Characterizing the role of the structural connectome in seizure dynamics

How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal ep...

Full description

Saved in:
Bibliographic Details
Published in:Brain (London, England : 1878) Vol. 142; no. 7; p. 1955
Main Authors: Shah, Preya, Ashourvan, Arian, Mikhail, Fadi, Pines, Adam, Kini, Lohith, Oechsel, Kelly, Das, Sandhitsu R, Stein, Joel M, Shinohara, Russell T, Bassett, Danielle S, Litt, Brian, Davis, Kathryn A
Format: Journal Article
Language:English
Published: England 01.07.2019
Subjects:
ISSN:1460-2156, 1460-2156
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
AbstractList How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is particularly relevant to epilepsy, a disorder affecting over 50 million subjects worldwide. Treatment for medication-resistant focal epilepsy is often structural-through surgery or laser ablation-but structural targets, particularly in patients without clear lesions, are largely based on functional mapping via intracranial EEG. Unfortunately, the relationship between structural and functional connectivity in the seizing brain is poorly understood. In this study, we quantify structure-function coupling, specifically between white matter connections and intracranial EEG, across pre-ictal and ictal periods in 45 seizures from nine patients with unilateral drug-resistant focal epilepsy. We use high angular resolution diffusion imaging (HARDI) tractography to construct structural connectivity networks and correlate these networks with time-varying broadband and frequency-specific functional networks derived from coregistered intracranial EEG. Across all frequency bands, we find significant increases in structure-function coupling from pre-ictal to ictal periods. We demonstrate that short-range structural connections are primarily responsible for this increase in coupling. Finally, we find that spatiotemporal patterns of structure-function coupling are highly stereotyped for each patient. These results suggest that seizures harness the underlying structural connectome as they propagate. Mapping the relationship between structural and functional connectivity in epilepsy may inform new therapies to halt seizure spread, and pave the way for targeted patient-specific interventions.
Author Shinohara, Russell T
Bassett, Danielle S
Kini, Lohith
Oechsel, Kelly
Shah, Preya
Litt, Brian
Ashourvan, Arian
Mikhail, Fadi
Davis, Kathryn A
Das, Sandhitsu R
Pines, Adam
Stein, Joel M
Author_xml – sequence: 1
  givenname: Preya
  surname: Shah
  fullname: Shah, Preya
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 2
  givenname: Arian
  surname: Ashourvan
  fullname: Ashourvan, Arian
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  givenname: Fadi
  surname: Mikhail
  fullname: Mikhail, Fadi
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 4
  givenname: Adam
  surname: Pines
  fullname: Pines, Adam
  organization: Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 5
  givenname: Lohith
  surname: Kini
  fullname: Kini, Lohith
  organization: Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 6
  givenname: Kelly
  surname: Oechsel
  fullname: Oechsel, Kelly
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 7
  givenname: Sandhitsu R
  surname: Das
  fullname: Das, Sandhitsu R
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 8
  givenname: Joel M
  surname: Stein
  fullname: Stein, Joel M
  organization: Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 9
  givenname: Russell T
  surname: Shinohara
  fullname: Shinohara, Russell T
  organization: Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 10
  givenname: Danielle S
  surname: Bassett
  fullname: Bassett, Danielle S
  organization: Department of Physics and Astronomy, College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 11
  givenname: Brian
  surname: Litt
  fullname: Litt, Brian
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
– sequence: 12
  givenname: Kathryn A
  surname: Davis
  fullname: Davis, Kathryn A
  organization: Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31099821$$D View this record in MEDLINE/PubMed
BookMark eNpNjztPwzAYRS1URB-wMSOPLKF-JvGIKqBIlVi6R479hRoldrEdofbXU0GRmO4Zzr3SnaOJDx4QuqXkgRLFl23Uzi_115EyeYFmVJSkYFSWk388RfOUPgihgrPyCk35qalqRmdovdrpqE2G6I7Ov-O8AxxDDzh0P5xyHE0eo-6xCd6DyWEA7DxO4I5jBGwPXg_OpGt02ek-wc05F2j7_LRdrYvN28vr6nFTGCFJLgyxHWjLazCiaiXjSpWisyUDYyxvW0u6SmolTNVqVem6tiVnnZVacsUEYwt0_zu7j-FzhJSbwSUDfa89hDE1jHFGJFGVOKl3Z3VsB7DNPrpBx0Pzd559AyhTX0U
CitedBy_id crossref_primary_10_1111_epi_16753
crossref_primary_10_3390_app122010487
crossref_primary_10_1111_epi_17921
crossref_primary_10_1002_hbm_25796
crossref_primary_10_1098_rsos_220374
crossref_primary_10_1007_s41870_025_02646_2
crossref_primary_10_1186_s40359_021_00671_x
crossref_primary_10_3390_math11153323
crossref_primary_10_1016_S1474_4422_23_00008_X
crossref_primary_10_1111_epi_17251
crossref_primary_10_1097_WNP_0000000000001196
crossref_primary_10_1038_s41551_025_01442_4
crossref_primary_10_1038_s42003_022_03342_8
crossref_primary_10_1097_WNP_0000000000001071
crossref_primary_10_1038_s42003_022_03196_0
crossref_primary_10_1212_WNL_0000000000207661
crossref_primary_10_1053_j_sult_2021_07_007
crossref_primary_10_1002_epi4_12743
crossref_primary_10_1016_j_seizure_2021_06_006
crossref_primary_10_1016_j_yebeh_2023_109503
crossref_primary_10_1016_j_neuroimage_2022_118986
crossref_primary_10_1016_j_ebiom_2023_104848
crossref_primary_10_1016_j_neuroimage_2021_118649
crossref_primary_10_1016_j_image_2021_116171
crossref_primary_10_1212_WNL_0000000000209451
crossref_primary_10_1038_s41598_021_98046_0
crossref_primary_10_1109_TIM_2025_3551573
crossref_primary_10_1089_brain_2021_0190
crossref_primary_10_1016_j_jneumeth_2023_109839
crossref_primary_10_1073_pnas_1922084117
crossref_primary_10_1093_brain_awaf097
crossref_primary_10_1145_3746658
crossref_primary_10_1016_j_nbd_2023_106220
crossref_primary_10_1111_epi_17863
crossref_primary_10_1016_j_clinph_2022_10_012
crossref_primary_10_1093_brain_awab480
crossref_primary_10_1016_j_eplepsyres_2023_107090
crossref_primary_10_1145_3446668
crossref_primary_10_3389_fnhum_2024_1439541
crossref_primary_10_1093_brain_awae192
crossref_primary_10_1038_s42003_021_01700_6
crossref_primary_10_1016_j_mehy_2020_109600
crossref_primary_10_1212_WNL_0000000000012696
crossref_primary_10_1371_journal_pone_0325844
crossref_primary_10_1016_j_clinph_2023_05_012
crossref_primary_10_1016_j_snb_2020_128137
crossref_primary_10_1177_15357597211015663
crossref_primary_10_1073_pnas_2006436118
crossref_primary_10_1249_MSS_0000000000003688
crossref_primary_10_1038_s41583_024_00846_6
crossref_primary_10_20960_nh_05668
crossref_primary_10_1016_j_neuroimage_2021_118104
crossref_primary_10_1016_j_nicl_2019_101908
crossref_primary_10_1093_brain_awad016
ContentType Journal Article
Copyright The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Copyright_xml – notice: The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1093/brain/awz125
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
ExternalDocumentID 31099821
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: K23 NS092973
– fundername: NINDS NIH HHS
  grantid: R01 NS099348
– fundername: NINDS NIH HHS
  grantid: R01 NS085211
– fundername: NINDS NIH HHS
  grantid: T32 NS091006
– fundername: NIMH NIH HHS
  grantid: R01 MH112847
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
ABDFA
ABEJV
ABEUO
ABGNP
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABVGC
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
CGR
COF
CS3
CUY
CVF
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
ECM
EE~
EIF
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NPM
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
7X8
ABPQP
ABXZS
ADNBA
AEMQT
AFYAG
AHGBF
AJBYB
AJNCP
ALXQX
ID FETCH-LOGICAL-c450t-c0dfead38ec47b5239964fd62eccd3bbd0f75a94c7ba97a88d632fd5a5392422
IEDL.DBID 7X8
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000481420100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1460-2156
IngestDate Sun Sep 28 10:27:45 EDT 2025
Wed Feb 19 02:27:21 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords epilepsy
structural connectivity
functional connectivity
high-angular resolution diffusion imaging
intracranial EEG
Language English
License The Author(s) (2019). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-c0dfead38ec47b5239964fd62eccd3bbd0f75a94c7ba97a88d632fd5a5392422
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://academic.oup.com/brain/article-pdf/142/7/1955/28881146/awz125.pdf
PMID 31099821
PQID 2232050974
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2232050974
pubmed_primary_31099821
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2019
SSID ssj0014326
Score 2.5482295
Snippet How does the human brain's structural scaffold give rise to its intricate functional dynamics? This is a central question in translational neuroscience that is...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1955
SubjectTerms Adult
Brain - physiopathology
Connectome
Diffusion Magnetic Resonance Imaging
Drug Resistance
Electrocorticography
Epilepsies, Partial - physiopathology
Female
Humans
Male
Middle Aged
Neural Pathways - physiopathology
Neuroimaging
Seizures - physiopathology
White Matter - physiopathology
Young Adult
Title Characterizing the role of the structural connectome in seizure dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/31099821
https://www.proquest.com/docview/2232050974
Volume 142
WOSCitedRecordID wos000481420100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwEBZtU0qXvh_pCxW6mtiSbFlTKaEhS0KGDNmMnpChdhonLeTX92Qr7VQodDFeDOZ8vvuk-_R9CD05ISxVVEU8syJiFNYpyog4cnkmOVPOGtKaTfDxOJ_NxCRsuNWBVrmtiU2hNpX2e-Q9aGPEa5Vw9rx4j7xrlJ-uBguNXdShAGV8VvPZzxSBURJOF8URtLYsEN9hEd9T3oChJz83CUl_B5dNkxkc__f1TtBRgJf4pc2HU7RjyzN0MAoD9HM07H8LNG-gaWGAf9gTDHHlmvtWTtZLcWDtKTB6Vb1ZPC9xbeeb9dJi0zrY1xdoOnid9odRMFOINEvjVaRj4yBraG414yr1R1oz5kxG4BsaqpSJHU-lYJorKbjMc5NR4kwqU0BQjJBLtFdWpb1GOCWG0kwDcEosc1ClpEm009IQrhPnZBc9bkNUQK76AYQsbbWui58gddFVG-di0YpqFF6hVOQkufnD07foEHCLaFmzd6jj4E-192hff6zm9fKhSQK4jiejL-YYvyU
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterizing+the+role+of+the+structural+connectome+in+seizure+dynamics&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Shah%2C+Preya&rft.au=Ashourvan%2C+Arian&rft.au=Mikhail%2C+Fadi&rft.au=Pines%2C+Adam&rft.date=2019-07-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=142&rft.issue=7&rft.spage=1955&rft_id=info:doi/10.1093%2Fbrain%2Fawz125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1460-2156&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1460-2156&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1460-2156&client=summon