Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria

Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Infection and immunity Jg. 88; H. 12
Hauptverfasser: Briaud, Paul, Carroll, Ronan K
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 16.11.2020
Schlagworte:
ISSN:1098-5522, 1098-5522
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as , spp., , and spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.
AbstractList Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as , spp., , and spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.
Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as Staphylococcus aureus, Streptococcus spp., Bacillus subtilis, and Mycobacterium spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60 years ago and have been extensively studied in Gram-negative bacteria. During their production, EVs are loaded with proteins, nucleic acids, and various compounds that are subsequently released into the environment. Depending on the packaged cargo, EVs have a broad spectrum of action and are involved in pathogenesis, antibiotic resistance, nutrient uptake, and nucleic acid transfer. Due to differences in cell wall structure, EVs in Gram-positive bacteria have been disregarded for decades, and our understanding of their biogenesis and host cell interaction is incomplete. Recently, studies on bacteria such as Staphylococcus aureus, Streptococcus spp., Bacillus subtilis, and Mycobacterium spp. have demonstrated EV production in Gram-positive bacteria and shown the great importance EVs have in Gram-positive bacterial physiology and disease progression. Here, we review the latest findings on the biogenesis and functions of EVs from Gram-positive bacteria and identify key areas for future research.
Author Carroll, Ronan K
Briaud, Paul
Author_xml – sequence: 1
  givenname: Paul
  surname: Briaud
  fullname: Briaud, Paul
  organization: Department of Biological Sciences, Ohio University, Athens, Ohio, USA
– sequence: 2
  givenname: Ronan K
  orcidid: 0000-0001-7090-3414
  surname: Carroll
  fullname: Carroll, Ronan K
  email: carrolr3@ohio.edu
  organization: Department of Biological Sciences, Ohio University, Athens, Ohio, USA carrolr3@ohio.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32989035$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tPwzAQhC1URB9w44xy5JKyfiX2sVR9SZXgAFyjreMgo8QpdoLg3xNEkTjtzsyn1eyUjHzrLSHXFOaUMnW3W-zmAILzlMEZmVDQKpWSsdG_fUymMb4BUCGEuiBjzrTSwOWEbFefXUBj67qvMSQvNjpT2-Teta_WDyIm6Mtk3XvTudbHxPlkE7BJH9voOvcxkGg6GxxekvMK62ivTnNGnterp-U23T9sdsvFPjVCQpdixitrKkkxk7mt0JiDNlKrXAscbGCZkTIDlKXNaK5UxQUwVYLiFeT5kM_I7e_dY2jfexu7onHxpz962_axYELknHKt1YDenND-0NiyOAbXYPgq_r5n39cwXIA
CitedBy_id crossref_primary_10_3390_vaccines13040418
crossref_primary_10_3390_ijms222413513
crossref_primary_10_1002_adfm_202404522
crossref_primary_10_1371_journal_pone_0298900
crossref_primary_10_3389_fphar_2024_1437894
crossref_primary_10_1016_j_heliyon_2025_e42509
crossref_primary_10_1007_s00284_022_02772_1
crossref_primary_10_1093_femsle_fnac095
crossref_primary_10_3390_ijms231911553
crossref_primary_10_3390_microorganisms13061341
crossref_primary_10_1016_j_fsi_2024_109508
crossref_primary_10_1007_s00203_025_04294_3
crossref_primary_10_3389_fimmu_2022_899413
crossref_primary_10_3390_ijms22126256
crossref_primary_10_1080_10408398_2022_2039897
crossref_primary_10_3389_fimmu_2021_723433
crossref_primary_10_3390_biomedicines12112585
crossref_primary_10_1186_s12879_025_10474_9
crossref_primary_10_1186_s12941_023_00645_4
crossref_primary_10_1007_s11427_024_2937_4
crossref_primary_10_1016_j_micres_2022_127238
crossref_primary_10_1038_s41522_025_00735_5
crossref_primary_10_1007_s10565_024_09897_y
crossref_primary_10_3390_pharmaceutics16020292
crossref_primary_10_3390_cancers17111774
crossref_primary_10_3389_fimmu_2024_1490755
crossref_primary_10_1038_s41579_023_00875_5
crossref_primary_10_1128_spectrum_03223_24
crossref_primary_10_3389_fmicb_2022_815638
crossref_primary_10_1371_journal_ppat_1011026
crossref_primary_10_1371_journal_ppat_1009508
crossref_primary_10_3390_ijms25126533
crossref_primary_10_1016_j_jgar_2024_03_004
crossref_primary_10_1021_prechem_5c00012
crossref_primary_10_3390_membranes12111124
crossref_primary_10_3390_toxins15080502
crossref_primary_10_1128_spectrum_03026_24
crossref_primary_10_3390_microbiolres16090194
crossref_primary_10_1016_j_micpath_2025_108003
crossref_primary_10_1186_s12951_023_01911_5
crossref_primary_10_1002_adma_202207826
crossref_primary_10_1002_imt2_86
crossref_primary_10_1002_jsfa_14123
crossref_primary_10_1016_j_lfs_2025_123472
crossref_primary_10_1016_j_pharmthera_2023_108443
crossref_primary_10_1093_ibd_izaf107
crossref_primary_10_3390_ijms25116210
crossref_primary_10_1016_j_scitotenv_2023_168098
crossref_primary_10_1242_jcs_256628
crossref_primary_10_1111_exd_15150
crossref_primary_10_1128_msphere_00727_24
crossref_primary_10_1016_j_ccr_2025_216895
crossref_primary_10_3389_fmicb_2022_817844
crossref_primary_10_3390_genes12071010
crossref_primary_10_1016_j_lfs_2022_120803
crossref_primary_10_1038_s41522_023_00400_9
crossref_primary_10_1038_s41598_022_18412_4
crossref_primary_10_1016_j_lfs_2024_122749
crossref_primary_10_1111_1751_7915_13972
crossref_primary_10_1186_s12964_023_01131_2
crossref_primary_10_1016_j_eng_2025_06_042
crossref_primary_10_1080_21505594_2023_2180934
crossref_primary_10_1128_aem_01094_25
crossref_primary_10_3390_ijms26115025
crossref_primary_10_1016_j_micpath_2023_106396
crossref_primary_10_3390_pathogens11121429
crossref_primary_10_3389_fmicb_2022_864720
crossref_primary_10_15252_embj_2021108174
crossref_primary_10_1016_j_tim_2023_05_010
crossref_primary_10_3389_fmicb_2023_1254367
crossref_primary_10_3389_fmicb_2024_1416688
crossref_primary_10_1002_btm2_10623
crossref_primary_10_1038_s41467_025_60271_w
crossref_primary_10_1128_spectrum_03690_23
crossref_primary_10_1039_D4NR04321A
crossref_primary_10_1080_23744235_2022_2149852
crossref_primary_10_3389_fcimb_2022_962216
crossref_primary_10_1007_s12602_024_10423_z
crossref_primary_10_1016_j_addr_2023_114774
crossref_primary_10_1016_j_jlr_2024_100597
crossref_primary_10_3390_ijms222313029
crossref_primary_10_1002_ctd2_115
crossref_primary_10_3390_microorganisms13040884
crossref_primary_10_1016_j_ijbiomac_2023_128101
crossref_primary_10_1002_jev2_70156
crossref_primary_10_3390_ijms241713247
crossref_primary_10_1080_19490976_2024_2427311
crossref_primary_10_3389_fimmu_2021_777147
crossref_primary_10_1007_s11274_024_03963_7
crossref_primary_10_3390_microorganisms11112762
crossref_primary_10_1016_j_fsi_2024_109945
crossref_primary_10_1186_s12964_023_01132_1
crossref_primary_10_3390_pharmaceutics14122653
crossref_primary_10_1111_1751_7915_13956
crossref_primary_10_1128_jb_00325_23
crossref_primary_10_1016_j_biopha_2025_118381
crossref_primary_10_3389_fimmu_2024_1394501
crossref_primary_10_61882_iau_35_3_241
crossref_primary_10_1134_S0003683823020035
crossref_primary_10_1016_j_actbio_2024_02_029
crossref_primary_10_3390_biom12091171
crossref_primary_10_1128_mSphere_00676_21
crossref_primary_10_1128_msystems_00683_25
crossref_primary_10_1007_s13346_023_01411_x
crossref_primary_10_1080_10409238_2025_2497270
crossref_primary_10_1109_JSEN_2021_3131527
crossref_primary_10_14814_phy2_70292
crossref_primary_10_3389_froh_2024_1410786
crossref_primary_10_1128_iai_00439_22
crossref_primary_10_1080_21505594_2023_2249784
crossref_primary_10_1016_j_micpath_2023_106308
crossref_primary_10_3390_pathogens10121530
crossref_primary_10_1016_j_biotechadv_2021_107869
crossref_primary_10_1007_s11274_025_04481_w
crossref_primary_10_1016_j_colsurfb_2024_114125
crossref_primary_10_1038_s41598_023_43354_w
crossref_primary_10_3390_ijms222313166
crossref_primary_10_1186_s12964_023_01414_8
crossref_primary_10_1016_j_pestbp_2025_106515
crossref_primary_10_1093_genetics_iyad132
crossref_primary_10_1016_j_jbc_2022_102483
crossref_primary_10_3390_cells13050387
crossref_primary_10_1042_BST20191088
crossref_primary_10_3390_molecules27227789
crossref_primary_10_1038_s41598_025_99160_z
crossref_primary_10_1080_19490976_2024_2341670
crossref_primary_10_3389_fchbi_2023_1181137
crossref_primary_10_3389_fimmu_2024_1296061
crossref_primary_10_3390_ijms25052904
crossref_primary_10_3390_md22080363
crossref_primary_10_3390_cells14020119
crossref_primary_10_3389_fimmu_2023_1274295
crossref_primary_10_3389_fimmu_2023_1151322
crossref_primary_10_1038_s41598_025_15457_z
crossref_primary_10_1111_mmi_15130
crossref_primary_10_3390_ijms25063080
crossref_primary_10_1016_j_jconrel_2023_12_011
crossref_primary_10_2147_IJN_S455158
crossref_primary_10_1016_j_addr_2022_114321
crossref_primary_10_20935_AcadMolBioGen7401
crossref_primary_10_1155_2022_8092170
crossref_primary_10_1002_elps_202200133
crossref_primary_10_3389_fmicb_2025_1616536
crossref_primary_10_1038_s12276_022_00748_6
crossref_primary_10_1051_bioconf_202412401015
crossref_primary_10_3389_fmicb_2023_1213234
crossref_primary_10_3390_pharmaceutics15061738
crossref_primary_10_3390_bioengineering12030324
crossref_primary_10_3390_microorganisms12030531
crossref_primary_10_1016_j_tifs_2023_104275
crossref_primary_10_1038_s41598_024_62843_0
crossref_primary_10_1007_s00430_025_00831_5
crossref_primary_10_1016_j_nantod_2024_102390
crossref_primary_10_3390_bioengineering12050532
crossref_primary_10_3389_fcimb_2023_1273813
crossref_primary_10_3390_pharmaceutics15041052
crossref_primary_10_1016_j_bbadis_2022_166478
crossref_primary_10_1186_s12934_022_01963_6
crossref_primary_10_1016_j_biopha_2023_115767
crossref_primary_10_1186_s12951_025_03435_6
crossref_primary_10_1093_femsml_uqab006
crossref_primary_10_1002_jev2_70111
crossref_primary_10_1093_femsml_uqad029
crossref_primary_10_1038_s41390_022_02242_1
crossref_primary_10_1039_D4TB01899K
crossref_primary_10_3390_cosmetics12010016
crossref_primary_10_3389_fmicb_2021_770499
crossref_primary_10_1016_j_fm_2022_104038
crossref_primary_10_1093_jambio_lxaf168
ContentType Journal Article
Copyright Copyright © 2020 American Society for Microbiology.
Copyright_xml – notice: Copyright © 2020 American Society for Microbiology.
DBID NPM
7X8
DOI 10.1128/IAI.00433-20
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1098-5522
ExternalDocumentID 32989035
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI143743
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29I
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
ABOCM
ACGFO
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
NPM
O9-
OK1
P2P
RHF
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UCJ
UPT
VQA
W2D
W8F
WH7
WOQ
X7M
YIF
~KM
7X8
AAGFI
ID FETCH-LOGICAL-c450t-a63fecf51a657efaccb9c598794acf5026c5560a5de61788f34028d083f077502
IEDL.DBID 7X8
ISICitedReferencesCount 196
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000591527300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1098-5522
IngestDate Fri Sep 05 10:05:38 EDT 2025
Wed Feb 19 02:28:47 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Gram-positive bacteria
OMV
EVs
extracellular vesicles
membrane vesicles
Language English
License Copyright © 2020 American Society for Microbiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-a63fecf51a657efaccb9c598794acf5026c5560a5de61788f34028d083f077502
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-7090-3414
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7671900
PMID 32989035
PQID 2447313998
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2447313998
pubmed_primary_32989035
PublicationCentury 2000
PublicationDate 20201116
PublicationDateYYYYMMDD 2020-11-16
PublicationDate_xml – month: 11
  year: 2020
  text: 20201116
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2020
SSID ssj0014448
Score 2.6679592
SecondaryResourceType review_article
Snippet Extracellular vesicles (EVs) are membrane-derived lipid bilayers secreted by bacteria and eukaryotic cells. Bacterial membrane vesicles were discovered over 60...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
Title Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/32989035
https://www.proquest.com/docview/2447313998
Volume 88
WOSCitedRecordID wos000591527300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaAAeLCY7zGS0HiGmjTpE1PaEIbm8SmHQDtVmVpgnagG-uY4N_jtJ12QkLi0kOaSK3l2J_jLzbAjc9HKfeNpMoqTjkiIip9z1L0xCnnjEXMFHVmn6J-Xw6H8aA6cMsrWuXSJhaGOp1od0Z-h24oChCuxPJ--kFd1yiXXa1aaKxDzb1zlK5ouMoicM7Lq3CxpAKBxpL4zuRdt9m9dVmwgDLvd3BZOJn23n8_bx92K3hJmqU-HMCayeqwVTac_K7Ddq9KpR9Cp_U1nyl3bu-IqOTV5G4FwalvzvyNc6KylLTR7RWaScYZeZypdzooWF4LnFnWeVZH8NJuPT90aNVWgWouvDlVYWCNtsJXoYiMVVqPYi1iiTtT4TAGZVogDlIiNe7-oLQBxpgyRaxmXb08jx3DRjbJzCkQwUKLAabmGmGVQGVgMrTeaCS4TqWvdQOul9JKUG3dP6nMTD7zZCWvBpyUIk-mZX2NJHBV4b1AnP1h9TnsMBcBO2JeeAE1i5vWXMKmXszH-eyq0Ad89ge9HwEavms
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Vesicle+Biogenesis+and+Functions+in+Gram-Positive+Bacteria&rft.jtitle=Infection+and+immunity&rft.au=Briaud%2C+Paul&rft.au=Carroll%2C+Ronan+K&rft.date=2020-11-16&rft.eissn=1098-5522&rft.volume=88&rft.issue=12&rft_id=info:doi/10.1128%2FIAI.00433-20&rft_id=info%3Apmid%2F32989035&rft_id=info%3Apmid%2F32989035&rft.externalDocID=32989035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1098-5522&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1098-5522&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1098-5522&client=summon