Carnot battery technology: A state-of-the-art review
•There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existi...
Saved in:
| Published in: | Journal of energy storage Vol. 32; p. 101756 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.12.2020
Elsevier |
| Subjects: | |
| ISSN: | 2352-152X, 2352-1538, 2352-1538 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existing prototypes.
The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case. |
|---|---|
| AbstractList | The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case. •There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existing prototypes. The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case. |
| ArticleNumber | 101756 |
| Author | Frate, Guido Francesco Pillai, Aditya Lecompte, Steven De paepe, Michel Dumont, Olivier Lemort, Vincent |
| Author_xml | – sequence: 1 givenname: Olivier surname: Dumont fullname: Dumont, Olivier email: olivier.dumont@ulg.ac.be organization: Université de Liege, University of Liège, Aerospace and Mechanical Engineering Department, Thermodynamics Laboratory, 4000 Liège, Belgium – sequence: 2 givenname: Guido Francesco surname: Frate fullname: Frate, Guido Francesco organization: University of Pisa, Department of Energy, Systems, Territory and Constructions Engineering, 56122, Pisa, Italy – sequence: 3 givenname: Aditya surname: Pillai fullname: Pillai, Aditya organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium – sequence: 4 givenname: Steven surname: Lecompte fullname: Lecompte, Steven organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium – sequence: 5 givenname: Michel surname: De paepe fullname: De paepe, Michel organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium – sequence: 6 givenname: Vincent surname: Lemort fullname: Lemort, Vincent organization: Université de Liege, University of Liège, Aerospace and Mechanical Engineering Department, Thermodynamics Laboratory, 4000 Liège, Belgium |
| BookMark | eNp90L1OwzAQwHELFYkCfQC2vECK7cRxAlNV8SVVYgGJ7WQ7l9ZViJFtivr2uAQxMHTyefiddP9zMhncgIRcMTpnlFXX2zmGOOeU__ylqE7IlBeC50wU9eRv5m9nZBbCltKEBGNNNSXlUvnBxUyrGNHvs4hmM7jerfc32SILUUXMXZfHDebKx8zjzuLXJTntVB9w9vtekNf7u5flY756fnhaLla5KQWNeWloK7jEVmiNjUQtqG5YJ4USSpVdzRsmKk21MNihqLq6ZlpKVZe8MG1rsLggxbi3t7hGcF5b2HFwyo7zZ78GZUAjcF7VwAUrZZEUG5XxLgSPHXx4-678HhiFQy_YQuoFh14w9kpG_jPGptutG6JXtj8qb0eJKUSK4yEYi4PB1no0EVpnj-hvmYuGeQ |
| CitedBy_id | crossref_primary_10_1016_j_desal_2024_117497 crossref_primary_10_1016_j_energy_2024_133567 crossref_primary_10_1016_j_est_2022_105586 crossref_primary_10_3390_en14248195 crossref_primary_10_1115_1_4069563 crossref_primary_10_1016_j_est_2025_115673 crossref_primary_10_3390_en15228672 crossref_primary_10_1016_j_energy_2024_133328 crossref_primary_10_1016_j_rser_2023_113633 crossref_primary_10_1016_j_compchemeng_2023_108176 crossref_primary_10_1016_j_applthermaleng_2024_124872 crossref_primary_10_1016_j_est_2025_117618 crossref_primary_10_1016_j_applthermaleng_2025_128159 crossref_primary_10_1002_aenm_202400369 crossref_primary_10_1016_j_apenergy_2021_116650 crossref_primary_10_1016_j_est_2021_103444 crossref_primary_10_1016_j_energy_2022_123516 crossref_primary_10_1016_j_est_2024_114744 crossref_primary_10_3390_en17174455 crossref_primary_10_1016_j_est_2023_109097 crossref_primary_10_1016_j_energy_2022_124057 crossref_primary_10_3390_en16155720 crossref_primary_10_3390_pr11113061 crossref_primary_10_3390_en18154054 crossref_primary_10_3390_en16186587 crossref_primary_10_1016_j_est_2024_110836 crossref_primary_10_1016_j_heliyon_2025_e42803 crossref_primary_10_3390_su16051924 crossref_primary_10_1016_j_est_2024_110959 crossref_primary_10_1038_s41586_024_08214_1 crossref_primary_10_3390_en15249595 crossref_primary_10_1039_D2SU00111J crossref_primary_10_1016_j_est_2025_117517 crossref_primary_10_1016_j_renene_2024_120812 crossref_primary_10_3390_en14133870 crossref_primary_10_1016_j_energy_2023_127931 crossref_primary_10_1002_est2_530 crossref_primary_10_1016_j_energy_2025_137079 crossref_primary_10_1016_j_est_2023_106734 crossref_primary_10_1016_j_est_2022_106545 crossref_primary_10_1016_j_energy_2023_129552 crossref_primary_10_1016_j_enconman_2025_120142 crossref_primary_10_1016_j_rser_2022_112478 crossref_primary_10_1016_j_renene_2024_120702 crossref_primary_10_12677_MOS_2023_124319 crossref_primary_10_1016_j_energy_2022_125166 crossref_primary_10_1016_j_apenergy_2024_124535 crossref_primary_10_1016_j_energy_2025_136792 crossref_primary_10_3390_en16134941 crossref_primary_10_1016_j_applthermaleng_2024_124086 crossref_primary_10_1016_j_est_2022_104577 crossref_primary_10_1016_j_est_2022_104453 crossref_primary_10_1016_j_rser_2023_114245 crossref_primary_10_1016_j_est_2022_105782 crossref_primary_10_3390_en18102594 crossref_primary_10_1016_j_apenergy_2024_124643 crossref_primary_10_3390_en17092005 crossref_primary_10_1016_j_energy_2025_138385 crossref_primary_10_3390_en16041882 crossref_primary_10_3390_en18061556 crossref_primary_10_1016_j_energy_2023_128203 crossref_primary_10_1002_aic_18750 crossref_primary_10_1016_j_energy_2025_136760 crossref_primary_10_1016_j_enconman_2025_120405 crossref_primary_10_1016_j_est_2022_105548 crossref_primary_10_1016_j_rser_2023_113282 crossref_primary_10_1016_j_enconman_2022_116287 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124286 crossref_primary_10_1016_j_energy_2023_129093 crossref_primary_10_3390_app15020569 crossref_primary_10_3390_app15116162 crossref_primary_10_1016_j_energy_2025_137980 crossref_primary_10_1016_j_enconman_2024_118111 crossref_primary_10_3390_en18133511 crossref_primary_10_1016_j_apenergy_2022_118931 crossref_primary_10_1016_j_apenergy_2025_126641 crossref_primary_10_1016_j_enconman_2024_119207 crossref_primary_10_1016_j_est_2025_115779 crossref_primary_10_3390_en14185620 crossref_primary_10_1016_j_enconman_2024_118906 crossref_primary_10_1016_j_applthermaleng_2024_124699 crossref_primary_10_1016_j_applthermaleng_2025_127325 crossref_primary_10_1016_j_est_2024_114394 crossref_primary_10_1016_j_ref_2023_03_003 crossref_primary_10_1016_j_est_2024_113518 crossref_primary_10_1016_j_est_2025_117841 crossref_primary_10_1016_j_renene_2024_121961 crossref_primary_10_1016_j_est_2025_117844 crossref_primary_10_1016_j_est_2025_117968 crossref_primary_10_1016_j_est_2024_114960 crossref_primary_10_1016_j_apenergy_2024_123762 crossref_primary_10_1016_j_applthermaleng_2025_126000 crossref_primary_10_1016_j_applthermaleng_2023_121551 crossref_primary_10_1016_j_energy_2021_121665 crossref_primary_10_1007_s11708_025_0998_0 crossref_primary_10_1016_j_est_2021_103283 crossref_primary_10_1016_j_est_2024_111628 crossref_primary_10_1016_j_applthermaleng_2022_119327 crossref_primary_10_3390_en18164235 crossref_primary_10_1016_j_renene_2022_09_039 crossref_primary_10_1016_j_enconman_2023_117724 crossref_primary_10_1016_j_enconman_2023_117844 crossref_primary_10_1617_s11527_024_02548_y crossref_primary_10_3390_en16165948 crossref_primary_10_1016_j_apenergy_2024_123873 crossref_primary_10_1016_j_enconman_2023_117959 crossref_primary_10_1016_j_apenergy_2022_118950 crossref_primary_10_3390_e23121564 crossref_primary_10_3390_en18082059 crossref_primary_10_1103_PRXEnergy_2_043001 crossref_primary_10_3390_en15020647 crossref_primary_10_1016_j_procs_2022_09_333 crossref_primary_10_1016_j_rser_2023_113802 crossref_primary_10_1016_j_enconman_2023_116987 crossref_primary_10_3390_en15249521 crossref_primary_10_1016_j_rser_2024_114833 crossref_primary_10_1002_aenm_202204208 crossref_primary_10_1016_j_heliyon_2024_e40730 crossref_primary_10_1016_j_cej_2022_140701 crossref_primary_10_1016_j_est_2024_111630 crossref_primary_10_1016_j_est_2024_114223 crossref_primary_10_1016_j_expthermflusci_2025_111568 crossref_primary_10_1016_j_applthermaleng_2022_118903 crossref_primary_10_1016_j_enconman_2023_118030 crossref_primary_10_1016_j_est_2022_106015 crossref_primary_10_1016_j_energy_2024_133025 crossref_primary_10_1016_j_est_2022_106374 crossref_primary_10_1016_j_est_2024_112979 crossref_primary_10_1016_j_apenergy_2025_126165 crossref_primary_10_1016_j_est_2025_116823 crossref_primary_10_1016_j_ces_2024_120502 crossref_primary_10_1016_j_est_2023_108994 crossref_primary_10_1016_j_jclepro_2023_139548 crossref_primary_10_3390_app12073557 crossref_primary_10_1016_j_est_2023_109959 crossref_primary_10_3390_pr13092882 crossref_primary_10_1016_j_est_2025_117362 crossref_primary_10_1016_j_ijhydene_2022_03_274 crossref_primary_10_1016_j_applthermaleng_2022_119536 crossref_primary_10_1016_j_est_2025_117487 crossref_primary_10_1016_j_seta_2024_103984 crossref_primary_10_1016_j_est_2024_114800 crossref_primary_10_1016_j_energy_2023_127769 crossref_primary_10_1016_j_fuel_2023_130527 crossref_primary_10_1016_j_renene_2022_01_017 crossref_primary_10_1016_j_renene_2022_08_143 crossref_primary_10_1016_j_est_2023_109275 crossref_primary_10_3390_app12030970 crossref_primary_10_1016_j_est_2023_108866 crossref_primary_10_1007_s43979_023_00052_w crossref_primary_10_1002_ente_202100470 crossref_primary_10_1016_j_est_2023_107416 crossref_primary_10_1016_j_est_2023_108867 crossref_primary_10_1002_cssc_202500288 crossref_primary_10_1016_j_renene_2023_04_017 crossref_primary_10_3390_en16010189 crossref_primary_10_1007_s40243_022_00210_7 crossref_primary_10_1016_j_enconman_2022_116556 crossref_primary_10_1016_j_energy_2023_127756 crossref_primary_10_1016_j_applthermaleng_2024_124952 crossref_primary_10_1016_j_solmat_2022_111874 crossref_primary_10_3390_asi6020043 crossref_primary_10_1016_j_egyr_2024_04_024 crossref_primary_10_1016_j_est_2021_102955 crossref_primary_10_1016_j_est_2024_111380 crossref_primary_10_3390_en18030525 crossref_primary_10_1016_j_est_2025_117660 crossref_primary_10_1016_j_applthermaleng_2022_118823 crossref_primary_10_1016_j_enconman_2025_120484 crossref_primary_10_1088_2753_3751_ad5726 crossref_primary_10_1016_j_renene_2022_10_097 crossref_primary_10_1016_j_est_2025_117782 crossref_primary_10_1016_j_enconman_2022_116322 crossref_primary_10_1016_j_enconman_2023_116941 crossref_primary_10_1016_j_est_2025_115800 crossref_primary_10_1016_j_energy_2023_128837 crossref_primary_10_1016_j_renene_2025_123938 crossref_primary_10_1016_j_applthermaleng_2024_124028 crossref_primary_10_1016_j_energy_2024_133360 crossref_primary_10_1016_j_est_2024_115195 crossref_primary_10_3390_en16093871 crossref_primary_10_1016_j_applthermaleng_2025_126080 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125367 crossref_primary_10_3390_en16237818 crossref_primary_10_1016_j_heliyon_2024_e39193 crossref_primary_10_1038_d41586_024_04128_0 crossref_primary_10_1016_j_enconman_2024_118519 crossref_primary_10_1002_adma_202313023 crossref_primary_10_1016_j_est_2024_113108 crossref_primary_10_1016_j_applthermaleng_2023_121947 crossref_primary_10_1016_j_apenergy_2024_123015 crossref_primary_10_1016_j_apenergy_2024_124226 crossref_primary_10_1016_j_est_2024_112496 crossref_primary_10_3390_app14146073 crossref_primary_10_3390_pr10050977 crossref_primary_10_1016_j_apenergy_2025_126248 crossref_primary_10_1016_j_jclepro_2022_132591 crossref_primary_10_1016_j_applthermaleng_2024_124295 crossref_primary_10_1016_j_ecmx_2025_101065 crossref_primary_10_1016_j_est_2024_111619 crossref_primary_10_1016_j_est_2022_104282 crossref_primary_10_1016_j_est_2024_112143 crossref_primary_10_1016_j_energy_2025_135385 crossref_primary_10_1016_j_enconman_2024_119050 |
| Cites_doi | 10.1016/j.applthermaleng.2012.03.030 10.1016/j.energy.2012.03.013 10.1016/j.rser.2016.10.065 10.1051/e3sconf/201913701037 10.1016/j.rser.2015.12.289 10.1016/0017-9310(87)90059-7 10.1016/j.apenergy.2018.04.128 10.1016/j.apenergy.2014.02.071 10.1016/j.apenergy.2014.09.081 10.1016/j.ijheatmasstransfer.2016.05.040 10.1016/j.enconman.2017.09.047 10.1016/j.enconman.2018.01.056 10.1016/j.enconman.2020.112530 10.1016/j.egypro.2017.09.235 10.1016/j.rser.2016.07.028 10.1016/j.applthermaleng.2017.03.050 10.1016/j.apenergy.2019.03.067 10.1016/j.applthermaleng.2017.04.127 10.1016/j.apenergy.2014.07.109 10.1016/j.apenergy.2018.06.133 10.1016/j.energy.2012.03.031 10.1016/j.apenergy.2012.11.050 10.1016/j.ijrefrig.2015.03.008 10.1016/j.energy.2014.03.049 10.1016/j.apenergy.2013.08.077 10.1002/app.20578 10.1016/j.egypro.2014.12.423 10.1016/j.tsep.2018.01.017 10.1016/j.applthermaleng.2009.10.002 10.1016/S0196-8904(98)00025-9 10.1016/j.energy.2017.12.087 10.1016/j.energy.2020.118963 10.1016/j.energy.2012.09.057 10.1115/1.2792199 10.1016/j.apenergy.2019.03.087 10.1016/j.energy.2012.02.010 10.1016/j.energy.2016.07.080 10.1016/j.enconman.2019.02.022 10.1016/j.renene.2014.11.036 10.1016/j.renene.2014.10.068 10.1115/1.4023392 10.1016/j.applthermaleng.2015.02.046 10.1016/j.rser.2019.109334 10.3390/su10010191 10.1080/10407780290059800 10.1016/j.apenergy.2016.11.091 10.1016/j.energy.2019.01.153 10.1016/j.apenergy.2018.05.103 10.1016/j.rser.2018.06.044 10.1093/ijlct/ctt022 10.1016/j.energy.2017.07.066 10.1016/j.est.2018.04.016 10.1016/j.renene.2015.04.027 10.1016/j.apenergy.2014.08.039 10.1016/j.energy.2011.08.003 10.1016/j.energy.2018.01.045 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION JLOSS Q33 |
| DOI | 10.1016/j.est.2020.101756 |
| DatabaseName | CrossRef Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only) Université de Liège - Open Repository and Bibliography (ORBI) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2352-1538 |
| ExternalDocumentID | oai_orbi_ulg_ac_be_2268_251473 10_1016_j_est_2020_101756 S2352152X20315930 |
| GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS JLOSS Q33 |
| ID | FETCH-LOGICAL-c450t-4c0d527ed5bbe97eb50b91f75a5aa4f829156b0b5cefe56f881b77a8423cddce3 |
| ISICitedReferencesCount | 293 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599943200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-152X 2352-1538 |
| IngestDate | Sat Nov 29 01:20:31 EST 2025 Thu Nov 13 04:29:50 EST 2025 Tue Nov 18 20:42:36 EST 2025 Fri Feb 23 02:46:58 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electrical storage Review Pumped thermal energy storage Carnot battery |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c450t-4c0d527ed5bbe97eb50b91f75a5aa4f829156b0b5cefe56f881b77a8423cddce3 |
| Notes | scopus-id:2-s2.0-85091484261 |
| ORCID | 0000-0002-0654-8435 |
| OpenAccessLink | https://orbi.uliege.be/handle/2268/251473 |
| ParticipantIDs | liege_orbi_v2_oai_orbi_ulg_ac_be_2268_251473 crossref_primary_10_1016_j_est_2020_101756 crossref_citationtrail_10_1016_j_est_2020_101756 elsevier_sciencedirect_doi_10_1016_j_est_2020_101756 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-12-01 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of energy storage |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Morandin, Maréchal, Mercangöz, Buchter (bib0027) 2012; 45 Antonelli, Barsali, Desideri, Giglioli, Paganucci, Pasini (bib0081) 2017; 194 Hasnain (bib0061) 1998 Yang (bib0073) 2018 Dumont, Lemort (bib0050) 2020 Obi, Bass (bib0007) 2016; 58 Luo, Wang, Dooner, Clarke, Krupke (bib0013) 2014; 62 Jockenhöfer, Steinmann, Bauer (bib0035) 2018; 145 Okazaki, Yasuyuki, Taketsune (bib0052) 2015; 83 White, Parks, Markides (bib0021) 2013; 53 Frate, Antonelli, Desideri (bib0033) 2017; 121 Mehling, Cabeza (bib0066) 2008 (bib0001) 2016 Dumont, Carmo, Fontaine, Randaxhe, Quoilin, Lemort, Elmegaard, Nielsen (bib0046) 2016 Hou, Zhang, Du, Miao, Peng, Kang (bib0006) 2019; 242 Guo, Cai, Chen, Zhou (bib0022) 2016; 113 Shao (bib0068) 2016 . Schimpf, Uitz, Span (bib0045) 2011 Lee, You (bib0083) 2019; 242 consulted on the 10/10/2019. Frate G, Antonelli, Desideri (bib0032) 2017 BMWi (bib0089) 2010 Howes (bib0020) 2012 Ge (bib0070) 2013 Farres-Antunez, Xue, White (bib0023) 2018; 18 Gimeno-Gutiérrez, Lacal-Arántegui (bib0003) 2015; 75 Tafone, Borri, Comodi, van denBroek, Romagnoli (bib0082) 2018; 228 Benato, Stoppato (bib0024) 2018; 147 Roskosch, Atakan (bib0037) 2017; 129 (bib0005) 2018 Dumont, Lemort (bib0039) 2020 Few S., Schmidt O., Offer G.J., Brandon N., Nelson J., Gambhir A.. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert eli. Henchoz, Buchter, Favrat, Morandin, Mercangöz (bib0034) 2012; 45 Pillai A., Kaya A., De Paepe M., Lecompte S., Performance analysis of an organic rankine cycle for integration in a carnot battery. 5th International Seminar on ORC Power Systems. Peris, Dumont, Quoilin, Navarro-Esbría (bib0044) 2016 Frate, Ferrari, Desideri (bib0094) 2019; 137 consulted on the 03/06/2019. consulted on the 14/10/2019. Steinmann (bib0055) 2014 Argyrou, Christodoulides, Kalogirou (bib0010) 2018; 94 Attonaty, Stouffs, Pouvreau, Oriol, Deydier (bib0018) 2019; 172 Dumont (bib0047) 2017 “Highview Power.” 2019. 2019. Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a Pumped Thermal Electricity Storage (PTES) system with thermal integration and sensible heat storage, Energy Convers. Manag. 208, doi Desrues, Ruer, Marty, Fourmigué (bib0019) 2010; 30 Hu, Feng, Liu, Zhang, Xie, Liu (bib0004) 2019; 114 Kotas (bib0059) 1985 Jahnke, Strenge, Fleßner, Wolf, Jungnickel, Ziegler (bib0054) 2013; 8 consulted on the 10/10/2020. Pal (bib0071) 1997 Lecompte S., Gusev S., Vanslambrouck B., De Paepe M., Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation. Appl. Energy 226, 82–106 10.1016/j.apenergy.2018.05.103. AES, 2019. Dumont, Quoilin, Lemort (bib0048) 2015; 54 Sarbu (bib0060) 2018 Furbo (bib0062) 2015 Siemens, 2019. Damak, Leducq, Hoang, Negro, Delahaye (bib0014) 2019 Steinmann (bib0031) 2014; 69 Dumont, Lemort (bib0042) 2019 Malta, 2019. Kalaiselvam, Parameshwaran (bib0064) 2014 Gurrum (bib0069) 2002 Krane (bib0077) 1987; 30 Chester, 2019. Georgiou (bib0093) 2018 Li, Cao, Wang, Jin, Li, Wang, Ding (bib0075) 2014; 113 Lott (bib0078) 2014 WG. (bib0076) 2015 (bib0009) 2018 (bib0088) 2014 Morgan, Nelmes, Gibson, Brett (bib0080) 2015; 137 McTigue, White, Markides (bib0058) 2015; 137 Yang (bib0072) 2017 Smallbone, Jülch, Wardle, Roskilly (bib0017) 2017; 152 Honigmann M.Utilization of exhaust-steam. Specification forming part of Reissued Patent No. 10,675, dated 22 December 1885. Original No. 287,937, dated 6 November 1883. Application for reissue filed 6 October 1884, Serial No. 144,891. United States Patent Office. (bib0002) 2015 Kim, Shin, Lee, Favrat (bib0028) 2013; 49 Benato, Stoppato (bib0011) 2018; 6 Peng, Fuchs (bib0086) 2004 Gallo, Simões-Moreira (bib0063) 2016 Olivier, G., 2006. Système et Procédé de Gestion d’énergie d'un Véhicule. French patent FR29132117. consulted on the 15/09/2017. Consulted on the 09/09/2019. Muñoz, Solé, Barreneche, Cabeza (bib0074) 2015; 76 Luo, Wang, Dooner, Clarke (bib0012) 2015; 137 Staub, Bazan, Braimakis, Müller, Regensburger, Scharrer (bib0038) 2018 Ni, Caram (bib0025) 2015; 84 Mercangöz, Hemrle, Kaufmann, Z'Graggen, Ohler (bib0029) 2012; 45 Fursch, Hagspiel, Jagemann, Nagl, Lindenberger, Troster (bib0091) 2013; 104 Caraino, Nader, Breque, Nemer (bib0049) 2019 Steinmann (bib0015) 2017; 75 Commission (bib0090) 2011 White, McTigue, Markides (bib0026) 2014; 130 Peterson (bib0036) 2011; 36 Wang, Lin, Chai, Peng, Yu, Liu (bib0065) 2019; 185 WG. (bib0087) 2015 Benato (bib0092) 2017; 138 Guo (10.1016/j.est.2020.101756_bib0022) 2016; 113 Benato (10.1016/j.est.2020.101756_bib0092) 2017; 138 Staub (10.1016/j.est.2020.101756_bib0038) 2018 Jockenhöfer (10.1016/j.est.2020.101756_bib0035) 2018; 145 Commission (10.1016/j.est.2020.101756_bib0090) 2011 Frate G (10.1016/j.est.2020.101756_bib0032) 2017 (10.1016/j.est.2020.101756_bib0009) 2018 Frate (10.1016/j.est.2020.101756_bib0033) 2017; 121 10.1016/j.est.2020.101756_bib0040 Yang (10.1016/j.est.2020.101756_bib0072) 2017 10.1016/j.est.2020.101756_bib0084 10.1016/j.est.2020.101756_bib0041 (10.1016/j.est.2020.101756_bib0002) 2015 10.1016/j.est.2020.101756_bib0043 Morgan (10.1016/j.est.2020.101756_bib0080) 2015; 137 WG. (10.1016/j.est.2020.101756_bib0087) 2015 Frate (10.1016/j.est.2020.101756_bib0094) 2019; 137 10.1016/j.est.2020.101756_bib0008 Luo (10.1016/j.est.2020.101756_bib0013) 2014; 62 Sarbu (10.1016/j.est.2020.101756_bib0060) 2018 Hu (10.1016/j.est.2020.101756_bib0004) 2019; 114 Mercangöz (10.1016/j.est.2020.101756_bib0029) 2012; 45 (10.1016/j.est.2020.101756_bib0088) 2014 Benato (10.1016/j.est.2020.101756_bib0011) 2018; 6 Roskosch (10.1016/j.est.2020.101756_bib0037) 2017; 129 Ge (10.1016/j.est.2020.101756_bib0070) 2013 Li (10.1016/j.est.2020.101756_bib0075) 2014; 113 BMWi (10.1016/j.est.2020.101756_bib0089) 2010 Dumont (10.1016/j.est.2020.101756_bib0048) 2015; 54 Ni (10.1016/j.est.2020.101756_bib0025) 2015; 84 White (10.1016/j.est.2020.101756_bib0026) 2014; 130 Morandin (10.1016/j.est.2020.101756_bib0027) 2012; 45 10.1016/j.est.2020.101756_bib0051 10.1016/j.est.2020.101756_bib0095 Kim (10.1016/j.est.2020.101756_bib0028) 2013; 49 10.1016/j.est.2020.101756_bib0096 Dumont (10.1016/j.est.2020.101756_bib0047) 2017 10.1016/j.est.2020.101756_bib0053 Kotas (10.1016/j.est.2020.101756_bib0059) 1985 10.1016/j.est.2020.101756_bib0097 Yang (10.1016/j.est.2020.101756_bib0073) 2018 (10.1016/j.est.2020.101756_bib0005) 2018 10.1016/j.est.2020.101756_bib0057 Luo (10.1016/j.est.2020.101756_bib0012) 2015; 137 10.1016/j.est.2020.101756_bib0016 Benato (10.1016/j.est.2020.101756_bib0024) 2018; 147 Fursch (10.1016/j.est.2020.101756_bib0091) 2013; 104 Mehling (10.1016/j.est.2020.101756_bib0066) 2008 Gallo (10.1016/j.est.2020.101756_bib0063) 2016 Smallbone (10.1016/j.est.2020.101756_bib0017) 2017; 152 Peterson (10.1016/j.est.2020.101756_bib0036) 2011; 36 Kalaiselvam (10.1016/j.est.2020.101756_bib0064) 2014 WG. (10.1016/j.est.2020.101756_bib0076) 2015 Attonaty (10.1016/j.est.2020.101756_bib0018) 2019; 172 Antonelli (10.1016/j.est.2020.101756_bib0081) 2017; 194 Hasnain (10.1016/j.est.2020.101756_bib0061) 1998 Lott (10.1016/j.est.2020.101756_bib0078) 2014 McTigue (10.1016/j.est.2020.101756_bib0058) 2015; 137 Muñoz (10.1016/j.est.2020.101756_bib0074) 2015; 76 Hou (10.1016/j.est.2020.101756_bib0006) 2019; 242 Furbo (10.1016/j.est.2020.101756_bib0062) 2015 Dumont (10.1016/j.est.2020.101756_bib0039) 2020 Howes (10.1016/j.est.2020.101756_bib0020) 2012 Lee (10.1016/j.est.2020.101756_bib0083) 2019; 242 Argyrou (10.1016/j.est.2020.101756_bib0010) 2018; 94 White (10.1016/j.est.2020.101756_bib0021) 2013; 53 Georgiou (10.1016/j.est.2020.101756_bib0093) 2018 Caraino (10.1016/j.est.2020.101756_bib0049) 2019 Dumont (10.1016/j.est.2020.101756_sbref0050) 2020 Jahnke (10.1016/j.est.2020.101756_bib0054) 2013; 8 Desrues (10.1016/j.est.2020.101756_bib0019) 2010; 30 Peng (10.1016/j.est.2020.101756_bib0086) 2004 Pal (10.1016/j.est.2020.101756_bib0071) 1997 Steinmann (10.1016/j.est.2020.101756_bib0015) 2017; 75 Farres-Antunez (10.1016/j.est.2020.101756_bib0023) 2018; 18 Steinmann (10.1016/j.est.2020.101756_bib0031) 2014; 69 Dumont (10.1016/j.est.2020.101756_bib0042) 2019 Shao (10.1016/j.est.2020.101756_bib0068) 2016 Steinmann (10.1016/j.est.2020.101756_bib0055) 2014 Krane (10.1016/j.est.2020.101756_bib0077) 1987; 30 Gimeno-Gutiérrez (10.1016/j.est.2020.101756_bib0003) 2015; 75 10.1016/j.est.2020.101756_bib0079 (10.1016/j.est.2020.101756_bib0001) 2016 Okazaki (10.1016/j.est.2020.101756_bib0052) 2015; 83 Henchoz (10.1016/j.est.2020.101756_bib0034) 2012; 45 Schimpf (10.1016/j.est.2020.101756_bib0045) 2011 Gurrum (10.1016/j.est.2020.101756_bib0069) 2002 Tafone (10.1016/j.est.2020.101756_bib0082) 2018; 228 Dumont (10.1016/j.est.2020.101756_bib0046) 2016 Wang (10.1016/j.est.2020.101756_bib0065) 2019; 185 Obi (10.1016/j.est.2020.101756_bib0007) 2016; 58 Peris (10.1016/j.est.2020.101756_bib0044) 2016 Damak (10.1016/j.est.2020.101756_bib0014) 2019 |
| References_xml | – volume: 242 start-page: 205 year: 2019 end-page: 215 ident: bib0006 article-title: Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China publication-title: Appl. Energy – volume: 114 year: 2019 ident: bib0004 article-title: State estimation for advanced battery management: key challenges and future trends publication-title: Renew. Sustain. Energy Rev. – volume: 53 start-page: 291 year: 2013 end-page: 298 ident: bib0021 article-title: Thermodynamic analysis of pumped thermal electricity storage publication-title: Appl. Therm. Eng. – start-page: 31 year: 2015 end-page: 47 ident: bib0062 article-title: Using water for heat storage in thermal energy storage (TES) systems publication-title: Advances in Thermal Energy Storage Systems – volume: 129 start-page: 1026 year: 2017 end-page: 1033 ident: bib0037 article-title: Pumped heat electricity storage: potential analysis and orc requirements publication-title: Energy Procedia – start-page: 1 year: 2017 end-page: 12 ident: bib0032 article-title: Pumped thermal electricity storage: an interesting technology for power-to-heat applications publication-title: 30th Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst. ECOS 2017, International Measurement Confederation – start-page: 543 year: 2014 end-page: 552 ident: bib0055 article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage publication-title: Energy – volume: 76 start-page: 465 year: 2015 end-page: 469 ident: bib0074 article-title: Corrosion of metal containers for use in PCM energy storage publication-title: Renew, Energy – volume: 75 start-page: 856 year: 2015 end-page: 868 ident: bib0003 article-title: Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs publication-title: Renew. Energy – volume: 113 start-page: 693 year: 2016 end-page: 701 ident: bib0022 article-title: Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system publication-title: Energy – reference: Siemens, 2019. – start-page: 777 year: 2002 end-page: 790 ident: bib0069 article-title: Thermal management of high temperature pulsed electronics using metallic phase change materials publication-title: Numer. Heat Transf. Part A – volume: 130 start-page: 648 year: 2014 end-page: 657 ident: bib0026 article-title: Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage publication-title: Appl. Energy – volume: 94 start-page: 804 year: 2018 end-page: 821 ident: bib0010 article-title: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications publication-title: Renew. Sustain. Energy Rev. – reference: consulted on the 15/09/2017. Consulted on the 09/09/2019. – year: 2014 ident: bib0078 article-title: Technology Roadmap: Energy storage – year: 2011 ident: bib0090 article-title: Energy Roadmap 2050 – start-page: 11 year: 2018 ident: bib0038 article-title: Reversible heat pump-organic rankine cycle systems for the storage of renewable electricity publication-title: Energies – volume: 104 start-page: 642 year: 2013 end-page: 652 ident: bib0091 article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050 publication-title: Appl. Energy – volume: 84 start-page: 34 year: 2015 end-page: 44 ident: bib0025 article-title: Analysis of pumped heat electricity storage process using exponential matrix solutions publication-title: Appl. Therm. Eng. – volume: 6 start-page: 301 year: 2018 end-page: 315 ident: bib0011 article-title: Pumped thermal electricity storage: a technology overview publication-title: Therm. Sci. Eng. Prog. – start-page: 34 year: 2017 end-page: 41 ident: bib0072 article-title: Evaluation and optimisation of low melting point metal PCM heat sink against ultra-high thermal shock publication-title: Appl. Therm. Eng. – start-page: 29 year: 1985 end-page: 56 ident: bib0059 article-title: Basic exergy concepts publication-title: The Exergy Method of Thermal Plant Analysis – volume: 58 start-page: 1082 year: 2016 end-page: 1094 ident: bib0007 article-title: Trends and challenges of grid-connected photovoltaic systems - a review publication-title: Renew. Sustain Energy Rev. – start-page: 800 year: 2016 end-page: 822 ident: bib0063 article-title: Energy storage in the energy transition context: a technology review publication-title: Renew. Sustain. Energy Rev. – volume: 194 start-page: 522 year: 2017 end-page: 529 ident: bib0081 article-title: Liquid air energy storage: potential and challenges of hybrid power plants publication-title: Appl. Energy – year: 2020 ident: bib0050 article-title: First Experimental Results of a Thermally Integrated Carnot Battery Using a Reversible Heat Pump / Organic Rankine Cycle publication-title: 2nd international workshop on Carnot batteries – reference: Olivier, G., 2006. Système et Procédé de Gestion d’énergie d'un Véhicule. French patent FR29132117. – start-page: 11 year: 2016 end-page: 2018 ident: bib0046 article-title: Performance of a reversible heat pump / organic Rankine cycle unit coupled with a passive house to get a Positive Energy Building publication-title: J. Build. Perform. Simul. – volume: 45 start-page: 358 year: 2012 end-page: 365 ident: bib0034 article-title: Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles publication-title: Energy – start-page: 1127 year: 1998 end-page: 1138 ident: bib0061 article-title: Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques publication-title: Energy Convers. Manag. – year: 2017 ident: bib0047 article-title: Investigation of a Heat Pump Reversible into an Organic Rankine Cycle and its Application in the Building Sector – volume: 228 start-page: 1810 year: 2018 end-page: 1821 ident: bib0082 article-title: Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller publication-title: Appl. Energy – reference: Malta, 2019. – year: 2008 ident: bib0066 article-title: Heat and Cold Storage with PCM – volume: 145 start-page: 665 year: 2018 end-page: 676 ident: bib0035 article-title: Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration publication-title: Energy – year: 2018 ident: bib0009 article-title: South Australia's Tesla Battery on Track to Make Back a Third of Cost in a Year – volume: 242 start-page: 168 year: 2019 end-page: 180 ident: bib0083 article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy publication-title: Appl. Energy – reference: Lecompte S., Gusev S., Vanslambrouck B., De Paepe M., Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation. Appl. Energy 226, 82–106 10.1016/j.apenergy.2018.05.103. – volume: 45 start-page: 407 year: 2012 end-page: 415 ident: bib0029 article-title: Electrothermal energy storage with transcritical CO2 cycles publication-title: Energy – start-page: 191 year: 2018 ident: bib0060 article-title: A comprehensive review of thermal energy storage publication-title: Sustainability – volume: 18 start-page: 90 year: 2018 end-page: 102 ident: bib0023 article-title: Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. publication-title: J. Energy Storage – volume: 185 start-page: 593 year: 2019 end-page: 602 ident: bib0065 article-title: Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage publication-title: Energy Convers. Manag. – volume: 30 start-page: 425 year: 2010 end-page: 432 ident: bib0019 article-title: A thermal energy storage process for large scale electric applications publication-title: Appl. Therm. Eng. – year: 2013 ident: bib0070 article-title: Keeping smartphones cool with gallium phase change material publication-title: J. Heat Transf. – start-page: 764 year: 2016 end-page: 771 ident: bib0068 article-title: Figure-of-merit for phase-change materials used in thermal management publication-title: Int. J. Heat Mass Transf. – year: 2012 ident: bib0020 article-title: Concept and Development of a Pumped Heat Electricity Storage Device – volume: 49 start-page: 484 year: 2013 end-page: 501 ident: bib0028 article-title: Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage publication-title: Energy – reference: Pillai A., Kaya A., De Paepe M., Lecompte S., Performance analysis of an organic rankine cycle for integration in a carnot battery. 5th International Seminar on ORC Power Systems. – start-page: 1119 year: 2018 end-page: 1133 ident: bib0093 article-title: A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems publication-title: Appl. energy – volume: 54 start-page: 190 year: 2015 end-page: 203 ident: bib0048 article-title: Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building publication-title: Int. J. Refrig. – start-page: 467 year: 2018 end-page: 476 ident: bib0073 article-title: Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock publication-title: Energy Convers. Manag. – year: 2010 ident: bib0089 article-title: Energiekonzept für eine Umweltschonende, Zuverlässige und Bezahlbare Energieversorgung – volume: 8 start-page: i55 year: 2013 end-page: i61 ident: bib0054 article-title: First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage publication-title: Int. J. Low-Carbon Technol. – volume: 83 start-page: 332 year: 2015 end-page: 338 ident: bib0052 article-title: Concept study of wind power utilising direct thermal energy conversion and thermal energy storage publication-title: Renew. Energy – volume: 137 start-page: 845 year: 2015 end-page: 853 ident: bib0080 article-title: Liquid air energy storage - analysis and first results from a pilot scale demonstration plant publication-title: Appl. Energy – start-page: 40 year: 1997 end-page: 50 ident: bib0071 article-title: Application of phase change materials to thermal control of electronic modules: a computational study publication-title: J. Electron. Packag. – reference: AES, 2019. – year: 2015 ident: bib0002 article-title: Renewable Energy in the Clean Power Plan – year: 2020 ident: bib0039 article-title: Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery publication-title: Energy – reference: , consulted on the 10/10/2019. – start-page: 1240 year: 2004 end-page: 1251 ident: bib0086 article-title: Polymeric phase change composites for thermal energy storage publication-title: J. Appl. Polym. Sci. – volume: 75 start-page: 205 year: 2017 end-page: 219 ident: bib0015 article-title: Thermo-mechanical concepts for bulk energy storage publication-title: Renew. Sustain. Energy Rev. – volume: 113 start-page: 1710 year: 2014 end-page: 1716 ident: bib0075 article-title: Load Shifting of nuclear power plants using cryogenic energy storage technology publication-title: Appl, Energy – year: 2019 ident: bib0049 article-title: Assesing fuel consumption reduction of revercycle: a reversible mobile air conditioning/organic Rankine cycle system publication-title: Proceeding of ORC conference – reference: Honigmann M.Utilization of exhaust-steam. Specification forming part of Reissued Patent No. 10,675, dated 22 December 1885. Original No. 287,937, dated 6 November 1883. Application for reissue filed 6 October 1884, Serial No. 144,891. United States Patent Office. – reference: Few S., Schmidt O., Offer G.J., Brandon N., Nelson J., Gambhir A.. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert eli. – volume: 45 start-page: 375 year: 2012 end-page: 385 ident: bib0027 article-title: Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case publication-title: Energy – year: 2018 ident: bib0005 article-title: World Energy Outlook 2018 – reference: , consulted on the 03/06/2019. – reference: Chester, 2019. – volume: 137 start-page: 511 year: 2015 end-page: 536 ident: bib0012 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl. Energy – volume: 137 start-page: 800 year: 2015 end-page: 811 ident: bib0058 article-title: Parametric studies and optimisation of pumped thermal electricity storage publication-title: Appl. Energy – volume: 152 start-page: 221 year: 2017 end-page: 228 ident: bib0017 article-title: Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies publication-title: Energy Convers. Manag. – reference: Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a Pumped Thermal Electricity Storage (PTES) system with thermal integration and sensible heat storage, Energy Convers. Manag. 208, doi: – year: 2019 ident: bib0014 article-title: Liquid Air Energy Storage(LAES) as a large-scale storage technology for renewable energy integration - a review of investigation studies and near perspectives of LAES publication-title: Int. J. Refrig. – reference: “Highview Power.” 2019. 2019. – year: 2014 ident: bib0064 article-title: Thermal energy storage technologies for sustainability systems design publication-title: Assess. Appl. – reference: consulted on the 14/10/2019. – year: 2016 ident: bib0044 article-title: Internal combustion engines cooling water valorisation through invertible HTHP/ORC systems publication-title: Symposium Waste Heat Valorisation in Industrial Processes, Kortrijk, Belgium – year: 2011 ident: bib0045 article-title: Simulation of a solar assisted combined heat pump-organic Rankine cycle system publication-title: Proceedings of World renewable Energy Congress, 2011 – volume: 138 start-page: 419 year: 2017 end-page: 436 ident: bib0092 article-title: Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system publication-title: Energy – reference: consulted on the 10/10/2020. – year: 2019 ident: bib0042 article-title: Thermo-technical approach to characterise the performance of a reversible heat pump/organic Rankine cycle power system depending on its operational conditions publication-title: Proceedings of the ECOS 2019 – The 32st International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems – volume: 121 start-page: 1051 year: 2017 end-page: 1058 ident: bib0033 article-title: A novel pumped thermal electricity storage (PTES) system with thermal integration publication-title: Appl. Therm. Eng. – volume: 62 start-page: 603 year: 2014 end-page: 611 ident: bib0013 article-title: Overview of current development in compressed air energy storage technology publication-title: Energy Procedia – reference: . – volume: 172 start-page: 1132 year: 2019 end-page: 1143 ident: bib0018 article-title: Thermodynamic analysis of a 200MWh electricity storage system based on high temperature thermal energy storage publication-title: Energy – volume: 30 start-page: 43 year: 1987 end-page: 57 ident: bib0077 article-title: A Second Law analysis of the optimum design and operation of thermal energy storage systems publication-title: Int. J. Heat Mass Transf. – year: 2015 ident: bib0076 article-title: Compact Thermal Energy Storage: Material Development and System Integration – year: 2015 ident: bib0087 article-title: Compact Thermal Energy Storage: Material Development and System Integration – year: 2014 ident: bib0088 article-title: Technology Roadmap, Energy Storage – volume: 69 start-page: 543 year: 2014 end-page: 552 ident: bib0031 article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage publication-title: Energy – volume: 147 start-page: 155 year: 2018 end-page: 168 ident: bib0024 article-title: Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system publication-title: Energy – volume: 137 start-page: 01037 year: 2019 ident: bib0094 article-title: Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications publication-title: E3S Web Conf – year: 2016 ident: bib0001 article-title: Clean Energy for All Europeans – volume: 36 start-page: 6098 year: 2011 end-page: 6109 ident: bib0036 article-title: A concept for storing utility-scale electrical energy in the form of latent heat publication-title: Energy – year: 2014 ident: 10.1016/j.est.2020.101756_bib0088 – volume: 53 start-page: 291 year: 2013 ident: 10.1016/j.est.2020.101756_bib0021 article-title: Thermodynamic analysis of pumped thermal electricity storage publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.03.030 – volume: 45 start-page: 407 year: 2012 ident: 10.1016/j.est.2020.101756_bib0029 article-title: Electrothermal energy storage with transcritical CO2 cycles publication-title: Energy doi: 10.1016/j.energy.2012.03.013 – volume: 75 start-page: 205 year: 2017 ident: 10.1016/j.est.2020.101756_bib0015 article-title: Thermo-mechanical concepts for bulk energy storage publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.10.065 – year: 2014 ident: 10.1016/j.est.2020.101756_bib0064 article-title: Thermal energy storage technologies for sustainability systems design publication-title: Assess. Appl. – ident: 10.1016/j.est.2020.101756_bib0053 – ident: 10.1016/j.est.2020.101756_bib0095 – volume: 137 start-page: 01037 year: 2019 ident: 10.1016/j.est.2020.101756_bib0094 article-title: Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications publication-title: E3S Web Conf doi: 10.1051/e3sconf/201913701037 – volume: 58 start-page: 1082 year: 2016 ident: 10.1016/j.est.2020.101756_bib0007 article-title: Trends and challenges of grid-connected photovoltaic systems - a review publication-title: Renew. Sustain Energy Rev. doi: 10.1016/j.rser.2015.12.289 – volume: 30 start-page: 43 year: 1987 ident: 10.1016/j.est.2020.101756_bib0077 article-title: A Second Law analysis of the optimum design and operation of thermal energy storage systems publication-title: Int. J. Heat Mass Transf. doi: 10.1016/0017-9310(87)90059-7 – ident: 10.1016/j.est.2020.101756_bib0040 – year: 2011 ident: 10.1016/j.est.2020.101756_bib0090 – year: 2018 ident: 10.1016/j.est.2020.101756_bib0009 – start-page: 1119 year: 2018 ident: 10.1016/j.est.2020.101756_bib0093 article-title: A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems publication-title: Appl. energy doi: 10.1016/j.apenergy.2018.04.128 – volume: 130 start-page: 648 year: 2014 ident: 10.1016/j.est.2020.101756_bib0026 article-title: Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.02.071 – year: 2016 ident: 10.1016/j.est.2020.101756_bib0001 – volume: 137 start-page: 511 year: 2015 ident: 10.1016/j.est.2020.101756_bib0012 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.081 – start-page: 764 year: 2016 ident: 10.1016/j.est.2020.101756_bib0068 article-title: Figure-of-merit for phase-change materials used in thermal management publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.05.040 – volume: 152 start-page: 221 year: 2017 ident: 10.1016/j.est.2020.101756_bib0017 article-title: Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2017.09.047 – ident: 10.1016/j.est.2020.101756_bib0008 – start-page: 467 year: 2018 ident: 10.1016/j.est.2020.101756_bib0073 article-title: Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.01.056 – ident: 10.1016/j.est.2020.101756_bib0057 doi: 10.1016/j.enconman.2020.112530 – volume: 129 start-page: 1026 year: 2017 ident: 10.1016/j.est.2020.101756_bib0037 article-title: Pumped heat electricity storage: potential analysis and orc requirements publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.235 – year: 2015 ident: 10.1016/j.est.2020.101756_bib0002 – start-page: 800 year: 2016 ident: 10.1016/j.est.2020.101756_bib0063 article-title: Energy storage in the energy transition context: a technology review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.07.028 – start-page: 34 year: 2017 ident: 10.1016/j.est.2020.101756_bib0072 article-title: Evaluation and optimisation of low melting point metal PCM heat sink against ultra-high thermal shock publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.03.050 – volume: 242 start-page: 205 year: 2019 ident: 10.1016/j.est.2020.101756_bib0006 article-title: Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.067 – volume: 121 start-page: 1051 year: 2017 ident: 10.1016/j.est.2020.101756_bib0033 article-title: A novel pumped thermal electricity storage (PTES) system with thermal integration publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.04.127 – volume: 137 start-page: 845 issue: January year: 2015 ident: 10.1016/j.est.2020.101756_bib0080 article-title: Liquid air energy storage - analysis and first results from a pilot scale demonstration plant publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.07.109 – volume: 228 start-page: 1810 issue: October year: 2018 ident: 10.1016/j.est.2020.101756_bib0082 article-title: Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.133 – volume: 45 start-page: 375 year: 2012 ident: 10.1016/j.est.2020.101756_bib0027 article-title: Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case publication-title: Energy doi: 10.1016/j.energy.2012.03.031 – start-page: 31 year: 2015 ident: 10.1016/j.est.2020.101756_bib0062 article-title: Using water for heat storage in thermal energy storage (TES) systems – volume: 104 start-page: 642 year: 2013 ident: 10.1016/j.est.2020.101756_bib0091 article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.11.050 – volume: 54 start-page: 190 year: 2015 ident: 10.1016/j.est.2020.101756_bib0048 article-title: Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2015.03.008 – volume: 69 start-page: 543 year: 2014 ident: 10.1016/j.est.2020.101756_bib0031 article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage publication-title: Energy doi: 10.1016/j.energy.2014.03.049 – ident: 10.1016/j.est.2020.101756_bib0041 – start-page: 29 year: 1985 ident: 10.1016/j.est.2020.101756_bib0059 article-title: Basic exergy concepts – year: 2012 ident: 10.1016/j.est.2020.101756_bib0020 – volume: 113 start-page: 1710 issue: January year: 2014 ident: 10.1016/j.est.2020.101756_bib0075 article-title: Load Shifting of nuclear power plants using cryogenic energy storage technology publication-title: Appl, Energy doi: 10.1016/j.apenergy.2013.08.077 – start-page: 1240 year: 2004 ident: 10.1016/j.est.2020.101756_bib0086 article-title: Polymeric phase change composites for thermal energy storage publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20578 – year: 2020 ident: 10.1016/j.est.2020.101756_sbref0050 article-title: First Experimental Results of a Thermally Integrated Carnot Battery Using a Reversible Heat Pump / Organic Rankine Cycle – volume: 62 start-page: 603 year: 2014 ident: 10.1016/j.est.2020.101756_bib0013 article-title: Overview of current development in compressed air energy storage technology publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.12.423 – start-page: 1 year: 2017 ident: 10.1016/j.est.2020.101756_bib0032 article-title: Pumped thermal electricity storage: an interesting technology for power-to-heat applications – year: 2008 ident: 10.1016/j.est.2020.101756_bib0066 – volume: 6 start-page: 301 year: 2018 ident: 10.1016/j.est.2020.101756_bib0011 article-title: Pumped thermal electricity storage: a technology overview publication-title: Therm. Sci. Eng. Prog. doi: 10.1016/j.tsep.2018.01.017 – volume: 30 start-page: 425 year: 2010 ident: 10.1016/j.est.2020.101756_bib0019 article-title: A thermal energy storage process for large scale electric applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2009.10.002 – start-page: 1127 year: 1998 ident: 10.1016/j.est.2020.101756_bib0061 article-title: Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(98)00025-9 – volume: 145 start-page: 665 year: 2018 ident: 10.1016/j.est.2020.101756_bib0035 article-title: Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration publication-title: Energy doi: 10.1016/j.energy.2017.12.087 – year: 2014 ident: 10.1016/j.est.2020.101756_bib0078 – year: 2016 ident: 10.1016/j.est.2020.101756_bib0044 article-title: Internal combustion engines cooling water valorisation through invertible HTHP/ORC systems – year: 2020 ident: 10.1016/j.est.2020.101756_bib0039 article-title: Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery publication-title: Energy doi: 10.1016/j.energy.2020.118963 – volume: 49 start-page: 484 year: 2013 ident: 10.1016/j.est.2020.101756_bib0028 article-title: Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage publication-title: Energy doi: 10.1016/j.energy.2012.09.057 – start-page: 11 year: 2016 ident: 10.1016/j.est.2020.101756_bib0046 article-title: Performance of a reversible heat pump / organic Rankine cycle unit coupled with a passive house to get a Positive Energy Building publication-title: J. Build. Perform. Simul. – start-page: 40 year: 1997 ident: 10.1016/j.est.2020.101756_bib0071 article-title: Application of phase change materials to thermal control of electronic modules: a computational study publication-title: J. Electron. Packag. doi: 10.1115/1.2792199 – ident: 10.1016/j.est.2020.101756_bib0097 – ident: 10.1016/j.est.2020.101756_bib0051 – year: 2015 ident: 10.1016/j.est.2020.101756_bib0087 – volume: 242 start-page: 168 issue: May year: 2019 ident: 10.1016/j.est.2020.101756_bib0083 article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.087 – volume: 45 start-page: 358 year: 2012 ident: 10.1016/j.est.2020.101756_bib0034 article-title: Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles publication-title: Energy doi: 10.1016/j.energy.2012.02.010 – year: 2019 ident: 10.1016/j.est.2020.101756_bib0049 article-title: Assesing fuel consumption reduction of revercycle: a reversible mobile air conditioning/organic Rankine cycle system – volume: 113 start-page: 693 year: 2016 ident: 10.1016/j.est.2020.101756_bib0022 article-title: Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system publication-title: Energy doi: 10.1016/j.energy.2016.07.080 – year: 2017 ident: 10.1016/j.est.2020.101756_bib0047 – volume: 185 start-page: 593 year: 2019 ident: 10.1016/j.est.2020.101756_bib0065 article-title: Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.02.022 – volume: 76 start-page: 465 year: 2015 ident: 10.1016/j.est.2020.101756_bib0074 article-title: Corrosion of metal containers for use in PCM energy storage publication-title: Renew, Energy doi: 10.1016/j.renene.2014.11.036 – volume: 75 start-page: 856 year: 2015 ident: 10.1016/j.est.2020.101756_bib0003 article-title: Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs publication-title: Renew. Energy doi: 10.1016/j.renene.2014.10.068 – year: 2013 ident: 10.1016/j.est.2020.101756_bib0070 article-title: Keeping smartphones cool with gallium phase change material publication-title: J. Heat Transf. doi: 10.1115/1.4023392 – volume: 84 start-page: 34 year: 2015 ident: 10.1016/j.est.2020.101756_bib0025 article-title: Analysis of pumped heat electricity storage process using exponential matrix solutions publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.02.046 – year: 2018 ident: 10.1016/j.est.2020.101756_bib0005 – year: 2015 ident: 10.1016/j.est.2020.101756_bib0076 – volume: 114 year: 2019 ident: 10.1016/j.est.2020.101756_bib0004 article-title: State estimation for advanced battery management: key challenges and future trends publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.109334 – year: 2019 ident: 10.1016/j.est.2020.101756_bib0042 article-title: Thermo-technical approach to characterise the performance of a reversible heat pump/organic Rankine cycle power system depending on its operational conditions – start-page: 191 year: 2018 ident: 10.1016/j.est.2020.101756_bib0060 article-title: A comprehensive review of thermal energy storage publication-title: Sustainability doi: 10.3390/su10010191 – year: 2019 ident: 10.1016/j.est.2020.101756_bib0014 article-title: Liquid Air Energy Storage(LAES) as a large-scale storage technology for renewable energy integration - a review of investigation studies and near perspectives of LAES publication-title: Int. J. Refrig. – start-page: 777 year: 2002 ident: 10.1016/j.est.2020.101756_bib0069 article-title: Thermal management of high temperature pulsed electronics using metallic phase change materials publication-title: Numer. Heat Transf. Part A doi: 10.1080/10407780290059800 – volume: 194 start-page: 522 issue: May year: 2017 ident: 10.1016/j.est.2020.101756_bib0081 article-title: Liquid air energy storage: potential and challenges of hybrid power plants publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.091 – volume: 172 start-page: 1132 year: 2019 ident: 10.1016/j.est.2020.101756_bib0018 article-title: Thermodynamic analysis of a 200MWh electricity storage system based on high temperature thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2019.01.153 – ident: 10.1016/j.est.2020.101756_bib0084 doi: 10.1016/j.apenergy.2018.05.103 – ident: 10.1016/j.est.2020.101756_bib0079 – year: 2010 ident: 10.1016/j.est.2020.101756_bib0089 – volume: 94 start-page: 804 year: 2018 ident: 10.1016/j.est.2020.101756_bib0010 article-title: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.06.044 – start-page: 11 year: 2018 ident: 10.1016/j.est.2020.101756_bib0038 article-title: Reversible heat pump-organic rankine cycle systems for the storage of renewable electricity publication-title: Energies – year: 2011 ident: 10.1016/j.est.2020.101756_bib0045 article-title: Simulation of a solar assisted combined heat pump-organic Rankine cycle system – volume: 8 start-page: i55 year: 2013 ident: 10.1016/j.est.2020.101756_bib0054 article-title: First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/ctt022 – volume: 138 start-page: 419 year: 2017 ident: 10.1016/j.est.2020.101756_bib0092 article-title: Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system publication-title: Energy doi: 10.1016/j.energy.2017.07.066 – volume: 18 start-page: 90 issue: August year: 2018 ident: 10.1016/j.est.2020.101756_bib0023 article-title: Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle. publication-title: J. Energy Storage doi: 10.1016/j.est.2018.04.016 – volume: 83 start-page: 332 year: 2015 ident: 10.1016/j.est.2020.101756_bib0052 article-title: Concept study of wind power utilising direct thermal energy conversion and thermal energy storage publication-title: Renew. Energy doi: 10.1016/j.renene.2015.04.027 – volume: 137 start-page: 800 year: 2015 ident: 10.1016/j.est.2020.101756_bib0058 article-title: Parametric studies and optimisation of pumped thermal electricity storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.08.039 – ident: 10.1016/j.est.2020.101756_bib0096 – volume: 36 start-page: 6098 year: 2011 ident: 10.1016/j.est.2020.101756_bib0036 article-title: A concept for storing utility-scale electrical energy in the form of latent heat publication-title: Energy doi: 10.1016/j.energy.2011.08.003 – start-page: 543 year: 2014 ident: 10.1016/j.est.2020.101756_bib0055 article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage publication-title: Energy doi: 10.1016/j.energy.2014.03.049 – ident: 10.1016/j.est.2020.101756_bib0043 – ident: 10.1016/j.est.2020.101756_bib0016 – volume: 147 start-page: 155 year: 2018 ident: 10.1016/j.est.2020.101756_bib0024 article-title: Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system publication-title: Energy doi: 10.1016/j.energy.2018.01.045 |
| SSID | ssj0001651196 |
| Score | 2.6201024 |
| Snippet | •There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each... The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The... |
| SourceID | liege crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 101756 |
| SubjectTerms | Carnot battery Electrical storage Energie Energy Engineering, computing & technology Ingénierie, informatique & technologie Pumped thermal energy storage Review |
| Title | Carnot battery technology: A state-of-the-art review |
| URI | https://dx.doi.org/10.1016/j.est.2020.101756 https://orbi.uliege.be/handle/2268/251473 |
| Volume | 32 |
| WOSCitedRecordID | wos000599943200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 2352-1538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651196 issn: 2352-152X databaseCode: AIEXJ dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZglwMcEE9RXsqBE5AqdezY5rYqRYCqwqGgvVm2Y1dbrZJqH1V_PuNHkmXVruiBSxRFcZSd-db-PJn5BqF31HItBFM5hi1PTgzzkrcC57jS1NVcGxd6Rv4-ZicnfDoVP1PF9TK0E2BNw6-uxMV_dTVcA2f70tlbuLt_KFyAc3A6HMHtcPwnxx-qRdOuPuggnAncso-dx7rmUEGUty4H5ufT4lLxyg0k1cbSQJ9Cqc56DHxew68Js_eP-cwvrD0KvPBECLWvZ3Ubu3bYpWn7Cdj3OAr5A5Ma6H-_JBxbn9oeh8Y-a5vRCLyd2dGVyQyzGAaGlwNJmF47X8fQwfk-rID7_nFB9oleo429tWb9pY7dLvRMrudnUhmprQRCySXQNsLKu2iMGRV8hMaTb0fT70P0rfLfT2PnwfR-w3nJu8_fIRFw691uIjDjuc9y2CAnp4_Qw-SwbBLR8Bjdsc0T9GBDa_IpIhEXWcJFNuDiU6aybVRkERXP0K8vR6eHX_PUMiM3hBYr-LMVNcXM1lRrK5jVtNDiwDGqqFLEcSxgv64LTY11llaOw66FMcWBVJu6NrZ8jkZN29gXKNOOHRBdGWu8ABJ1CouitJQQQk1ZObOHis4O0iQ9ed_WZC67xMFzCaaT3nQymm4Pve-HXEQxlV03k864MrHByPIkgGfXsI_BEREVl1juRsjL293-Ct0fUP8ajVaLtX2D7pnL1Wy5eJtQ9gc1SI-L |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carnot+battery+technology%3A+a+state-of-the-art+review&rft.jtitle=Journal+of+energy+storage&rft.au=Dumont%2C+Olivier&rft.au=Frate%2C+Guido+Francesco&rft.au=Pillai%2C+Aditya&rft.au=Lecompte%2C+Steven&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=2352-152X&rft_id=info:doi/10.1016%2Fj.est.2020.101756&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_251473 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |