AM-MTEEG: multi-task EEG classification based on impulsive associative memory

Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited data. This article proposes a multi-task (MT) classification model, AM-MTEEG, which integrates deep learning-based convolutional and impulsiv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in neuroscience Ročník 19; s. 1557287
Hlavní autoři: Li, Junyan, Hu, Bin, Guan, Zhi-Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Switzerland Frontiers Research Foundation 06.03.2025
Frontiers Media S.A
Témata:
ISSN:1662-453X, 1662-4548, 1662-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited data. This article proposes a multi-task (MT) classification model, AM-MTEEG, which integrates deep learning-based convolutional and impulsive networks with bidirectional associative memory (AM) for cross-subject EEG classification. AM-MTEEG deals with the EEG classification of each subject as an independent task and utilizes common features across subjects. The model is built with a convolutional encoder-decoder and a population of impulsive neurons to extract shared features across subjects, as well as a Hebbian-learned bidirectional associative memory matrix to classify EEG within one subject. Experimental results on two BCI competition datasets demonstrate that AM-MTEEG improves average accuracy over state-of-the-art methods and reduces performance variance across subjects. Visualization of neuronal impulses in the bidirectional associative memory network reveal a precise mapping between hidden-layer neuron activities and specific movements. Given four motor imagery categories, the reconstructed waveforms resemble the real event-related potentials, highlighting the biological interpretability of the model beyond classification.
AbstractList Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited data. This article proposes a multi-task (MT) classification model, AM-MTEEG, which integrates deep learning-based convolutional and impulsive networks with bidirectional associative memory (AM) for cross-subject EEG classification. AM-MTEEG deals with the EEG classification of each subject as an independent task and utilizes common features across subjects. The model is built with a convolutional encoder-decoder and a population of impulsive neurons to extract shared features across subjects, as well as a Hebbian-learned bidirectional associative memory matrix to classify EEG within one subject. Experimental results on two BCI competition datasets demonstrate that AM-MTEEG improves average accuracy over state-of-the-art methods and reduces performance variance across subjects. Visualization of neuronal impulses in the bidirectional associative memory network reveal a precise mapping between hidden-layer neuron activities and specific movements. Given four motor imagery categories, the reconstructed waveforms resemble the real event-related potentials, highlighting the biological interpretability of the model beyond classification.
Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited data. This article proposes a multi-task (MT) classification model, AM-MTEEG, which integrates deep learning-based convolutional and impulsive networks with bidirectional associative memory (AM) for cross-subject EEG classification. AM-MTEEG deals with the EEG classification of each subject as an independent task and utilizes common features across subjects. The model is built with a convolutional encoder-decoder and a population of impulsive neurons to extract shared features across subjects, as well as a Hebbian-learned bidirectional associative memory matrix to classify EEG within one subject. Experimental results on two BCI competition datasets demonstrate that AM-MTEEG improves average accuracy over state-of-the-art methods and reduces performance variance across subjects. Visualization of neuronal impulses in the bidirectional associative memory network reveal a precise mapping between hidden-layer neuron activities and specific movements. Given four motor imagery categories, the reconstructed waveforms resemble the real event-related potentials, highlighting the biological interpretability of the model beyond classification.Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited data. This article proposes a multi-task (MT) classification model, AM-MTEEG, which integrates deep learning-based convolutional and impulsive networks with bidirectional associative memory (AM) for cross-subject EEG classification. AM-MTEEG deals with the EEG classification of each subject as an independent task and utilizes common features across subjects. The model is built with a convolutional encoder-decoder and a population of impulsive neurons to extract shared features across subjects, as well as a Hebbian-learned bidirectional associative memory matrix to classify EEG within one subject. Experimental results on two BCI competition datasets demonstrate that AM-MTEEG improves average accuracy over state-of-the-art methods and reduces performance variance across subjects. Visualization of neuronal impulses in the bidirectional associative memory network reveal a precise mapping between hidden-layer neuron activities and specific movements. Given four motor imagery categories, the reconstructed waveforms resemble the real event-related potentials, highlighting the biological interpretability of the model beyond classification.
Author Guan, Zhi-Hong
Li, Junyan
Hu, Bin
AuthorAffiliation 3 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology , Wuhan , China
1 School of Future Technology, South China University of Technology , Guangzhou , China
2 Guangdong Artificial Intelligence and Digital Economy Laboratory , Guangzhou , China
AuthorAffiliation_xml – name: 1 School of Future Technology, South China University of Technology , Guangzhou , China
– name: 2 Guangdong Artificial Intelligence and Digital Economy Laboratory , Guangzhou , China
– name: 3 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology , Wuhan , China
Author_xml – sequence: 1
  givenname: Junyan
  surname: Li
  fullname: Li, Junyan
– sequence: 2
  givenname: Bin
  surname: Hu
  fullname: Hu, Bin
– sequence: 3
  givenname: Zhi-Hong
  surname: Guan
  fullname: Guan, Zhi-Hong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40115889$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1URD_gD3BAkbj0ksXfsbmgqlpKpa64FImbNXEmxUsSL3FSqf8ep7tULSe_nnn8ajR-T8nREAck5D2jKyGM_dQOYUgrTrlaMaUqbqpX5IRpzUupxM-jZ_qYnKa0pVRzI_kbciwpY8oYe0I2F5tyc7teX30u-rmbQjlB-l3ke-E7SCm0wcMU4lDUkLApsgj9bu5SuMci96MPuZ11j30cH96S1y10Cd8dzjPy4-v69vJbefP96vry4qb0UtGpBKkb2RilJDbKorZAFbNCC9milAx1bRTXLbSooEINBrRBW1PksFS4OCPXe98mwtbtxtDD-OAiBPdYiOOdg3EKvkOX33rrhQIBVnohauWppVrQilGs2OL1Ze-1m-seG4_DNEL3wvRlZwi_3F28d4xZzi3T2eH84DDGPzOmyfUheew6GDDOyQlWWaN0ZjP68T90G-dxyLtaKKlsZbjN1IfnIz3N8u_bMsD3gB9jSiO2TwijbsmGe8yGW7LhDtkQfwFeeqwX
Cites_doi 10.1088/1741-2552/aab2f2
10.1016/j.cub.2010.06.017
10.3389/fnins.2016.00430
10.1088/1741-2552/aace8c
10.3389/fncom.2015.00099
10.1038/s41467-021-27653-2
10.3389/fnins.2022.881598
10.1109/TBME.2024.3474049
10.1109/TBME.2004.827088
10.1109/MSP.2019.2931595
10.1016/j.neuroimage.2023.119893
10.1109/TNNLS.2018.2870553
10.1109/TBME.2022.3193277
10.1109/MM.2018.112130359
10.1002/047134608X.W8278
10.3389/fnins.2023.1122661
10.1073/pnas.83.14.5326
10.1109/TBME.2023.3258606
10.1109/ACCESS.2018.2870052
10.1016/j.celrep.2023.113142
10.1109/TBME.2024.3432934
10.1109/TII.2022.3197419
10.1109/TAFFC.2022.3164516
10.1109/TIM.2023.3300471
10.48550/arXiv.2407.03177
10.1177/2096595819896200
10.1109/TKDE.2021.3070203
10.1038/s41586-019-1424-8
10.1152/physrev.00027.2016
10.1109/TBME.2022.3182588
10.1109/TCYB.2019.2946914
10.1038/s41551-020-0542-9
10.1109/21.87054
10.1109/MSP.2008.4408441
10.1109/JETCAS.2020.3037951
ContentType Journal Article
Copyright Copyright © 2025 Li, Hu and Guan.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright © 2025 Li, Hu and Guan. 2025 Li, Hu and Guan
Copyright_xml – notice: Copyright © 2025 Li, Hu and Guan.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Copyright © 2025 Li, Hu and Guan. 2025 Li, Hu and Guan
DBID AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3389/fnins.2025.1557287
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Science Database
Biological Science Database
ProQuest Databases
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-453X
ExternalDocumentID oai_doaj_org_article_8a6c9c35a3a94c33b5c090630710e712
PMC11922916
40115889
10_3389_fnins_2025_1557287
Genre Journal Article
GeographicLocations Guangzhou China
China
GeographicLocations_xml – name: Guangzhou China
– name: China
GroupedDBID ---
29H
2WC
53G
5GY
5VS
88I
8FE
8FH
9T4
AAFWJ
AAYXX
ABUWG
ACGFO
ACGFS
ADRAZ
AEGXH
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
CS3
DIK
DU5
DWQXO
E3Z
EBS
EJD
EMOBN
F5P
FRP
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HYE
KQ8
LK8
M2P
M7P
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RNS
RPM
W2D
ACXDI
C1A
M48
NPM
3V.
7XB
8FK
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c450t-a46d4d8554ed59e69a05193634fe441e6b8526fafe5a7e6a8a68e9b0e2ae5a723
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001447727700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1662-453X
1662-4548
IngestDate Mon Nov 10 04:32:04 EST 2025
Tue Nov 04 02:03:37 EST 2025
Fri Sep 05 06:46:53 EDT 2025
Fri Jul 25 11:43:11 EDT 2025
Sun Mar 23 01:28:54 EDT 2025
Sat Nov 29 08:12:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords multi-task learning
impulsive neural network
brain-computer interface
electroencephalogram (EEG)
bidirectional associative memory
Language English
License Copyright © 2025 Li, Hu and Guan.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-a46d4d8554ed59e69a05193634fe441e6b8526fafe5a7e6a8a68e9b0e2ae5a723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Reviewed by: Chuandong Li, Southwest University, China
Edited by: Mei Liu, Multi-scale Medical Robotics Center Limited, China
Tingwen Huang, Shenzhen University, China
OpenAccessLink https://doaj.org/article/8a6c9c35a3a94c33b5c090630710e712
PMID 40115889
PQID 3174597829
PQPubID 4424402
ParticipantIDs doaj_primary_oai_doaj_org_article_8a6c9c35a3a94c33b5c090630710e712
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11922916
proquest_miscellaneous_3179856291
proquest_journals_3174597829
pubmed_primary_40115889
crossref_primary_10_3389_fnins_2025_1557287
PublicationCentury 2000
PublicationDate 2025-03-06
PublicationDateYYYYMMDD 2025-03-06
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-06
  day: 06
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Lausanne
PublicationTitle Frontiers in neuroscience
PublicationTitleAlternate Front Neurosci
PublicationYear 2025
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Wu (B33) 2022; 13
Ward (B31) 2022; 16
Diehl (B8) 2015; 9
Shen (B28) 2023; 268
Waytowich (B32) 2016; 10
Zhang (B36) 2023; 72
Huang (B13) 2023; 17
Lebedev (B17) 2017; 97
Zhang (B35) 2021; 34
Altaheri (B2) 2022; 19
Miconi (B23) 2018
Dornhege (B9) 2004; 51
Seitz (B27) 2010; 20
Blankertz (B3) 2007; 25
Kelso (B14) 1986; 83
Brunner (B4) 2008
Adadi (B1) 2018; 6
Ma (B22) 2020; 10
Zheng (B37) 2019; 51
Kosko (B15) 1988; 18
Xu (B34) 2023; 70
Levy (B18) 2023; 42
Degenhart (B7) 2020; 4
Lotte (B21) 2015
Qi (B26) 2022; 69
Hu (B11); 30
Lawhern (B16) 2018; 15
Shen (B29) 2022; 14
Zhi (B38) 2024; 72
Davies (B6) 2018; 38
Cachi (B5) 2023
Wang (B30) 2024; 72
Pei (B25) 2019; 572
Hu (B12); 5
Neftci (B24) 2019; 36
Lotte (B20) 2018; 15
Han (B10) 2024
Liu (B19) 2023; 70
References_xml – volume: 15
  start-page: 031005
  year: 2018
  ident: B20
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aab2f2
– volume: 20
  start-page: R643
  year: 2010
  ident: B27
  article-title: Sensory learning: rapid extraction of meaning from noise
  publication-title: Curr. Biol
  doi: 10.1016/j.cub.2010.06.017
– volume: 10
  start-page: 430
  year: 2016
  ident: B32
  article-title: Spectral transfer learning using information geometry for a user-independent brain-computer interface
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2016.00430
– volume: 15
  start-page: 056013
  year: 2018
  ident: B16
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J. Neural Eng
  doi: 10.1088/1741-2552/aace8c
– start-page: 653
  volume-title: International Work-Conference on Artificial Neural
  year: 2023
  ident: B5
  article-title: “TM-SNN: threshold modulated spiking neural network for multi-task learning,”
– volume: 9
  start-page: 99
  year: 2015
  ident: B8
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosci
  doi: 10.3389/fncom.2015.00099
– volume: 13
  start-page: 65
  year: 2022
  ident: B33
  article-title: Brain-inspired global-local learning incorporated with neuromorphic computing
  publication-title: Nat. Commun
  doi: 10.1038/s41467-021-27653-2
– volume: 16
  start-page: 881598
  year: 2022
  ident: B31
  article-title: Beyond LIF neurons on neuromorphic hardware
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2022.881598
– volume: 72
  start-page: 810
  year: 2024
  ident: B30
  article-title: TFTL: a task-free transfer learning strategy for EEG-based cross-subject & cross-dataset motor imagery BCI
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2024.3474049
– volume: 51
  start-page: 993
  year: 2004
  ident: B9
  article-title: Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2004.827088
– volume: 36
  start-page: 51
  year: 2019
  ident: B24
  article-title: Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2019.2931595
– volume: 268
  start-page: 119893
  year: 2023
  ident: B28
  article-title: Cortical encoding of rhythmic kinematic structures in biological motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2023.119893
– volume: 30
  start-page: 1537
  ident: B11
  article-title: Multistability of delayed hybrid impulsive neural networks with application to associative memories
  publication-title: IEEE Trans. Neural Netw. Learn. Syst
  doi: 10.1109/TNNLS.2018.2870553
– volume: 70
  start-page: 436
  year: 2023
  ident: B19
  article-title: FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2022.3193277
– volume: 38
  start-page: 82
  year: 2018
  ident: B6
  article-title: Loihi: A neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/MM.2018.112130359
– start-page: 44
  volume-title: Wiley Encyclopedia of Electrical and Electronics Engineering
  year: 2015
  ident: B21
  article-title: “Electroencephalography (EEG)-based brain-computer interfaces,”
  doi: 10.1002/047134608X.W8278
– volume: 17
  start-page: 1122661
  year: 2023
  ident: B13
  article-title: Discrepancy between inter-and intra-subject variability in EEG-based motor imagery brain-computer interface: evidence from multiple perspectives
  publication-title: Front. Neurosci
  doi: 10.3389/fnins.2023.1122661
– volume: 83
  start-page: 5326
  year: 1986
  ident: B14
  article-title: Hebbian synapses in hippocampus
  publication-title: Proc. Nat. Acad. Sci
  doi: 10.1073/pnas.83.14.5326
– volume: 70
  start-page: 2604
  year: 2023
  ident: B34
  article-title: A novel event-driven spiking convolutional neural network for electromyography pattern recognition
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2023.3258606
– volume: 6
  start-page: 52138
  year: 2018
  ident: B1
  article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI)
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 42
  start-page: 113142
  year: 2023
  ident: B18
  article-title: A manifold neural population code for space in hippocampal coactivity dynamics independent of place fields
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2023.113142
– start-page: 1
  volume-title: Institute for knowledge discovery (laboratory of brain-computer interfaces)
  year: 2008
  ident: B4
  article-title: “BCI Competition 2008-graz data set A,”
– volume: 72
  start-page: 401
  year: 2024
  ident: B38
  article-title: Supervised contrastive learning-based domain generalization network for cross-subject motor decoding
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2024.3432934
– volume: 19
  start-page: 2249
  year: 2022
  ident: B2
  article-title: Physics-informed attention temporal convolutional network for EEG-based motor imagery classification
  publication-title: IEEE Trans. Indust. Inform
  doi: 10.1109/TII.2022.3197419
– volume: 14
  start-page: 2496
  year: 2022
  ident: B29
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affect. Comp
  doi: 10.1109/TAFFC.2022.3164516
– start-page: 3559
  volume-title: International Conference on Machine Learning
  year: 2018
  ident: B23
  article-title: “Differentiable plasticity: training plastic neural networks with backpropagation,”
– volume: 72
  start-page: 1
  year: 2023
  ident: B36
  article-title: An overview of algorithms for contactless cardiac feature extraction from radar signals: advances and challenges
  publication-title: IEEE Trans. Instrum. Meas
  doi: 10.1109/TIM.2023.3300471
– year: 2024
  ident: B10
  article-title: EDPNet: an efficient dual prototype network for motor imagery EEG decoding
  publication-title: arXiv [Preprint]
  doi: 10.48550/arXiv.2407.03177
– volume: 5
  start-page: 1
  ident: B12
  article-title: Ten challenges for EEG-based affective computing
  publication-title: Brain Sci. Adv
  doi: 10.1177/2096595819896200
– volume: 34
  start-page: 5586
  year: 2021
  ident: B35
  article-title: A survey on multi-task learning
  publication-title: IEEE Trans. Knowl. Data Eng
  doi: 10.1109/TKDE.2021.3070203
– volume: 572
  start-page: 106
  year: 2019
  ident: B25
  article-title: Towards artificial general intelligence with hybrid Tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– volume: 97
  start-page: 767
  year: 2017
  ident: B17
  article-title: Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation
  publication-title: Physiol. Rev
  doi: 10.1152/physrev.00027.2016
– volume: 69
  start-page: 3825
  year: 2022
  ident: B26
  article-title: Dynamic ensemble bayesian filter for robust control of a human brain-machine interface
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2022.3182588
– volume: 51
  start-page: 2242
  year: 2019
  ident: B37
  article-title: Multitask feature learning meets robust tensor decomposition for EEG classification
  publication-title: IEEE Trans. Cybern
  doi: 10.1109/TCYB.2019.2946914
– volume: 4
  start-page: 672
  year: 2020
  ident: B7
  article-title: Stabilization of a brain-computer interface via the alignment of low-dimensional spaces of neural activity
  publication-title: Nat. Biomed. Eng
  doi: 10.1038/s41551-020-0542-9
– volume: 18
  start-page: 49
  year: 1988
  ident: B15
  article-title: Bidirectional associative memories
  publication-title: IEEE Trans. Syst. Man Cybern
  doi: 10.1109/21.87054
– volume: 25
  start-page: 41
  year: 2007
  ident: B3
  article-title: Optimizing spatial filters for robust EEG single-trial analysis
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2008.4408441
– volume: 10
  start-page: 578
  year: 2020
  ident: B22
  article-title: EMG-based gestures classification using a mixed-signal neuromorphic processing system
  publication-title: IEEE J. Emerg. Select. Topics Circ. Syst
  doi: 10.1109/JETCAS.2020.3037951
SSID ssj0062842
Score 2.393594
Snippet Electroencephalogram-based brain-computer interfaces (BCIs) hold promise for healthcare applications but are hindered by cross-subject variability and limited...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1557287
SubjectTerms Accuracy
Artificial intelligence
Associative learning
bidirectional associative memory
Brain research
brain-computer interface
Classification
Datasets
Deep learning
EEG
electroencephalogram (EEG)
Electroencephalography
Event-related potentials
impulsive neural network
Machine learning
Memory
Mental task performance
multi-task learning
Neural networks
Neurons
Neuroscience
Neurosciences
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB2VtgcuBVqgCwUZqeoFmWZ3vf7ggkKVwoFUPRSpN8vr9ZYIsgn5QOq_Z8bZDQ1CXHrb7Efk5Hk8b-y3zwDHWtXeVSbwwmnHhfCKG1OXPFVIJ7wig5Vo4vpFXVzo62tz2U64zVtZZTcmxoG6mniaIz_FPCeQ_OrMfJj-5LRrFK2utltoPIAdZDYpSbqG2WU3EksceuNqp6Q3g5Car16awaLMnNbNqCG37qx4hxlVZSSpu5OYon__v0jn39rJO8no_NF9f8Zj2GtpKOuv-s0T2ArNPhz0GyzBx7fshEVhaJxxP4Bhf8iHV4PBp_csyg_5ws2_M_zMPFFv0hpFeBllxIrhwWg8Xf4gXTxzHfp4PCZR7-1T-Ho-uDr7zNtdGLgXRW_BnZCVqEjNFqrCBGlcZH0yF3VALhVkqYtM1q4OhVNBIuRSB1P2QuboTJY_g-1m0oRDYEh_tMf6yfjUCIeFnyg9mSMaVaX4rErgbQeBna7MNiwWKQSYjYBZAsy2gCXwkVBa30lG2fHEZHZj27iz2BpvfF643Bnh87wsfM-Qzxgyq6DSLIGjDifbRu_c_gEpgTfryxh3tJjimjBZxnuMRvJo0gSer7rEuiWCeLbW-LTe6CwbTd280oy-RW_vFEMEv1O--H-7XsJD-iuiGE4ewfZitgyvYNf_Wozms9cxCn4DFqgO-g
  priority: 102
  providerName: ProQuest
Title AM-MTEEG: multi-task EEG classification based on impulsive associative memory
URI https://www.ncbi.nlm.nih.gov/pubmed/40115889
https://www.proquest.com/docview/3174597829
https://www.proquest.com/docview/3179856291
https://pubmed.ncbi.nlm.nih.gov/PMC11922916
https://doaj.org/article/8a6c9c35a3a94c33b5c090630710e712
Volume 19
WOSCitedRecordID wos001447727700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M7P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: PIMPY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1662-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062842
  issn: 1662-453X
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB1By4FLVSgfLiVaJMQFmcbr9X5wS1EKSDiyUJHCyVqv1yJq41ZNgtR_35m1EyUIiQuXlb-1nmd73tjPbwHeatU4WxsfZ1bbWAinYmOaKk4U0gmnyGAlmLh-U5OJnk5NsTXUF2nCOnvgLnCn2kpnXJrZ1Brh0rTK3NCQURSmRq_C-MJ8qMy6mOqewRIfurz7RQZLMHPatLOWvLl59gHzp-IkoNtKQ8Gt_28U80-l5FbqOT-Eg54zslHX1yfwwLdP4WjUYr08v2PvWFBxhtfjR5CP8ji_GI8_f2RBKxgv7eKS4TxzxJNJGBSwYJS-aoYTs_nN6opE7MyuocLpOSlw757Bj_PxxacvcT9kQuxENlzGVsha1CQ983VmvDQ2UDSZisYj8fGy0hmXjW18ZpWXiI_U3lRDzy0t4elz2GuvW_8SGHIV7bDYMS4xwmKVJipHToZG1QnuqyJ4v45gedM5Y5RYUVC8yxDvkuJd9vGO4IyCvNmSXK3DAsS67LEu_4V1BCdriMr-VluUSIAEdkpzE8GbzWq8SejLh2399SpsYzQyPZNE8KJDdNMTQaRYa9xb72C909XdNe3sVzDiTvB6xmPK4_9xcq_gMQUs6NvkCewtb1f-NTxyv5ezxe0AHqqpHsD-2XhSfB-Eix3bnBfUKmz3i6958fMeHhMD3Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB1VBQk2vMrDUGCQgA0yje3xPJAQCpDSqknURZC6m47H4zaC2CFxQPkpvpF7J3ZoEGLXBTu_NbaP7z3Xc-YMIc-lKKzJlQtTI03ImBWhUkUWRgLohBVosOJNXPtiOJQnJ-p4i_xsx8KgrLKNiT5Q55XFf-R7kOcYkF8Zq3fTbyHOGoW9q-0UGitYHLnlDyjZ5m8PP8L7fRHH-73Rh4OwmVUgtCzt1KFhPGc5qrNcnirHlfEshiescMANHM9kGvPCFC41wnG4BS6dyjouNrgFjQ4g5F9h6CyGUsH4uI38HEK9713lOBIJSoHVIB0oAtVeUY5LdAeP09eQwUWMEr4LidDPF_A3kvunVvNC8tu_-b89tlvkRkOzaXf1XdwmW668Q3a6pamryZK-pF746nsUdsigOwgHo17v0xvq5ZVhbeZfKKxTi6UFaqk8fClm_JzCwngyXXxF3T81LbpheYKi5eVd8vlSbuwe2S6r0j0gFOidtFAfKhspZqCwZZlF80cl8gjOFQF51b5yPV2ZiWgowhAg2gNEI0B0A5CAvEdUrI9EI3C_oZqd6SauaGiNVTZJTWIUs0mSpbaj0EcNmKMTURyQ3RYXuolOc_0bFAF5tt4NcQU7i0zpqoU_RkkgxyoKyP0VBNctYVhHSAlnyw1wbjR1c085Pvfe5RGEALgmf_jvdj0l1w5Gg77uHw6PHpHr-Fi88I_vku16tnCPyVX7vR7PZ0_8F0jJ6WVj9xcKaGxg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwEB2tughx4Wv5KCxgJOCCwjaJ49hICBW2hWq3VQ-LtHsKjuNABU1Lm4L61_h1zDhJ2SLEbQ_c0nxUdvIy8yZ-fgZ4IuPc6ExZL9JSe5yb2FMqTz0_RjphYjJYcSaux_FoJE9P1XgHfjZzYUhW2cREF6izmaFv5AeY5ziSXxmog7yWRYwP-6_n3zxaQYpGWpvlNCqIHNn1Dyzflq8Gh_isnwZBv3fy9r1XrzDgGR51Sk9zkfGMlFo2i5QVSjtGI0KeW-QJVqQyCkSucxvp2ArsjpBWpR0baNpDpgcY_neRkvOgBbvjwXB81uQBgYHfjbUKmpeEhUE1ZQdLQuxBMSnIKzyIXmA-jwMS9J1Li271gL9R3j-Vm-dSYf_a_3wTr8PVmoCzbvXG3IAdW9yEvW6hy9l0zZ4xJ4l1Yw17MOwOveFJr_fuJXPCS6_Uyy8MfzNDRQeprBywGXGBjOHGZDpffaUZAUw3uMftKcmZ17fgw4V07Da0illh7wJD4icNVo7K-IprLHl5asgWUsWZj9fGbXjePP5kXtmMJFieEVgSB5aEwJLUYGnDG0LI5kyyCHc7ZotPSR1xEmyNUSaMdKgVN2GYRqajyGENOaWN_aAN-w1GkjpuLZPfAGnD481hjDg0jKQLO1u5c5RE2qz8Ntyp4LhpCacKQ0q8Wm4Bdaup20eKyWfnau5jcMD_FPf-3a5HcBkhmxwPRkf34QrdFacIFPvQKhcr-wAume_lZLl4WL-ODD5eNHh_AV8ndqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AM-MTEEG%3A+multi-task+EEG+classification+based+on+impulsive+associative+memory&rft.jtitle=Frontiers+in+neuroscience&rft.au=Li%2C+Junyan&rft.au=Hu%2C+Bin&rft.au=Guan%2C+Zhi-Hong&rft.date=2025-03-06&rft.issn=1662-4548&rft.volume=19&rft.spage=1557287&rft_id=info:doi/10.3389%2Ffnins.2025.1557287&rft_id=info%3Apmid%2F40115889&rft.externalDocID=40115889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-453X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-453X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-453X&client=summon