Ítalo A email: italo@wustl.edu – sequence: 3 givenname: Ronaldo B surname: Martins fullname: Martins, Ronaldo B – sequence: 4 givenname: Leonardo surname: La Serra fullname: La Serra, Leonardo – sequence: 5 givenname: Flávio P surname: Veras fullname: Veras, Flávio P – sequence: 6 givenname: Daniele C surname: Nascimento fullname: Nascimento, Daniele C – sequence: 7 givenname: Camila M surname: Silva fullname: Silva, Camila M – sequence: 8 givenname: Ricardo S surname: Cardoso fullname: Cardoso, Ricardo S – sequence: 9 givenname: Roberta surname: Rosales fullname: Rosales, Roberta – sequence: 10 givenname: Rogério orcidid: 0000-0002-0126-1742 surname: Gomes fullname: Gomes, Rogério – sequence: 11 givenname: Thais M surname: Lima fullname: Lima, Thais M – sequence: 12 givenname: Juliano P surname: Souza fullname: Souza, Juliano P – sequence: 13 givenname: Brenda C surname: Vitti fullname: Vitti, Brenda C – sequence: 14 givenname: Diego B surname: Caetité fullname: Caetité, Diego B – sequence: 15 givenname: Mikhael H F surname: de Lima fullname: de Lima, Mikhael H F – sequence: 16 givenname: Spencer D surname: Stumpf fullname: Stumpf, Spencer D – sequence: 17 givenname: Cassandra E orcidid: 0000-0001-6273-8113 surname: Thompson fullname: Thompson, Cassandra E – sequence: 18 givenname: Louis-Marie orcidid: 0000-0002-5648-3190 surname: Bloyet fullname: Bloyet, Louis-Marie – sequence: 19 givenname: Juliana E surname: Toller-Kawahisa fullname: Toller-Kawahisa, Juliana E – sequence: 20 givenname: Marcela C surname: Giannini fullname: Giannini, Marcela C – sequence: 21 givenname: Letícia P surname: Bonjorno fullname: Bonjorno, Letícia P – sequence: 22 givenname: Maria I F surname: Lopes fullname: Lopes, Maria I F – sequence: 23 givenname: Sabrina S surname: Batah fullname: Batah, Sabrina S – sequence: 24 givenname: Li surname: Siyuan fullname: Siyuan, Li – sequence: 25 givenname: Rodrigo surname: Luppino-Assad fullname: Luppino-Assad, Rodrigo – sequence: 26 givenname: Sergio C L orcidid: 0000-0002-1787-4797 surname: Almeida fullname: Almeida, Sergio C L – sequence: 27 givenname: Fabiola R surname: Oliveira fullname: Oliveira, Fabiola R – sequence: 28 givenname: Maíra N surname: Benatti fullname: Benatti, Maíra N – sequence: 29 givenname: Lorena L F surname: Pontes fullname: Pontes, Lorena L F – sequence: 30 givenname: Rodrigo C surname: Santana fullname: Santana, Rodrigo C – sequence: 31 givenname: Fernando C surname: Vilar fullname: Vilar, Fernando C – sequence: 32 givenname: Maria surname: Auxiliadora-Martins fullname: Auxiliadora-Martins, Maria – sequence: 33 givenname: Pei-Yong surname: Shi fullname: Shi, Pei-Yong – sequence: 34 givenname: Thiago M surname: Cunha fullname: Cunha, Thiago M – sequence: 35 givenname: Rodrigo T surname: Calado fullname: Calado, Rodrigo T – sequence: 36 givenname: José C surname: Alves-Filho fullname: Alves-Filho, José C – sequence: 37 givenname: Dario S surname: Zamboni fullname: Zamboni, Dario S – sequence: 38 givenname: Alexandre T surname: Fabro fullname: Fabro, Alexandre T – sequence: 39 givenname: Paulo surname: Louzada-Junior fullname: Louzada-Junior, Paulo – sequence: 40 givenname: Rene D R surname: Oliveira fullname: Oliveira, Rene D R – sequence: 41 givenname: Sean P J surname: Whelan fullname: Whelan, Sean P J – sequence: 42 givenname: Fernando Q surname: Cunha fullname: Cunha, Fernando Q – sequence: 43 givenname: Eurico surname: Arruda fullname: Arruda, Eurico email: eaneto@fmrp.usp.br |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35451490$$D View this record in MEDLINE/PubMed https://hal.science/hal-04794613$$DView record in HAL |
| BookMark | eNp9kV1rFDEUhoNU7Ie981pyp4Jj8z3JjbCs1RYWClZ7GzKZjJtlMlknmYX992bYtWhBc5Pk5DnvyTnvOTgZ4uAAeIXRB4wUvdoE21yFjbGI4GfgDNdcVUxIflLOomYVqaU8BZcpbVBZVFIq0QtwSjnjmCl0Buz94ut9tYwPFYHbMbaTzX7n-j30Q-dsTiXogxn3cD0FM0AfwjQ4mPYpuwCt6_tUSLjzeYzQDO18Wd493H6qsIJbk70bcnoJnnemT-7yuF-A75-vvy1vqtXdl9vlYlVZxlGuWtEaWzujhGlcJzsiMXKmpooTa7oaiYZ02DImrCFISCdUw53hAjWiblkBL8DHg-52aoJrbak9ml4fO9DReP33y-DX-kfcaUUlk5QVgXcHgfWTtJvFSs8xxGrFBKY7XNi3x2Jj_Dm5lHXwaR6IGVyckiaCM6I4RTP6-s9_PSr_dqEA7w-AHWNKo-seEYz07LOefdZHnwtOnuDW5zLrOHfl-38lvTkkxWn7f_lfMK67EA |
| CitedBy_id | crossref_primary_10_1016_j_bbih_2024_100855 crossref_primary_10_3390_biomedicines12091941 crossref_primary_10_1007_s11904_023_00647_z crossref_primary_10_1093_femsre_fuae023 crossref_primary_10_7759_cureus_57008 crossref_primary_10_1002_rmv_70009 crossref_primary_10_3390_bioengineering10070803 crossref_primary_10_1016_j_jep_2023_117512 crossref_primary_10_1371_journal_pone_0293432 crossref_primary_10_1128_jvi_00555_25 crossref_primary_10_1128_spectrum_01347_23 crossref_primary_10_1038_s41598_024_53117_w crossref_primary_10_1242_jcs_262172 crossref_primary_10_3389_fimmu_2023_1259879 crossref_primary_10_3390_ijms25189977 crossref_primary_10_1096_fj_202501244R crossref_primary_10_3390_pathogens13050349 crossref_primary_10_7554_eLife_84790 crossref_primary_10_1038_s41598_024_70725_8 crossref_primary_10_1002_ams2_70044 crossref_primary_10_3390_cancers15164017 crossref_primary_10_1097_JCMA_0000000000001201 crossref_primary_10_1016_j_virusres_2024_199315 crossref_primary_10_1016_j_ijid_2023_07_030 crossref_primary_10_1080_10408398_2025_2524471 crossref_primary_10_1080_10408363_2023_2232010 crossref_primary_10_1134_S1022795424010034 crossref_primary_10_1080_08820139_2024_2385992 crossref_primary_10_1016_j_clicom_2025_09_004 crossref_primary_10_1073_pnas_2217119120 crossref_primary_10_3390_antiox11101910 crossref_primary_10_1371_journal_pone_0314754 crossref_primary_10_1097_ID9_0000000000000166 crossref_primary_10_3390_v17060772 crossref_primary_10_1093_labmed_lmad050 crossref_primary_10_3389_fimmu_2022_1050478 crossref_primary_10_3390_ijms25179635 crossref_primary_10_3390_microorganisms11082073 |
| Cites_doi | 10.1016/j.virusres.2004.09.004 10.1038/s41586-020-2012-7 10.1016/j.cell.2021.01.053 10.1007/s13365-020-00875-8 10.1073/pnas.92.18.8388 10.1016/j.jacbts.2021.01.002 10.1073/pnas.0900196106 10.1016/j.molcel.2020.04.022 10.1038/s41591-020-0901-9 10.1369/jhc.2009.953612 10.1016/j.chom.2020.06.021 10.1056/NEJMc2015435 10.1016/j.celrep.2021.109364 10.3201/eid2609.201495 10.1126/sciimmunol.abc3582 10.1016/S0140-6736(20)30183-5 10.1128/JVI.00671-11 10.1016/S0140-6736(20)30211-7 10.1086/427811 10.3389/fimmu.2020.00827 10.1002/ejhf.1828 10.3201/eid2609.202095 10.1126/science.1260419 10.1016/S0140-6736(20)30628-0 10.1084/jem.20200652 10.1093/nsr/nwaa041 10.1016/S1386-6532(03)00195-1 10.1084/jem.20201129 10.1164/rccm.200601-103OC 10.1016/j.biopha.2020.110678 10.1038/s41423-020-0401-3 10.1016/j.cell.2020.02.052 10.1002/JLB.4HI0720-470R 10.3389/fimmu.2021.661052 10.1182/blood-2011-02-339242 10.1007/s11684-020-0754-0 10.1016/j.vaccine.2006.08.011 10.1080/22221751.2020.1747363 10.1016/S2352-4642(20)30257-1 10.3390/v13040562 10.1093/infdis/jiv380 10.1038/s41598-021-93231-7 10.1073/pnas.1618310114 10.1007/s00705-015-2506-z 10.1038/s41564-020-0688-y 10.1002/cyto.a.24285 10.1002/path.1597 10.1016/j.cell.2020.04.035 10.1038/s41392-020-00426-x 10.1084/jem.20201707 10.1016/j.bbrc.2020.03.044 10.1016/j.chom.2020.04.004 10.1016/j.cell.2020.04.026 |
| ContentType | Journal Article |
| Copyright | The Author(s) (2022). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology , CEMCS, CAS. 2022 The Author(s) (2022). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS. Distributed under a Creative Commons Attribution 4.0 International License The Author(s) (2022). Published by Oxford University Press on behalf of , CEMCS, CAS. 2022 |
| Copyright_xml | – notice: The Author(s) (2022). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology , CEMCS, CAS. 2022 – notice: The Author(s) (2022). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: The Author(s) (2022). Published by Oxford University Press on behalf of , CEMCS, CAS. 2022 |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
| DOI | 10.1093/jmcb/mjac021 |
| DatabaseName | Oxford University Press Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1759-4685 |
| ExternalDocumentID | PMC9384834 oai:HAL:hal-04794613v1 35451490 10_1093_jmcb_mjac021 10.1093/jmcb/mjac021 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI163019 – fundername: NIGMS NIH HHS grantid: T32 GM139774 – fundername: NIH HHS grantid: AI163019 – fundername: ; grantid: AI163019 – fundername: ; grantid: 310100/2017-8; 403201/2020-9; INCT 465539/2014-9; 380849/2020-8 – fundername: ; grantid: 2013/16349-2; 2014/02438-6 |
| GroupedDBID | --- .2P .I3 .ZR 0R~ 4.4 53G 5VS 70E AAFWJ AAJKP AAKDD AAMDB AAMVS AAOGV AAPXW AAUQX AAVAP AAVLN ABEJV ABEUO ABGNP ABIXL ABKDP ABNKS ABPTD ABQLI ABXVV ABZBJ ACGFS ACUTO ADBBV ADEYI ADFTL ADHKW ADHZD ADOCK ADPDF ADZTZ ADZXQ AEGPL AEJOX AEMDU AENEX AENZO AEPUE AEWNT AFIYH AFOFC AFPKN AGINJ AGSYK AHXPO AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AOIJS APIBT ARIXL AXUDD AYOIW BAWUL BAYMD BHONS BQDIO BSWAC BTRTY BVRKM CDBKE DAKXR DIK DILTD DU5 D~K EBD EBS EE~ EJD EMOBN F5P F9B GJXCC GROUPED_DOAJ H13 H5~ HAR HW0 HYE HZ~ J21 KOP KSI M49 NGC NU- O0~ O9- OAWHX OJQWA OK1 OVD OVEED O~Y PAFKI PEELM Q1. Q5Y RD5 RPM RW1 RXO SV3 TCJ TEORI TGP TJX TLC TOX WFFXF WG7 X7H YAYTL YKOAZ ~91 AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
| ID | FETCH-LOGICAL-c450t-d6dac7ea96abef8f2810ea73952caf706b2f1c446ca2068e69b5ea560b67d4a73 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000841394200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1674-2788 1759-4685 |
| IngestDate | Tue Sep 30 16:53:45 EDT 2025 Tue Oct 14 20:18:11 EDT 2025 Thu Jul 10 17:39:45 EDT 2025 Mon Jul 21 06:02:29 EDT 2025 Tue Nov 18 21:56:13 EST 2025 Sat Nov 29 05:32:01 EST 2025 Wed Apr 02 07:00:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | COVID-19 monocytes SARS-CoV-2 lymphocytes apoptosis lymphocytopenia peripheral blood mononuclear cell (PBMC) Tropism Immune cells |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) (2022). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, CEMCS, CAS. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-d6dac7ea96abef8f2810ea73952caf706b2f1c446ca2068e69b5ea560b67d4a73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0002-0126-1742 0000-0001-6273-8113 0000-0003-3173-5977 0000-0002-1787-4797 0000-0001-7885-7547 0000-0002-5648-3190 |
| OpenAccessLink | https://dx.doi.org/10.1093/jmcb/mjac021 |
| PMID | 35451490 |
| PQID | 2654295301 |
| PQPubID | 23479 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9384834 hal_primary_oai_HAL_hal_04794613v1 proquest_miscellaneous_2654295301 pubmed_primary_35451490 crossref_primary_10_1093_jmcb_mjac021 crossref_citationtrail_10_1093_jmcb_mjac021 oup_primary_10_1093_jmcb_mjac021 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-17 |
| PublicationDateYYYYMMDD | 2022-08-17 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-17 day: 17 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of molecular cell biology |
| PublicationTitleAlternate | J Mol Cell Biol |
| PublicationYear | 2022 |
| Publisher | Oxford University Press Oxford UP |
| Publisher_xml | – name: Oxford University Press – name: Oxford UP |
| References | Song (2022081714475173800_bib36) 2020 Alves-Filho (2022081714475173800_bib1) 2009; 106 Lo (2022081714475173800_bib25) 2021; 11 Whelan (2022081714475173800_bib43) 1995; 92 Qi (2022081714475173800_bib30) 2020; 526 Kam (2022081714475173800_bib20) 2007; 25 Blanco-Melo (2022081714475173800_bib5) 2020; 181 Case (2022081714475173800_bib6) 2020; 28 Ziegler (2022081714475173800_bib53) 2020; 181 Zhou (2022081714475173800_bib51) 2020; 579 Fukuma (2022081714475173800_bib14) 2015; 160 Ren (2022081714475173800_bib32) 2021; 184 Wang (2022081714475173800_bib42) 2020; 5 Jaume (2022081714475173800_bib19) 2011; 85 Chu (2022081714475173800_bib9) 2016; 213 Deng (2022081714475173800_bib10) 2017; 114 Martines (2022081714475173800_bib27) 2020; 26 Chen (2022081714475173800_bib8) 2005; 191 Kral (2022081714475173800_bib21) 2020; 383 Veras (2022081714475173800_bib41) 2020; 217 Puray-Chavez (2022081714475173800_bib29) 2021; 36 Zou (2022081714475173800_bib54) 2020; 14 Dong (2022081714475173800_bib13) 2020; 131 Rios-Santos (2022081714475173800_bib33) 2007; 175 Vargas-Gandica (2022081714475173800_bib40) 2020; 26 Xiang (2022081714475173800_bib44) 2021; 12 Glass (2022081714475173800_bib15) 2009; 57 Zhou (2022081714475173800_bib52) 2020; 7 Solstad (2022081714475173800_bib35) 2011; 118 Hoffmann (2022081714475173800_bib17) 2020; 181 Rodrigues (2022081714475173800_bib34) 2020; 218 Bailey (2022081714475173800_bib2) 2021; 6 Hoffmann (2022081714475173800_bib16) 2020; 78 Zheng (2022081714475173800_bib50) 2020; 17 Dolhnikoff (2022081714475173800_bib12) 2020; 4 Loveday (2022081714475173800_bib26) 2021; 13 Uhlén (2022081714475173800_bib39) 2015; 347 Chen (2022081714475173800_bib7) 2020; 395 Xiong (2022081714475173800_bib46) 2020; 9 Zhang (2022081714475173800_bib49) 2021; 109 To (2022081714475173800_bib38) 2004; 203 Reed (2022081714475173800_bib31) 1938; 27 Mehta (2022081714475173800_bib28) 2020; 395 Yilla (2022081714475173800_bib47) 2005; 107 Letko (2022081714475173800_bib22) 2020; 5 Xie (2022081714475173800_bib45) 2020; 27 Zang (2022081714475173800_bib48) 2020; 5 Diao (2022081714475173800_bib11) 2020; 11 Li (2022081714475173800_bib24) 2003; 28 Barnes (2022081714475173800_bib4) 2020; 217 Huang (2022081714475173800_bib18) 2020; 395 Liao (2022081714475173800_bib23) 2020; 26 Banerjee (2022081714475173800_bib3) 2020; 26 Tavazzi (2022081714475173800_bib37) 2020; 22 34013264 - bioRxiv. 2020 Aug 07 |
| References_xml | – volume: 107 start-page: 93 year: 2005 ident: 2022081714475173800_bib47 article-title: SARS-coronavirus replication in human peripheral monocytes/macrophages publication-title: Virus Res. doi: 10.1016/j.virusres.2004.09.004 – volume: 579 start-page: 270 year: 2020 ident: 2022081714475173800_bib51 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 184 start-page: 1895 year: 2021 ident: 2022081714475173800_bib32 article-title: COVID-19 immune features revealed by a large-scale single cell transcriptome atlas publication-title: Cell doi: 10.1016/j.cell.2021.01.053 – volume: 26 start-page: 785 year: 2020 ident: 2022081714475173800_bib40 article-title: Ageusia and anosmia, a common sign of COVID-19: a case series from four countries publication-title: J. Neurovirol. doi: 10.1007/s13365-020-00875-8 – volume: 92 start-page: 8388 year: 1995 ident: 2022081714475173800_bib43 article-title: Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.92.18.8388 – volume: 6 start-page: 331 year: 2021 ident: 2022081714475173800_bib2 article-title: SARS-CoV-2 infects human engineered heart tissues and models COVID-19 myocarditis publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2021.01.002 – volume: 106 start-page: 4018 year: 2009 ident: 2022081714475173800_bib1 article-title: Regulation of chemokine receptor by Toll-like receptor 2 is critical to neutrophil migration and resistance to polymicrobial sepsis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0900196106 – volume: 78 start-page: 779 year: 2020 ident: 2022081714475173800_bib16 article-title: A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.04.022 – volume: 26 start-page: 842 year: 2020 ident: 2022081714475173800_bib23 article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 publication-title: Nat. Med. doi: 10.1038/s41591-020-0901-9 – volume: 57 start-page: 899 year: 2009 ident: 2022081714475173800_bib15 article-title: SIMPLE: a sequential immunoperoxidase labeling and erasing method publication-title: J. Histochem. Cytochem. doi: 10.1369/jhc.2009.953612 – volume: 28 start-page: 475 year: 2020 ident: 2022081714475173800_bib6 article-title: Neutralizing antibody and soluble ACE2 inhibition of a replication-competent VSV-SARS-CoV-2 and a clinical isolate of SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.06.021 – volume: 383 start-page: 589 year: 2020 ident: 2022081714475173800_bib21 article-title: Evaluation of an unsanctioned safe consumption site in the United States publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2015435 – volume: 36 start-page: 109364 year: 2021 ident: 2022081714475173800_bib29 article-title: Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109364 – volume: 26 start-page: 2054 year: 2020 ident: 2022081714475173800_bib3 article-title: Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome Coronavirus 2 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2609.201495 – volume: 5 start-page: eabc3582 year: 2020 ident: 2022081714475173800_bib48 article-title: TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abc3582 – volume: 395 start-page: 497 year: 2020 ident: 2022081714475173800_bib18 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan publication-title: China. Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 27 start-page: 493 year: 1938 ident: 2022081714475173800_bib31 article-title: A simple method of estimating fifty per cent endpoints publication-title: Am. J. Hyg. – volume: 85 start-page: 10582 year: 2011 ident: 2022081714475173800_bib19 article-title: Anti-severe acute respiratory syndrome coronavirus spike antibodies trigger infection of human immune cells via a pH- and cysteine protease-independent FcγR pathway publication-title: J. Virol. doi: 10.1128/JVI.00671-11 – volume: 395 start-page: 507 year: 2020 ident: 2022081714475173800_bib7 article-title: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study publication-title: Lancet doi: 10.1016/S0140-6736(20)30211-7 – volume: 191 start-page: 755 year: 2005 ident: 2022081714475173800_bib8 article-title: Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus publication-title: J. Infect. Dis. doi: 10.1086/427811 – volume: 11 start-page: 827 year: 2020 ident: 2022081714475173800_bib11 article-title: Reduction and functional exhaustion of T cells in patients with ccoronavirus disease 2019 (COVID-19) publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00827 – volume: 22 start-page: 911 year: 2020 ident: 2022081714475173800_bib37 article-title: Myocardial localization of coronavirus in COVID-19 cardiogenic shock publication-title: Eur. J. Heart Fail. doi: 10.1002/ejhf.1828 – volume: 26 start-page: 2005 year: 2020 ident: 2022081714475173800_bib27 article-title: Pathology and pathogenesis of SARS-CoV-2 associated with fatal coronavirus disease, United States publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2609.202095 – volume: 347 start-page: 1260419 year: 2015 ident: 2022081714475173800_bib39 article-title: Tissue-based map of the human proteome publication-title: Science doi: 10.1126/science.1260419 – volume: 395 start-page: 1033 year: 2020 ident: 2022081714475173800_bib28 article-title: COVID-19: consider cytokine storm syndromes and immunosuppression publication-title: Lancet doi: 10.1016/S0140-6736(20)30628-0 – volume: 217 start-page: e20200652 year: 2020 ident: 2022081714475173800_bib4 article-title: Targeting potential drivers of COVID-19: neutrophil extracellular traps publication-title: J. Exp. Med. doi: 10.1084/jem.20200652 – volume: 7 start-page: 998 year: 2020 ident: 2022081714475173800_bib52 article-title: Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwaa041 – volume: 28 start-page: 239 year: 2003 ident: 2022081714475173800_bib24 article-title: SARS-coronavirus replicates in mononuclear cells of peripheral blood (PBMCs) from SARS patients publication-title: J. Clin. Virol. doi: 10.1016/S1386-6532(03)00195-1 – volume: 217 start-page: e20201129 year: 2020 ident: 2022081714475173800_bib41 article-title: SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology publication-title: J. Exp. Med. doi: 10.1084/jem.20201129 – volume: 175 start-page: 490 year: 2007 ident: 2022081714475173800_bib33 article-title: Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.200601-103OC – volume: 131 start-page: 110678 year: 2020 ident: 2022081714475173800_bib13 article-title: ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.110678 – volume: 17 start-page: 541 year: 2020 ident: 2022081714475173800_bib50 article-title: Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients publication-title: Cell. Mol. Immunol. doi: 10.1038/s41423-020-0401-3 – volume: 181 start-page: 271 year: 2020 ident: 2022081714475173800_bib17 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 109 start-page: 13 year: 2021 ident: 2022081714475173800_bib49 article-title: COVID-19 infection induces readily detectable morphologic and inflammation-related phenotypic changes in peripheral blood monocytes publication-title: J. Leukoc. Biol. doi: 10.1002/JLB.4HI0720-470R – volume: 12 start-page: 1 year: 2021 ident: 2022081714475173800_bib44 article-title: SARS-CoV-2 induces lymphocytopenia by promoting inflammation and decimates secondary lymphoid organs publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.661052 – volume: 118 start-page: 5141 year: 2011 ident: 2022081714475173800_bib35 article-title: CD147 (basigin/emmprin) identifies FoxP3+CD45RO+CTLA4+-activated human regulatory T cells publication-title: Blood doi: 10.1182/blood-2011-02-339242 – volume: 14 start-page: 185 year: 2020 ident: 2022081714475173800_bib54 article-title: Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection publication-title: Front. Med. doi: 10.1007/s11684-020-0754-0 – volume: 25 start-page: 729 year: 2007 ident: 2022081714475173800_bib20 article-title: Antibodies against trimeric S glycoprotein protect hamsters against SARS-CoV challenge despite their capacity to mediate FcγRII-dependent entry into B cells in vitro publication-title: Vaccine doi: 10.1016/j.vaccine.2006.08.011 – volume: 9 start-page: 761 year: 2020 ident: 2022081714475173800_bib46 article-title: Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1747363 – volume: 4 start-page: 790 year: 2020 ident: 2022081714475173800_bib12 article-title: SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome publication-title: Lancet Child Adolesc. Heal. doi: 10.1016/S2352-4642(20)30257-1 – volume: 13 start-page: 562 year: 2021 ident: 2022081714475173800_bib26 article-title: Effect of inactivation methods on SARS-CoV-2 virion protein and structure publication-title: Viruses doi: 10.3390/v13040562 – volume: 213 start-page: 904 year: 2016 ident: 2022081714475173800_bib9 article-title: Middle East respiratory syndrome coronavirus efficiently infects human primary T lymphocytes and activates the extrinsic and intrinsic apoptosis pathways publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiv380 – volume: 11 start-page: 13804 year: 2021 ident: 2022081714475173800_bib25 article-title: UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins publication-title: Sci. Rep. doi: 10.1038/s41598-021-93231-7 – volume: 114 start-page: E4251 year: 2017 ident: 2022081714475173800_bib10 article-title: Coronavirus nonstructural protein 15 mediates evasion of dsRNA sensors and limits apoptosis in macrophages publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1618310114 – volume: 160 start-page: 2293 year: 2015 ident: 2022081714475173800_bib14 article-title: Inability of rat DPP4 to allow MERS-CoV infection revealed by using a VSV pseudotype bearing truncated MERS-CoV spike protein publication-title: Arch. Virol. doi: 10.1007/s00705-015-2506-z – volume: 5 start-page: 562 year: 2020 ident: 2022081714475173800_bib22 article-title: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0688-y – year: 2020 ident: 2022081714475173800_bib36 article-title: Little to no expression of angiotensin-converting enzyme-2 on most human peripheral blood immune cells but highly expressed on tissue macrophages publication-title: Cytometry A doi: 10.1002/cyto.a.24285 – volume: 203 start-page: 740 year: 2004 ident: 2022081714475173800_bib38 article-title: Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2) publication-title: J. Pathol. doi: 10.1002/path.1597 – volume: 181 start-page: 1016 year: 2020 ident: 2022081714475173800_bib53 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 5 start-page: 283 year: 2020 ident: 2022081714475173800_bib42 article-title: CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-020-00426-x – volume: 218 start-page: e20201707 year: 2020 ident: 2022081714475173800_bib34 article-title: Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients publication-title: J. Exp. Med. doi: 10.1084/jem.20201707 – volume: 526 start-page: 135 year: 2020 ident: 2022081714475173800_bib30 article-title: Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.03.044 – volume: 27 start-page: 841 year: 2020 ident: 2022081714475173800_bib45 article-title: An infectious cDNA clone of SARS-CoV-2 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.004 – volume: 181 start-page: 1036 year: 2020 ident: 2022081714475173800_bib5 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – reference: 34013264 - bioRxiv. 2020 Aug 07;: |
| SSID | ssj0000383380 |
| Score | 2.503248 |
| Snippet | Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a... The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a hallmark that... Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with a hyperinflammatory state and lymphocytopenia, a... |
| SourceID | pubmedcentral hal proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| SubjectTerms | COVID-19 Cytokine Release Syndrome Humans Leukocytes, Mononuclear Life Sciences Microbiology and Parasitology Monocytes SARS-CoV-2 Virology |
| Title | SARS-CoV-2 productively infects primary human immune system cells in vitro and in COVID-19 patients |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35451490 https://www.proquest.com/docview/2654295301 https://hal.science/hal-04794613 https://pubmed.ncbi.nlm.nih.gov/PMC9384834 |
| Volume | 14 |
| WOSCitedRecordID | wos000841394200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1759-4685 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000383380 issn: 1674-2788 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1759-4685 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000383380 issn: 1674-2788 databaseCode: TOX dateStart: 20091001 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED8BYtJeYB9sK4zKm7YnZOHYSWw_VgXEJATTYKhvkeM4ahGkqCmV-O85O6EiaIg9xrlYzvls353vfgfwQxTSMOFiastY09gVjGqnBNU64WnpEaBcgMw_kaenajTSv1uQpPofV_ha7F_d2Hz_5spYFhLGo0R5eb44Gy19KQzNLBGKpPmYesrRrGtj3J9_3zl9Vsc-9rGT1_ZEvXweJfnk2Dna_O8Bv4ONVrMkg0YU3sOKqz7Am6bW5P1HsOeDP-d0OL2knNw2MK-40V3fkyYcq8bGgDtBQtU-MvF5I440QM_Eu_drpCSLyXw2JaYq_MPw7PLXAY00acFZ6y34e3R4MTymbYUFauOEzWmRFsZKZ3RqcleqkquIOePv7rg1pWRpzsvIosVoDWepcqnOE2dQScpTWcRI-AnWqmnlvgDRUSGsigup0UKJE5vnOSorsnQlaixOix7sPXI-sy38uK-CcZ011-Ai82zLWrb14OeSuv39F-i-4yQuSTxW9vHgJPNtDXZ-JBZIRHCOX-nn26MAZLi-PFdN5aZ3dcZDRa8E98EefG4EYtmTQPUTLUzWA9kRlc54um-qyThgeGuhvBt3-_Wh7cBb7lMuPAyv_Apr89md24V1u5hP6lkfVuVI9YMnoR8WxQNDjghR |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+productively+infects+primary+human+immune+system+cells+in+vitro+and+in+COVID-19+patients&rft.jtitle=Journal+of+molecular+cell+biology&rft.au=Pontelli%2C+Marjorie+C&rft.au=Castro%2C+%C3%8Dtalo+A&rft.au=Martins%2C+Ronaldo+B&rft.au=La+Serra%2C+Leonardo&rft.date=2022-08-17&rft.issn=1674-2788&rft.eissn=1759-4685&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1093%2Fjmcb%2Fmjac021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jmcb_mjac021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2788&client=summon |