A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting

Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of the Operational Research Society Ročník 73; číslo 2; s. 301 - 325
Hlavní autoři: Zhang, Fan, Fleyeh, Hasan, Bales, Chris
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis 2022
Témata:
ISSN:0160-5682, 1476-9360, 1476-9360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting.
AbstractList Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting.
Author Fleyeh, Hasan
Bales, Chris
Zhang, Fan
Author_xml – sequence: 1
  givenname: Fan
  surname: Zhang
  fullname: Zhang, Fan
  organization: Department of Energy Technology, Dalarna University
– sequence: 2
  givenname: Hasan
  surname: Fleyeh
  fullname: Fleyeh, Hasan
  organization: Department of Computer Engineering, Dalarna University
– sequence: 3
  givenname: Chris
  surname: Bales
  fullname: Bales, Chris
  organization: Department of Energy Technology, Dalarna University
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:du-35574$$DView record from Swedish Publication Index
BookMark eNqFkc1qGzEUhUVxobbbRyhoH8bV_Gk0ZFPjJm0hkE2SrbgzunLUzEhGkjHzCnnqanACJYt0JSR951zpnBVZWGeRkK852-RMsG8s56zmotgUrEhHoirbhn8gy7xqeNaWnC3IcmayGfpEViH8YYy1LG-X5HlLH6fOG0VHp3CgHQRU1FnaGWU89tE4CwMdnN3T8Oh8zCL6kY44Oj9Ri0efbi3Gk_NPFKyiO4idcyFS7fy_ChySmTe9iRMNBxfpIW1wprCHEI3dfyYfNQwBv7ysa3J_fXW3-5Xd3P78vdveZH1Vs5gJjgK00C3nXPQaeV4rXahGQAW5goo3HJqiFND2ouhYCoPrrqjLimOXYmrLNbk4-4YTHo6dTA8ZwU_SgZE_zMNWOr-X6ijLum6qRF-e6d67EDxqmb4AcyzRgxlkzuRcgnwtQc4lyJcSkrp-o36d9j_d97PO2JTQCCneQckI0-C89mB7E2T5vsVfVlijjg
CitedBy_id crossref_primary_10_1007_s00202_024_02921_8
crossref_primary_10_1007_s00202_024_02923_6
crossref_primary_10_1007_s10479_024_06440_4
crossref_primary_10_1002_int_22553
crossref_primary_10_1007_s40808_023_01754_x
crossref_primary_10_3390_en16196767
crossref_primary_10_1080_15567249_2025_2456058
crossref_primary_10_1109_ACCESS_2024_3458391
crossref_primary_10_3390_en18123097
crossref_primary_10_1016_j_heliyon_2024_e26335
crossref_primary_10_1108_JEIM_01_2022_0025
crossref_primary_10_3389_fclim_2022_862707
crossref_primary_10_1007_s41208_025_00926_z
crossref_primary_10_1016_j_jhydrol_2024_131297
crossref_primary_10_1016_j_ijepes_2024_110206
crossref_primary_10_1016_j_est_2023_108877
crossref_primary_10_1108_IJESM_07_2023_0019
crossref_primary_10_3390_en15228445
crossref_primary_10_3233_JIFS_221652
crossref_primary_10_1109_ACCESS_2022_3213081
crossref_primary_10_1080_01605682_2024_2438333
crossref_primary_10_3390_app131911112
crossref_primary_10_1002_for_2981
crossref_primary_10_3390_app14114419
crossref_primary_10_3390_en16104237
crossref_primary_10_54105_ijeer_C1043_04030525
crossref_primary_10_1007_s41208_025_00822_6
crossref_primary_10_1177_01956574251340012
crossref_primary_10_3390_fi15080277
crossref_primary_10_1080_00207543_2022_2127958
crossref_primary_10_1007_s12667_023_00576_1
crossref_primary_10_1080_01605682_2024_2433191
Cites_doi 10.1007/s00521-010-0344-1
10.1016/j.ijforecast.2014.08.008
10.1016/j.enpol.2003.10.013
10.1007/s11265-017-1289-8
10.1109/ISCSLP.2016.7918446
10.1145/2939672.2939785
10.1016/j.asoc.2011.03.024
10.3390/en6115897
10.1016/S0167-9473(01)00065-2
10.1016/j.neunet.2005.06.042
10.1080/07350015.1995.10524599
10.1111/j.1467-6419.2007.00518.x
10.3390/su10041280
10.1093/bioinformatics/15.11.937
10.1016/j.epsr.2016.08.005
10.1006/jcss.1997.1504
10.1109/INDICON.2015.7443460
10.1109/EEM.2015.7216672
10.1162/neco.1997.9.8.1735
10.1109/78.650093
10.1109/TPWRS.2016.2628873
10.1016/j.compbiomed.2018.03.016
10.1109/72.279181
10.1016/j.ijleo.2017.12.038
10.1016/j.apenergy.2018.02.069
10.1109/TPWRS.2005.851934
10.3390/en11051255
10.1109/BIBM.2017.8217689
10.1016/j.rser.2017.02.085
10.1145/507533.507538
10.1109/EEM.2019.8916423
10.3390/en11061460
10.1109/TPWRS.2006.889139
10.1109/JSYST.2012.2225733
10.3115/v1/D14-1179
10.1109/DICTA.2017.8227412
10.1016/j.eneco.2016.10.006
10.1109/ICETEESES.2016.7581342
10.1109/ICASSP.2017.7952599
ContentType Journal Article
Copyright 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
Copyright_xml – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020
DBID 0YH
AAYXX
CITATION
ADTPV
AOWAS
D8T
ZZAVC
DOI 10.1080/01605682.2020.1843976
DatabaseName Taylor & Francis Open Access
CrossRef
SwePub
SwePub Articles
SWEPUB Freely available online
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Computer Science
Business
EISSN 1476-9360
EndPage 325
ExternalDocumentID oai_DiVA_org_du_35574
10_1080_01605682_2020_1843976
1843976
Genre Research Article
GroupedDBID -~X
.DC
0BK
0R~
0YH
29L
30N
3R3
4.4
5GY
7WY
8R4
8R5
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABJNI
ABKVW
ABLIJ
ABLJU
ABMNI
ABPAQ
ABPPZ
ABXUL
ABXYU
ABYYQ
ACGFO
ACHQT
ACIWK
ACNCT
ACREN
ACTIO
ADEPB
ADFRT
ADGTB
ADMHG
AEISY
AENEX
AEXYK
AEYOC
AFAIT
AFRVT
AFTQD
AGAYW
AGDLA
AHAJD
AHDZW
AIYEW
AJRNO
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMTXH
AQRUH
AQTUD
ASPBG
AVWKF
AWYRJ
BLEHA
CCCUG
CS3
DGEBU
DU5
EBS
F5P
JAV
JST
KYCEM
LJTGL
M4Z
MS~
O9-
P2P
Q2X
RNANH
ROSJB
RPC
RSV
RTWRZ
SOJ
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
WH7
XSW
ZGOLN
~02
AAYXX
CITATION
1OL
3EH
7RQ
7X7
88E
8FE
8FG
8FI
8FJ
8FL
8G5
AAAZS
AAIAL
AARHV
AAXLS
ABAWQ
ABBHK
ABDPE
ABJCF
ABLWH
ABUWG
ABXSQ
ACHJO
ACTTO
ACXJH
ADBBV
ADGDI
ADMLS
ADNFJ
ADTPV
ADULT
ADUMR
ADXEU
AEBJH
AECXW
AEHZU
AEUPB
AEZBV
AFBWG
AFFHD
AFFNX
AFKRA
AGBKS
AGKTX
AGVKY
AGWUF
AGYFW
AHSBF
AI.
AKHJE
AKMBP
ALRRR
AMKLP
AOWAS
APTMU
ARAPS
ASMEE
AXYYD
AZQEC
BENPR
BEZIV
BGLVJ
BGSSV
BKKNO
BPHCQ
BVXVI
CAG
CBXGM
CCKSF
CCPQU
COF
CYRSC
CYVLN
D8T
DAOYK
DWQXO
EJD
FEFRA
FRNLG
FYUFA
GENNL
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUPYA
GUQSH
HCIFZ
HGD
HMCUK
HVGLF
H~9
IFELN
IPSME
JAAYA
JBC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JPPEU
K60
K6V
K6~
K7-
L6V
M0C
M1P
M2O
M7S
N8N
NHB
NUSFT
P62
PHGZM
PHGZT
PJZUB
PLIJB
PPXIY
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
RNS
SA0
UKHRP
VH1
ZCG
ZZAVC
ID FETCH-LOGICAL-c450t-86e8af8f96668cfe615df2d78a4a1da4676a7238a9c82b04396fb25346eb05693
IEDL.DBID 0YH
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596991400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0160-5682
1476-9360
IngestDate Sat Nov 15 03:11:08 EST 2025
Sat Nov 29 06:38:28 EST 2025
Tue Nov 18 22:36:07 EST 2025
Mon Oct 20 23:47:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-86e8af8f96668cfe615df2d78a4a1da4676a7238a9c82b04396fb25346eb05693
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1843976
PageCount 25
ParticipantIDs crossref_citationtrail_10_1080_01605682_2020_1843976
swepub_primary_oai_DiVA_org_du_35574
informaworld_taylorfrancis_310_1080_01605682_2020_1843976
crossref_primary_10_1080_01605682_2020_1843976
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle The Journal of the Operational Research Society
PublicationYear 2022
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Ching-Kang I. (CIT0011) 2003; 19
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0001
Graves A. (CIT0022) 2013
CIT0045
CIT0044
Girish G. P. (CIT0020) 2015; 5
CIT0003
CIT0047
CIT0002
CIT0046
CIT0005
CIT0049
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0052
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0014
CIT0013
Barnes P. M. (CIT0004) 2017
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0023
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
References_xml – ident: CIT0030
  doi: 10.1007/s00521-010-0344-1
– volume-title: The politics of nuclear energy in the European Union: Framing the discourse
  year: 2017
  ident: CIT0004
– ident: CIT0046
  doi: 10.1016/j.ijforecast.2014.08.008
– ident: CIT0042
  doi: 10.1016/j.enpol.2003.10.013
– ident: CIT0047
  doi: 10.1007/s11265-017-1289-8
– start-page: 273
  volume-title: In
  year: 2013
  ident: CIT0022
– ident: CIT0054
  doi: 10.1109/ISCSLP.2016.7918446
– ident: CIT0009
  doi: 10.1145/2939672.2939785
– ident: CIT0006
– ident: CIT0031
– ident: CIT0025
– ident: CIT0001
  doi: 10.1016/j.asoc.2011.03.024
– ident: CIT0043
  doi: 10.3390/en6115897
– ident: CIT0019
  doi: 10.1016/S0167-9473(01)00065-2
– ident: CIT0016
– ident: CIT0021
  doi: 10.1016/j.neunet.2005.06.042
– ident: CIT0015
  doi: 10.1080/07350015.1995.10524599
– ident: CIT0008
– ident: CIT0010
  doi: 10.1111/j.1467-6419.2007.00518.x
– ident: CIT0026
  doi: 10.3390/su10041280
– ident: CIT0032
– volume: 5
  start-page: 673
  issue: 3
  year: 2015
  ident: CIT0020
  publication-title: International Journal of Energy Economics and Policy
– ident: CIT0036
– ident: CIT0003
  doi: 10.1093/bioinformatics/15.11.937
– ident: CIT0037
  doi: 10.1016/j.epsr.2016.08.005
– ident: CIT0018
  doi: 10.1006/jcss.1997.1504
– ident: CIT0041
  doi: 10.1109/INDICON.2015.7443460
– ident: CIT0013
– ident: CIT0017
  doi: 10.1109/EEM.2015.7216672
– ident: CIT0024
  doi: 10.1162/neco.1997.9.8.1735
– ident: CIT0038
  doi: 10.1109/78.650093
– ident: CIT0044
  doi: 10.1109/TPWRS.2016.2628873
– volume: 19
  start-page: 254
  issue: 02
  year: 2003
  ident: CIT0011
  publication-title: Econometric Theory
– ident: CIT0049
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: CIT0005
  doi: 10.1109/72.279181
– ident: CIT0023
– ident: CIT0053
  doi: 10.1016/j.ijleo.2017.12.038
– ident: CIT0033
– ident: CIT0027
  doi: 10.1016/j.apenergy.2018.02.069
– ident: CIT0007
  doi: 10.1109/TPWRS.2005.851934
– ident: CIT0039
– ident: CIT0040
  doi: 10.3390/en11051255
– ident: CIT0045
  doi: 10.1109/BIBM.2017.8217689
– ident: CIT0014
  doi: 10.1016/j.rser.2017.02.085
– ident: CIT0029
  doi: 10.1145/507533.507538
– ident: CIT0051
  doi: 10.1109/EEM.2019.8916423
– ident: CIT0035
  doi: 10.3390/en11061460
– ident: CIT0052
  doi: 10.1109/TPWRS.2006.889139
– ident: CIT0002
  doi: 10.1109/JSYST.2012.2225733
– ident: CIT0012
  doi: 10.3115/v1/D14-1179
– ident: CIT0048
  doi: 10.1109/DICTA.2017.8227412
– ident: CIT0028
  doi: 10.1016/j.eneco.2016.10.006
– ident: CIT0034
  doi: 10.1109/ICETEESES.2016.7581342
– ident: CIT0050
  doi: 10.1109/ICASSP.2017.7952599
SSID ssj0009019
Score 2.5244234
Snippet Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for...
SourceID swepub
crossref
informaworld
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Bidirectional long short-term memory neural network
boosting algorithms
deep learning
electricity price forecasting
energy market
machine learning
Title A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
URI https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1843976
https://urn.kb.se/resolve?urn=urn:nbn:se:du-35574
Volume 73
WOSCitedRecordID wos000596991400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis
  customDbUrl:
  eissn: 1476-9360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009019
  issn: 1476-9360
  databaseCode: TFW
  dateStart: 19500301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB3Rgio4tHQpohSqOfQAB0PqeBPnuCqseqgqDgXKyXL8sV2pZKtNitS_wK_G4zhli4R6gEsOTiZO7HFmxpl5D-DAa01_fzImtSiYqIxgVeYs88JxU0vubRULhU_K01N5fl59StmEbUqrpBja90AR8VtNi1vX7ZAR955A0caFpDIqHppktKlr8JCH0ISyurJvx79xd7PI7UEijGSGIp6_3eaOeboDXvoHlmi0P9Ot__DkT2EzOZ846bVlGx64ZgQbQ-77CLYGjgdMS34ET1YAC0ewndpbfJPwqt8-g58TvLihwi-MtDpIhtHiosF63hvMuNuIl4tmhu1FcPcZmQP8Tjm-N0iAmuFs06ejY3g1PNJd8P3bDsOwrEr0lD1zEwIHDNF4h1eEiERXOaNbyt_egc_Tj2dHxyxRPDAjxlnHZOGk9tKHoKuQxrvgX1nPbRk0Rx_aoD5loYkWTVdG8prKeAtf83EuCleHkazy57DeLBr3AlDkri5tJq3PjfCcaoi1LXVweMdZ7Qu-C2KYWWUS_jnRcFyqwwEmNc2OotlRaXZ24d2t2FUPAHKfQLWqNqqLOy--p0lR-T2yB72O3XZF6N8f5l8marGcKXutgntYipf_0MUePOZUwRF3kV7Bere8dq_hkfnRzdvlflw84Xg2_foLl7MXzA
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQRQOlC5UlOcceoCDS-o4iXNcFVZFLHtaoDfL8aNdqWSrTYrUv8CvxuMkZYuEeoBrkokTe5x5ZL5vAPa81vT3J2FSi5yJ0ghWJs4yLxw3leTelhEoPC1mM3l8XK5jYaiskmJo3xFFxG81bW5KRg8lce-IFS3LJeGoeDgko1G9DXeyYGuprG8--fabeDeJzT1IhJHMgOL5222u2adr7KV_kIlGAzTZ-h-P_gge9u4njjt92YZbrh7BvaH6fQRbQ5cH7Df9CB6sURaOYLs_3uCbnrH67WP4OcbTS4J-YWysg2QaLS5rrBadyYz5Rjxb1ifYnAaHn5FBwO9U5XuJRKkZztZdQTqGd8ND3Qbvv2kxzMu6RNe0Z2FC6IAhHm_xnDiR6CpndEMV3E_gy-TD_PCI9U0emBFZ0jKZO6m99CHsyqXxLnhY1nNbBN3RBzYoUJFraoymSyN5RUDe3Fc8S0XuqjCTZboDG_Wydk8BReqqwibS-tQIzwlFrG2hg8ubJZXP-S6IYWmV6RnQqRHHmToYiFL71VG0OqpfnV3YvxI77yhAbhIo1_VGtTH34rtGKSq9QXavU7KroYj_-_3i61gtVyfKXqjgIBbi2T8M8Ro2j-afp2r6cfbpOdznhOeIOaUXsNGuLtxLuGt-tItm9SrupF8eCRrk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BQRUcKF1AlOcceoCDIXW8iXNctaxAVKseCvRmOX60K5XsapMi9S_wq_E4TtkioR7gmmTixDPOzDgz3wew67Wmvz8Zk1oUTFRGsCpzlnnhuKkl97aKjcKH5WwmT06qo1RN2KaySsqhfQ8UEb_VtLiX1g8Vce8JFG1cSGqj4uGQjD71NtyJ4FjBpI-n337j7maR24NEGMkMTTx_u80193QNvPQPLNHof6Zb_-HJH8KDFHzipLeWbbjlmhFsDrXvI9gaOB4wLfkR3F8DLBzBdjre4puEV_32Efyc4NklNX5hpNVBcowWFw3W895hxt1GPF80p9iehXCfkTvA71Tje4kEqBnONn05OoZXw33dhdi_7TBMy7pET9kzNyFxwJCNd7gkRCS6yhndUv32Y_gy_XC8_5EligdmxDjrmCyc1F76kHQV0ngX4ivruS2D5eg9G8ynLDTRounKSF5TG2_haz7OReHqMJNV_gQ2mkXjngKK3NWlzaT1uRGeUw-xtqUOAe84q33Bd0AMmlUm4Z8TDce52htgUpN2FGlHJe3swLsrsWUPAHKTQLVuNqqLOy--p0lR-Q2yu72NXQ1F6N8H868TtVidKnuhQnhYimf_MMRr2Dw6mKrDT7PPz-Eep2aOuKH0Aja61YV7CXfNj27erl7FdfQLgUgZiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+model+based+on+bidirectional+long+short-term+memory+neural+network+and+Catboost+for+short-term+electricity+spot+price+forecasting&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Zhang%2C+Fan&rft.au=Fleyeh%2C+Hasan&rft.au=Bales%2C+Chris&rft.date=2022&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=73&rft.issue=2&rft.spage=301&rft.epage=325&rft_id=info:doi/10.1080%2F01605682.2020.1843976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_01605682_2020_1843976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon