A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting
Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involv...
Uložené v:
| Vydané v: | The Journal of the Operational Research Society Ročník 73; číslo 2; s. 301 - 325 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis
2022
|
| Predmet: | |
| ISSN: | 0160-5682, 1476-9360, 1476-9360 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting. |
|---|---|
| AbstractList | Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for investment profitability analysis, grid or transmission expansion planning, while medium-term forecasting is important to markets that involve medium-term contracts. Typical applications of medium-term forecasting are risk management, balance sheet calculation, derivative pricing, and bilateral contracting. Short-term electricity price forecasting is essential for market providers to adjust the schedule of production, i.e., balancing consumers' demands and electricity generation. Results from short-term forecasting are utilised by market players to decide the timing of purchasing or selling to maximise profits. Among existing forecasting approaches, neural networks are regarded as the state of art method due to their capability of modelling high non-linearity and complex patterns inside time series data. However, deep neural networks are not studied comprehensively in this field, which represents a good motivation to fill this research gap. In this article, a deep neural network-based hybrid approach is proposed for short-term electricity price forecasting. To be more specific, categorical boosting (Catboost) algorithm is used for feature selection and a bidirectional long short-term memory neural network (BDLSTM) will serve as the main forecasting engine in the proposed method. To evaluate the effectiveness of the proposed approach, 2018 hourly electricity price data from the Nord Pool market are invoked as a case study. Moreover, the performance of the proposed approach is compared with those of multi-layer perception (MLP) neural network, support vector regression (SVR), ensemble tree, ARIMA as well as two recent deep learning-based models, gated recurrent units (GRU) and LSTM models. A real-world dataset of Nord Pool market is used in this study to validate the proposed approach. Mean percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) are used to measure the model performance. Experiment results show that the proposed model achieves lower forecasting errors than other models considered in this study although the proposed model is more time consuming in terms of training and forecasting. |
| Author | Fleyeh, Hasan Bales, Chris Zhang, Fan |
| Author_xml | – sequence: 1 givenname: Fan surname: Zhang fullname: Zhang, Fan organization: Department of Energy Technology, Dalarna University – sequence: 2 givenname: Hasan surname: Fleyeh fullname: Fleyeh, Hasan organization: Department of Computer Engineering, Dalarna University – sequence: 3 givenname: Chris surname: Bales fullname: Bales, Chris organization: Department of Energy Technology, Dalarna University |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:du-35574$$DView record from Swedish Publication Index |
| BookMark | eNqFkc1qGzEUhUVxobbbRyhoH8bV_Gk0ZFPjJm0hkE2SrbgzunLUzEhGkjHzCnnqanACJYt0JSR951zpnBVZWGeRkK852-RMsG8s56zmotgUrEhHoirbhn8gy7xqeNaWnC3IcmayGfpEViH8YYy1LG-X5HlLH6fOG0VHp3CgHQRU1FnaGWU89tE4CwMdnN3T8Oh8zCL6kY44Oj9Ri0efbi3Gk_NPFKyiO4idcyFS7fy_ChySmTe9iRMNBxfpIW1wprCHEI3dfyYfNQwBv7ysa3J_fXW3-5Xd3P78vdveZH1Vs5gJjgK00C3nXPQaeV4rXahGQAW5goo3HJqiFND2ouhYCoPrrqjLimOXYmrLNbk4-4YTHo6dTA8ZwU_SgZE_zMNWOr-X6ijLum6qRF-e6d67EDxqmb4AcyzRgxlkzuRcgnwtQc4lyJcSkrp-o36d9j_d97PO2JTQCCneQckI0-C89mB7E2T5vsVfVlijjg |
| CitedBy_id | crossref_primary_10_1007_s00202_024_02921_8 crossref_primary_10_1007_s00202_024_02923_6 crossref_primary_10_1007_s10479_024_06440_4 crossref_primary_10_1002_int_22553 crossref_primary_10_1007_s40808_023_01754_x crossref_primary_10_3390_en16196767 crossref_primary_10_1080_15567249_2025_2456058 crossref_primary_10_1109_ACCESS_2024_3458391 crossref_primary_10_3390_en18123097 crossref_primary_10_1016_j_heliyon_2024_e26335 crossref_primary_10_1108_JEIM_01_2022_0025 crossref_primary_10_3389_fclim_2022_862707 crossref_primary_10_1007_s41208_025_00926_z crossref_primary_10_1016_j_jhydrol_2024_131297 crossref_primary_10_1016_j_ijepes_2024_110206 crossref_primary_10_1016_j_est_2023_108877 crossref_primary_10_1108_IJESM_07_2023_0019 crossref_primary_10_3390_en15228445 crossref_primary_10_3233_JIFS_221652 crossref_primary_10_1109_ACCESS_2022_3213081 crossref_primary_10_1080_01605682_2024_2438333 crossref_primary_10_3390_app131911112 crossref_primary_10_1002_for_2981 crossref_primary_10_3390_app14114419 crossref_primary_10_3390_en16104237 crossref_primary_10_54105_ijeer_C1043_04030525 crossref_primary_10_1007_s41208_025_00822_6 crossref_primary_10_1177_01956574251340012 crossref_primary_10_3390_fi15080277 crossref_primary_10_1080_00207543_2022_2127958 crossref_primary_10_1007_s12667_023_00576_1 crossref_primary_10_1080_01605682_2024_2433191 |
| Cites_doi | 10.1007/s00521-010-0344-1 10.1016/j.ijforecast.2014.08.008 10.1016/j.enpol.2003.10.013 10.1007/s11265-017-1289-8 10.1109/ISCSLP.2016.7918446 10.1145/2939672.2939785 10.1016/j.asoc.2011.03.024 10.3390/en6115897 10.1016/S0167-9473(01)00065-2 10.1016/j.neunet.2005.06.042 10.1080/07350015.1995.10524599 10.1111/j.1467-6419.2007.00518.x 10.3390/su10041280 10.1093/bioinformatics/15.11.937 10.1016/j.epsr.2016.08.005 10.1006/jcss.1997.1504 10.1109/INDICON.2015.7443460 10.1109/EEM.2015.7216672 10.1162/neco.1997.9.8.1735 10.1109/78.650093 10.1109/TPWRS.2016.2628873 10.1016/j.compbiomed.2018.03.016 10.1109/72.279181 10.1016/j.ijleo.2017.12.038 10.1016/j.apenergy.2018.02.069 10.1109/TPWRS.2005.851934 10.3390/en11051255 10.1109/BIBM.2017.8217689 10.1016/j.rser.2017.02.085 10.1145/507533.507538 10.1109/EEM.2019.8916423 10.3390/en11061460 10.1109/TPWRS.2006.889139 10.1109/JSYST.2012.2225733 10.3115/v1/D14-1179 10.1109/DICTA.2017.8227412 10.1016/j.eneco.2016.10.006 10.1109/ICETEESES.2016.7581342 10.1109/ICASSP.2017.7952599 |
| ContentType | Journal Article |
| Copyright | 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020 |
| Copyright_xml | – notice: 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020 |
| DBID | 0YH AAYXX CITATION ADTPV AOWAS D8T ZZAVC |
| DOI | 10.1080/01605682.2020.1843976 |
| DatabaseName | Taylor & Francis Open Access CrossRef SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Computer Science Business |
| EISSN | 1476-9360 |
| EndPage | 325 |
| ExternalDocumentID | oai_DiVA_org_du_35574 10_1080_01605682_2020_1843976 1843976 |
| Genre | Research Article |
| GroupedDBID | -~X .DC 0BK 0R~ 0YH 29L 30N 3R3 4.4 5GY 7WY 8R4 8R5 AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABJNI ABKVW ABLIJ ABLJU ABMNI ABPAQ ABPPZ ABXUL ABXYU ABYYQ ACGFO ACHQT ACIWK ACNCT ACREN ACTIO ADEPB ADFRT ADGTB ADMHG AEISY AENEX AEXYK AEYOC AFAIT AFRVT AFTQD AGAYW AGDLA AHAJD AHDZW AIYEW AJRNO AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMTXH AQRUH AQTUD ASPBG AVWKF AWYRJ BLEHA CCCUG CS3 DGEBU DU5 EBS F5P JAV JST KYCEM LJTGL M4Z MS~ O9- P2P Q2X RNANH ROSJB RPC RSV RTWRZ SOJ TAJZE TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TTHFI TUROJ U5U WH7 XSW ZGOLN ~02 AAYXX CITATION 1OL 3EH 7RQ 7X7 88E 8FE 8FG 8FI 8FJ 8FL 8G5 AAAZS AAIAL AARHV AAXLS ABAWQ ABBHK ABDPE ABJCF ABLWH ABUWG ABXSQ ACHJO ACTTO ACXJH ADBBV ADGDI ADMLS ADNFJ ADTPV ADULT ADUMR ADXEU AEBJH AECXW AEHZU AEUPB AEZBV AFBWG AFFHD AFFNX AFKRA AGBKS AGKTX AGVKY AGWUF AGYFW AHSBF AI. AKHJE AKMBP ALRRR AMKLP AOWAS APTMU ARAPS ASMEE AXYYD AZQEC BENPR BEZIV BGLVJ BGSSV BKKNO BPHCQ BVXVI CAG CBXGM CCKSF CCPQU COF CYRSC CYVLN D8T DAOYK DWQXO EJD FEFRA FRNLG FYUFA GENNL GNUQQ GROUPED_ABI_INFORM_RESEARCH GUPYA GUQSH HCIFZ HGD HMCUK HVGLF H~9 IFELN IPSME JAAYA JBC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPL JPPEU K60 K6V K6~ K7- L6V M0C M1P M2O M7S N8N NHB NUSFT P62 PHGZM PHGZT PJZUB PLIJB PPXIY PQBIZ PQBZA PQGLB PQQKQ PROAC PSQYO PTHSS RNS SA0 UKHRP VH1 ZCG ZZAVC |
| ID | FETCH-LOGICAL-c450t-86e8af8f96668cfe615df2d78a4a1da4676a7238a9c82b04396fb25346eb05693 |
| IEDL.DBID | TFW |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000596991400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0160-5682 1476-9360 |
| IngestDate | Sat Nov 15 03:11:08 EST 2025 Sat Nov 29 06:38:28 EST 2025 Tue Nov 18 22:36:07 EST 2025 Mon Oct 20 23:47:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-86e8af8f96668cfe615df2d78a4a1da4676a7238a9c82b04396fb25346eb05693 |
| OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1843976 |
| PageCount | 25 |
| ParticipantIDs | crossref_citationtrail_10_1080_01605682_2020_1843976 swepub_primary_oai_DiVA_org_du_35574 informaworld_taylorfrancis_310_1080_01605682_2020_1843976 crossref_primary_10_1080_01605682_2020_1843976 |
| PublicationCentury | 2000 |
| PublicationDate | 2022 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | The Journal of the Operational Research Society |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis |
| Publisher_xml | – name: Taylor & Francis |
| References | CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Ching-Kang I. (CIT0011) 2003; 19 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0001 Graves A. (CIT0022) 2013 CIT0045 CIT0044 Girish G. P. (CIT0020) 2015; 5 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0014 CIT0013 Barnes P. M. (CIT0004) 2017 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0023 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 |
| References_xml | – ident: CIT0030 doi: 10.1007/s00521-010-0344-1 – volume-title: The politics of nuclear energy in the European Union: Framing the discourse year: 2017 ident: CIT0004 – ident: CIT0046 doi: 10.1016/j.ijforecast.2014.08.008 – ident: CIT0042 doi: 10.1016/j.enpol.2003.10.013 – ident: CIT0047 doi: 10.1007/s11265-017-1289-8 – start-page: 273 volume-title: In year: 2013 ident: CIT0022 – ident: CIT0054 doi: 10.1109/ISCSLP.2016.7918446 – ident: CIT0009 doi: 10.1145/2939672.2939785 – ident: CIT0006 – ident: CIT0031 – ident: CIT0025 – ident: CIT0001 doi: 10.1016/j.asoc.2011.03.024 – ident: CIT0043 doi: 10.3390/en6115897 – ident: CIT0019 doi: 10.1016/S0167-9473(01)00065-2 – ident: CIT0016 – ident: CIT0021 doi: 10.1016/j.neunet.2005.06.042 – ident: CIT0015 doi: 10.1080/07350015.1995.10524599 – ident: CIT0008 – ident: CIT0010 doi: 10.1111/j.1467-6419.2007.00518.x – ident: CIT0026 doi: 10.3390/su10041280 – ident: CIT0032 – volume: 5 start-page: 673 issue: 3 year: 2015 ident: CIT0020 publication-title: International Journal of Energy Economics and Policy – ident: CIT0036 – ident: CIT0003 doi: 10.1093/bioinformatics/15.11.937 – ident: CIT0037 doi: 10.1016/j.epsr.2016.08.005 – ident: CIT0018 doi: 10.1006/jcss.1997.1504 – ident: CIT0041 doi: 10.1109/INDICON.2015.7443460 – ident: CIT0013 – ident: CIT0017 doi: 10.1109/EEM.2015.7216672 – ident: CIT0024 doi: 10.1162/neco.1997.9.8.1735 – ident: CIT0038 doi: 10.1109/78.650093 – ident: CIT0044 doi: 10.1109/TPWRS.2016.2628873 – volume: 19 start-page: 254 issue: 02 year: 2003 ident: CIT0011 publication-title: Econometric Theory – ident: CIT0049 doi: 10.1016/j.compbiomed.2018.03.016 – ident: CIT0005 doi: 10.1109/72.279181 – ident: CIT0023 – ident: CIT0053 doi: 10.1016/j.ijleo.2017.12.038 – ident: CIT0033 – ident: CIT0027 doi: 10.1016/j.apenergy.2018.02.069 – ident: CIT0007 doi: 10.1109/TPWRS.2005.851934 – ident: CIT0039 – ident: CIT0040 doi: 10.3390/en11051255 – ident: CIT0045 doi: 10.1109/BIBM.2017.8217689 – ident: CIT0014 doi: 10.1016/j.rser.2017.02.085 – ident: CIT0029 doi: 10.1145/507533.507538 – ident: CIT0051 doi: 10.1109/EEM.2019.8916423 – ident: CIT0035 doi: 10.3390/en11061460 – ident: CIT0052 doi: 10.1109/TPWRS.2006.889139 – ident: CIT0002 doi: 10.1109/JSYST.2012.2225733 – ident: CIT0012 doi: 10.3115/v1/D14-1179 – ident: CIT0048 doi: 10.1109/DICTA.2017.8227412 – ident: CIT0028 doi: 10.1016/j.eneco.2016.10.006 – ident: CIT0034 doi: 10.1109/ICETEESES.2016.7581342 – ident: CIT0050 doi: 10.1109/ICASSP.2017.7952599 |
| SSID | ssj0009019 |
| Score | 2.5244234 |
| Snippet | Electricity price forecasting plays a crucial role in a liberalised electricity market. Generally speaking, long-term electricity price is widely utilised for... |
| SourceID | swepub crossref informaworld |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 301 |
| SubjectTerms | Bidirectional long short-term memory neural network boosting algorithms deep learning electricity price forecasting energy market machine learning |
| Title | A hybrid model based on bidirectional long short-term memory neural network and Catboost for short-term electricity spot price forecasting |
| URI | https://www.tandfonline.com/doi/abs/10.1080/01605682.2020.1843976 https://urn.kb.se/resolve?urn=urn:nbn:se:du-35574 |
| Volume | 73 |
| WOSCitedRecordID | wos000596991400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 1476-9360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009019 issn: 1476-9360 databaseCode: TFW dateStart: 19500301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwEB21qELl0C1bEFBAc-DQHlI2iddxjitgxQn1QIGeLCdxYCXIok1A4hf4amYcZ1kqIQ70mmTixDP2zFgz7wHshcMkMgMRBsamJhBWpIESllKVWFJ8IW1M-4Mjm0hOTtTFRfrbVxPWvqySc-iyBYpwezUvbpPVXUXcPoOiDaXiNqqILinnU2kXJtfPHAan4_Nn2N2Bo_ZgiYBFuh6e197ywju9wC79B0rUuZ9x7z98-Ff44mNPHLXGsgofbNWH5a70vQ-9juIB_Yrvw8oCXmEfVv31Gn94uOqf3-BxhFcP3PeFjlUH2S8WOK0wm7T-0h024vW0usT6iqL9gL0B3nCJ7wMynibdrdpqdKRfwwPTUOhfN0jTsijRMvZMcsobkJLxBm8ZEImfsrmpuXx7Df6Mj04PjgPP8BDkYjhoAiWtMqUqKeeSKi8thVdFGRWJMsKEhaFNXBpmRTNprqKMu3hlmUXDWEib0Uym8TosVdPKbgAmaWQoVLFxkVgRWWlkybYWppZCKhEWmyA6zercw58zC8e1DjuUVK8dzdrRXjub8Gsudtvif7wlkC6ajW7cwUvZsqTo-A3ZvdbG5kMx-Pfh5Gykp7NLXdxpig4TsfWOIb7D54gbONwh0jYsNbM7uwOf8vtmUs924ePg7_GuW0JP4xUWXw |
| linkProvider | Taylor & Francis |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5RQH0ceGypoOUxBw70ELpJHMc5rihoEbAnQHCyvIkDK0EWbQISf6G_ujNOQhckxKFck0yc2GPPQzPfB7DtR3FgusL3jE2MJ6xIPCUshSqhJP9C2pDOB0c2EQ8G6uIime6F4bJKjqHzGijCndW8uTkZ3ZbE_WJUtEgq7qMK6JJyRvUDzEXMnE063b3s_wPe7TpyDxbxWKbt4nntNc_s0zP00hdgos4AHSy-x6cvwULjfmKv1pdlmLFFBz621e8dWGxZHrDZ9B34MgVZ2IHl5nqJOw1i9c-v8KeH14_c-oWOWAfZNGY4LnA4qk2myzfizbi4wvKaHH6PDQLecpXvIzKkJt0t6oJ0pH_DPVOR919WSPMyLVGT9oxSCh2Q4vEK7xgTiZ-yqSm5gnsFzg72T_f6XkPy4KUi6laeklaZXOUUdkmV5pY8rCwPslgZYfzM0DkuDROjmSRVwZAbeWU-DKJQSDukmUzCbzBbjAu7ChgngSFvxYZZbEVgpZE5q5ufWPKqhJ-tgWiXVqcNAjoTcdxovwVKbVZH8-roZnXWYPdJ7K6GAHlLIJnWG1253EteE6Xo8A3Z7VrJnoZi_O_fo_OeHk-udHavyUGMxff_GGILPvVPT4718eHg6Ad8Drifw-WU1mG2mtzbDZhPH6pROdl0O-kvkDYZXA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9RAFH5BMEQPAisGVOQdOOihsm1np9PjBtxgNBsOqNwms-0MbALdzbaQ8C_4V_vedIqLieGg17av086v973Je98HcBAPssT0RRwZm5tIWJFHSlgKVVJJ-ELalPYHLzaRjcfq_Dw_DdmEdUir5BjatUQRfq_mxT0vXZcRd8ikaAOpuIwqoUvK-9QnsEbQWXL8dTb68Zt3t--1PdgkYpuuiOdvr3ngnh6Ql_7BJer9z2jjP3z5JrwI4BOH7WzZghVb9WC9y33vwUan8YBhyffg-RJhYQ-2wvUa3we-6g8v4ecQL--48Au9rA6yYyxxVuFk2jpMf9qIV7PqAutLgvsRuwO85hzfO2RCTbpbtenoSL-GR6Yh7F83SN2ybNFK9kwLChyQovEG58yIxE_ZwtScv70N30afzo5OoiDxEBVi0G8iJa0yTjkKuqQqnCV8VbqkzJQRJi4N7eLSsCyayQuVTLiMV7pJMkiFtBPqyTx9BavVrLI7gFmeGMIqNi0zKxIrjXQ82eLcEqYScbkLohtZXQT-c5bhuNJxR5MaRkfz6OgwOrvw8d5s3hKAPGaQL08b3fiTF9fKpOj0EduDdo7dN8Xs38fT70M9W1zo8kYTPMzE639oYh_WT49H-uvn8Zc38CzhYg5_oPQWVpvFjd2Dp8VtM60X7_w6-gV-nhhJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+model+based+on+bidirectional+long+short-term+memory+neural+network+and+Catboost+for+short-term+electricity+spot+price+forecasting&rft.jtitle=The+Journal+of+the+Operational+Research+Society&rft.au=Zhang%2C+Fan&rft.au=Fleyeh%2C+Hasan&rft.au=Bales%2C+Chris&rft.date=2022&rft.pub=Taylor+%26+Francis&rft.issn=0160-5682&rft.eissn=1476-9360&rft.volume=73&rft.issue=2&rft.spage=301&rft.epage=325&rft_id=info:doi/10.1080%2F01605682.2020.1843976&rft.externalDBID=0YH&rft.externalDocID=1843976 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0160-5682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0160-5682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0160-5682&client=summon |