Carnot battery technology: A state-of-the-art review

•There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy storage Jg. 32; S. 101756
Hauptverfasser: Dumont, Olivier, Frate, Guido Francesco, Pillai, Aditya, Lecompte, Steven, De paepe, Michel, Lemort, Vincent
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.12.2020
Elsevier
Schlagworte:
ISSN:2352-152X, 2352-1538, 2352-1538
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existing prototypes. The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case.
AbstractList The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case.
•There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each configuration of Carnot battery is described.•A comparison is proposed including a state of the art, potential on the energy market and existing prototypes. The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The Carnot battery buffers electrical energy by storing thermal energy (charging cycle mode) from a resistive heater or a heat pump system when the electricity production is higher than the demand. When electricity demand is higher than the production, the Carnot battery generates power from the stored thermal energy (power cycle mode). This paper is a review of this emerging and innovative technology, including a market analysis. First, the different possible technologies and configurations of Carnot batteries are described. This includes charging cycles, power cycles and thermal energy storage systems. Furthermore, a state-of-the-art of the existing prototypes in the world is given. The performance indicators for this technology are unclear, and this paper tries to define objective performance indicators. Finally, all the described technologies are compared, and conclusions are drawn to help engineers select the optimal technology for a given case.
ArticleNumber 101756
Author Frate, Guido Francesco
Pillai, Aditya
Lecompte, Steven
De paepe, Michel
Dumont, Olivier
Lemort, Vincent
Author_xml – sequence: 1
  givenname: Olivier
  surname: Dumont
  fullname: Dumont, Olivier
  email: olivier.dumont@ulg.ac.be
  organization: Université de Liege, University of Liège, Aerospace and Mechanical Engineering Department, Thermodynamics Laboratory, 4000 Liège, Belgium
– sequence: 2
  givenname: Guido Francesco
  surname: Frate
  fullname: Frate, Guido Francesco
  organization: University of Pisa, Department of Energy, Systems, Territory and Constructions Engineering, 56122, Pisa, Italy
– sequence: 3
  givenname: Aditya
  surname: Pillai
  fullname: Pillai, Aditya
  organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium
– sequence: 4
  givenname: Steven
  surname: Lecompte
  fullname: Lecompte, Steven
  organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium
– sequence: 5
  givenname: Michel
  surname: De paepe
  fullname: De paepe, Michel
  organization: Ghent University, Faculty of Engineering and Architecture, Department of Electrical Energy, Metals, Mechanical Constructions & Systems, Ghent 9000, Belgium
– sequence: 6
  givenname: Vincent
  surname: Lemort
  fullname: Lemort, Vincent
  organization: Université de Liege, University of Liège, Aerospace and Mechanical Engineering Department, Thermodynamics Laboratory, 4000 Liège, Belgium
BookMark eNp90L1OwzAQwHELFYkCfQC2vECK7cRxAlNV8SVVYgGJ7WQ7l9ZViJFtivr2uAQxMHTyefiddP9zMhncgIRcMTpnlFXX2zmGOOeU__ylqE7IlBeC50wU9eRv5m9nZBbCltKEBGNNNSXlUvnBxUyrGNHvs4hmM7jerfc32SILUUXMXZfHDebKx8zjzuLXJTntVB9w9vtekNf7u5flY756fnhaLla5KQWNeWloK7jEVmiNjUQtqG5YJ4USSpVdzRsmKk21MNihqLq6ZlpKVZe8MG1rsLggxbi3t7hGcF5b2HFwyo7zZ78GZUAjcF7VwAUrZZEUG5XxLgSPHXx4-678HhiFQy_YQuoFh14w9kpG_jPGptutG6JXtj8qb0eJKUSK4yEYi4PB1no0EVpnj-hvmYuGeQ
CitedBy_id crossref_primary_10_1016_j_desal_2024_117497
crossref_primary_10_1016_j_energy_2024_133567
crossref_primary_10_1016_j_est_2022_105586
crossref_primary_10_3390_en14248195
crossref_primary_10_1115_1_4069563
crossref_primary_10_1016_j_est_2025_115673
crossref_primary_10_3390_en15228672
crossref_primary_10_1016_j_energy_2024_133328
crossref_primary_10_1016_j_rser_2023_113633
crossref_primary_10_1016_j_compchemeng_2023_108176
crossref_primary_10_1016_j_applthermaleng_2024_124872
crossref_primary_10_1016_j_est_2025_117618
crossref_primary_10_1016_j_applthermaleng_2025_128159
crossref_primary_10_1002_aenm_202400369
crossref_primary_10_1016_j_apenergy_2021_116650
crossref_primary_10_1016_j_est_2021_103444
crossref_primary_10_1016_j_energy_2022_123516
crossref_primary_10_1016_j_est_2024_114744
crossref_primary_10_3390_en17174455
crossref_primary_10_1016_j_est_2023_109097
crossref_primary_10_1016_j_energy_2022_124057
crossref_primary_10_3390_en16155720
crossref_primary_10_3390_pr11113061
crossref_primary_10_3390_en18154054
crossref_primary_10_3390_en16186587
crossref_primary_10_1016_j_est_2024_110836
crossref_primary_10_1016_j_heliyon_2025_e42803
crossref_primary_10_3390_su16051924
crossref_primary_10_1016_j_est_2024_110959
crossref_primary_10_1038_s41586_024_08214_1
crossref_primary_10_3390_en15249595
crossref_primary_10_1039_D2SU00111J
crossref_primary_10_1016_j_est_2025_117517
crossref_primary_10_1016_j_renene_2024_120812
crossref_primary_10_3390_en14133870
crossref_primary_10_1016_j_energy_2023_127931
crossref_primary_10_1002_est2_530
crossref_primary_10_1016_j_energy_2025_137079
crossref_primary_10_1016_j_est_2023_106734
crossref_primary_10_1016_j_est_2022_106545
crossref_primary_10_1016_j_energy_2023_129552
crossref_primary_10_1016_j_enconman_2025_120142
crossref_primary_10_1016_j_rser_2022_112478
crossref_primary_10_1016_j_renene_2024_120702
crossref_primary_10_12677_MOS_2023_124319
crossref_primary_10_1016_j_energy_2022_125166
crossref_primary_10_1016_j_apenergy_2024_124535
crossref_primary_10_1016_j_energy_2025_136792
crossref_primary_10_3390_en16134941
crossref_primary_10_1016_j_applthermaleng_2024_124086
crossref_primary_10_1016_j_est_2022_104577
crossref_primary_10_1016_j_est_2022_104453
crossref_primary_10_1016_j_rser_2023_114245
crossref_primary_10_1016_j_est_2022_105782
crossref_primary_10_3390_en18102594
crossref_primary_10_1016_j_apenergy_2024_124643
crossref_primary_10_3390_en17092005
crossref_primary_10_1016_j_energy_2025_138385
crossref_primary_10_3390_en16041882
crossref_primary_10_3390_en18061556
crossref_primary_10_1016_j_energy_2023_128203
crossref_primary_10_1002_aic_18750
crossref_primary_10_1016_j_energy_2025_136760
crossref_primary_10_1016_j_enconman_2025_120405
crossref_primary_10_1016_j_est_2022_105548
crossref_primary_10_1016_j_rser_2023_113282
crossref_primary_10_1016_j_enconman_2022_116287
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124286
crossref_primary_10_1016_j_energy_2023_129093
crossref_primary_10_3390_app15020569
crossref_primary_10_3390_app15116162
crossref_primary_10_1016_j_energy_2025_137980
crossref_primary_10_1016_j_enconman_2024_118111
crossref_primary_10_3390_en18133511
crossref_primary_10_1016_j_apenergy_2022_118931
crossref_primary_10_1016_j_apenergy_2025_126641
crossref_primary_10_1016_j_enconman_2024_119207
crossref_primary_10_1016_j_est_2025_115779
crossref_primary_10_3390_en14185620
crossref_primary_10_1016_j_enconman_2024_118906
crossref_primary_10_1016_j_applthermaleng_2024_124699
crossref_primary_10_1016_j_applthermaleng_2025_127325
crossref_primary_10_1016_j_est_2024_114394
crossref_primary_10_1016_j_ref_2023_03_003
crossref_primary_10_1016_j_est_2024_113518
crossref_primary_10_1016_j_est_2025_117841
crossref_primary_10_1016_j_renene_2024_121961
crossref_primary_10_1016_j_est_2025_117844
crossref_primary_10_1016_j_est_2025_117968
crossref_primary_10_1016_j_est_2024_114960
crossref_primary_10_1016_j_apenergy_2024_123762
crossref_primary_10_1016_j_applthermaleng_2025_126000
crossref_primary_10_1016_j_applthermaleng_2023_121551
crossref_primary_10_1016_j_energy_2021_121665
crossref_primary_10_1007_s11708_025_0998_0
crossref_primary_10_1016_j_est_2021_103283
crossref_primary_10_1016_j_est_2024_111628
crossref_primary_10_1016_j_applthermaleng_2022_119327
crossref_primary_10_3390_en18164235
crossref_primary_10_1016_j_renene_2022_09_039
crossref_primary_10_1016_j_enconman_2023_117724
crossref_primary_10_1016_j_enconman_2023_117844
crossref_primary_10_1617_s11527_024_02548_y
crossref_primary_10_3390_en16165948
crossref_primary_10_1016_j_apenergy_2024_123873
crossref_primary_10_1016_j_enconman_2023_117959
crossref_primary_10_1016_j_apenergy_2022_118950
crossref_primary_10_3390_e23121564
crossref_primary_10_3390_en18082059
crossref_primary_10_1103_PRXEnergy_2_043001
crossref_primary_10_3390_en15020647
crossref_primary_10_1016_j_procs_2022_09_333
crossref_primary_10_1016_j_rser_2023_113802
crossref_primary_10_1016_j_enconman_2023_116987
crossref_primary_10_3390_en15249521
crossref_primary_10_1016_j_rser_2024_114833
crossref_primary_10_1002_aenm_202204208
crossref_primary_10_1016_j_heliyon_2024_e40730
crossref_primary_10_1016_j_cej_2022_140701
crossref_primary_10_1016_j_est_2024_111630
crossref_primary_10_1016_j_est_2024_114223
crossref_primary_10_1016_j_expthermflusci_2025_111568
crossref_primary_10_1016_j_applthermaleng_2022_118903
crossref_primary_10_1016_j_enconman_2023_118030
crossref_primary_10_1016_j_est_2022_106015
crossref_primary_10_1016_j_energy_2024_133025
crossref_primary_10_1016_j_est_2022_106374
crossref_primary_10_1016_j_est_2024_112979
crossref_primary_10_1016_j_apenergy_2025_126165
crossref_primary_10_1016_j_est_2025_116823
crossref_primary_10_1016_j_ces_2024_120502
crossref_primary_10_1016_j_est_2023_108994
crossref_primary_10_1016_j_jclepro_2023_139548
crossref_primary_10_3390_app12073557
crossref_primary_10_1016_j_est_2023_109959
crossref_primary_10_3390_pr13092882
crossref_primary_10_1016_j_est_2025_117362
crossref_primary_10_1016_j_ijhydene_2022_03_274
crossref_primary_10_1016_j_applthermaleng_2022_119536
crossref_primary_10_1016_j_est_2025_117487
crossref_primary_10_1016_j_seta_2024_103984
crossref_primary_10_1016_j_est_2024_114800
crossref_primary_10_1016_j_energy_2023_127769
crossref_primary_10_1016_j_fuel_2023_130527
crossref_primary_10_1016_j_renene_2022_01_017
crossref_primary_10_1016_j_renene_2022_08_143
crossref_primary_10_1016_j_est_2023_109275
crossref_primary_10_3390_app12030970
crossref_primary_10_1016_j_est_2023_108866
crossref_primary_10_1007_s43979_023_00052_w
crossref_primary_10_1002_ente_202100470
crossref_primary_10_1016_j_est_2023_107416
crossref_primary_10_1016_j_est_2023_108867
crossref_primary_10_1002_cssc_202500288
crossref_primary_10_1016_j_renene_2023_04_017
crossref_primary_10_3390_en16010189
crossref_primary_10_1007_s40243_022_00210_7
crossref_primary_10_1016_j_enconman_2022_116556
crossref_primary_10_1016_j_energy_2023_127756
crossref_primary_10_1016_j_applthermaleng_2024_124952
crossref_primary_10_1016_j_solmat_2022_111874
crossref_primary_10_3390_asi6020043
crossref_primary_10_1016_j_egyr_2024_04_024
crossref_primary_10_1016_j_est_2021_102955
crossref_primary_10_1016_j_est_2024_111380
crossref_primary_10_3390_en18030525
crossref_primary_10_1016_j_est_2025_117660
crossref_primary_10_1016_j_applthermaleng_2022_118823
crossref_primary_10_1016_j_enconman_2025_120484
crossref_primary_10_1088_2753_3751_ad5726
crossref_primary_10_1016_j_renene_2022_10_097
crossref_primary_10_1016_j_est_2025_117782
crossref_primary_10_1016_j_enconman_2022_116322
crossref_primary_10_1016_j_enconman_2023_116941
crossref_primary_10_1016_j_est_2025_115800
crossref_primary_10_1016_j_energy_2023_128837
crossref_primary_10_1016_j_renene_2025_123938
crossref_primary_10_1016_j_applthermaleng_2024_124028
crossref_primary_10_1016_j_energy_2024_133360
crossref_primary_10_1016_j_est_2024_115195
crossref_primary_10_3390_en16093871
crossref_primary_10_1016_j_applthermaleng_2025_126080
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125367
crossref_primary_10_3390_en16237818
crossref_primary_10_1016_j_heliyon_2024_e39193
crossref_primary_10_1038_d41586_024_04128_0
crossref_primary_10_1016_j_enconman_2024_118519
crossref_primary_10_1002_adma_202313023
crossref_primary_10_1016_j_est_2024_113108
crossref_primary_10_1016_j_applthermaleng_2023_121947
crossref_primary_10_1016_j_apenergy_2024_123015
crossref_primary_10_1016_j_apenergy_2024_124226
crossref_primary_10_1016_j_est_2024_112496
crossref_primary_10_3390_app14146073
crossref_primary_10_3390_pr10050977
crossref_primary_10_1016_j_apenergy_2025_126248
crossref_primary_10_1016_j_jclepro_2022_132591
crossref_primary_10_1016_j_applthermaleng_2024_124295
crossref_primary_10_1016_j_ecmx_2025_101065
crossref_primary_10_1016_j_est_2024_111619
crossref_primary_10_1016_j_est_2022_104282
crossref_primary_10_1016_j_est_2024_112143
crossref_primary_10_1016_j_energy_2025_135385
crossref_primary_10_1016_j_enconman_2024_119050
Cites_doi 10.1016/j.applthermaleng.2012.03.030
10.1016/j.energy.2012.03.013
10.1016/j.rser.2016.10.065
10.1051/e3sconf/201913701037
10.1016/j.rser.2015.12.289
10.1016/0017-9310(87)90059-7
10.1016/j.apenergy.2018.04.128
10.1016/j.apenergy.2014.02.071
10.1016/j.apenergy.2014.09.081
10.1016/j.ijheatmasstransfer.2016.05.040
10.1016/j.enconman.2017.09.047
10.1016/j.enconman.2018.01.056
10.1016/j.enconman.2020.112530
10.1016/j.egypro.2017.09.235
10.1016/j.rser.2016.07.028
10.1016/j.applthermaleng.2017.03.050
10.1016/j.apenergy.2019.03.067
10.1016/j.applthermaleng.2017.04.127
10.1016/j.apenergy.2014.07.109
10.1016/j.apenergy.2018.06.133
10.1016/j.energy.2012.03.031
10.1016/j.apenergy.2012.11.050
10.1016/j.ijrefrig.2015.03.008
10.1016/j.energy.2014.03.049
10.1016/j.apenergy.2013.08.077
10.1002/app.20578
10.1016/j.egypro.2014.12.423
10.1016/j.tsep.2018.01.017
10.1016/j.applthermaleng.2009.10.002
10.1016/S0196-8904(98)00025-9
10.1016/j.energy.2017.12.087
10.1016/j.energy.2020.118963
10.1016/j.energy.2012.09.057
10.1115/1.2792199
10.1016/j.apenergy.2019.03.087
10.1016/j.energy.2012.02.010
10.1016/j.energy.2016.07.080
10.1016/j.enconman.2019.02.022
10.1016/j.renene.2014.11.036
10.1016/j.renene.2014.10.068
10.1115/1.4023392
10.1016/j.applthermaleng.2015.02.046
10.1016/j.rser.2019.109334
10.3390/su10010191
10.1080/10407780290059800
10.1016/j.apenergy.2016.11.091
10.1016/j.energy.2019.01.153
10.1016/j.apenergy.2018.05.103
10.1016/j.rser.2018.06.044
10.1093/ijlct/ctt022
10.1016/j.energy.2017.07.066
10.1016/j.est.2018.04.016
10.1016/j.renene.2015.04.027
10.1016/j.apenergy.2014.08.039
10.1016/j.energy.2011.08.003
10.1016/j.energy.2018.01.045
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
JLOSS
Q33
DOI 10.1016/j.est.2020.101756
DatabaseName CrossRef
Université de Liège - Open Repository and Bibliography (ORBI) (Open Access titles only)
Université de Liège - Open Repository and Bibliography (ORBI)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2352-1538
ExternalDocumentID oai_orbi_ulg_ac_be_2268_251473
10_1016_j_est_2020_101756
S2352152X20315930
GroupedDBID --M
0R~
457
4G.
7-5
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAKOC
AALRI
AAOAW
AARIN
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AFKWA
AFTJW
AGHFR
AGUBO
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
KOM
O9-
OAUVE
ROL
SPC
SPCBC
SSB
SSD
SSR
SST
SSZ
T5K
~G-
AAQFI
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
JLOSS
Q33
ID FETCH-LOGICAL-c450t-4c0d527ed5bbe97eb50b91f75a5aa4f829156b0b5cefe56f881b77a8423cddce3
ISICitedReferencesCount 293
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000599943200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-152X
2352-1538
IngestDate Sat Nov 29 01:20:31 EST 2025
Thu Nov 13 04:29:50 EST 2025
Tue Nov 18 20:42:36 EST 2025
Fri Feb 23 02:46:58 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Electrical storage
Review
Pumped thermal energy storage
Carnot battery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c450t-4c0d527ed5bbe97eb50b91f75a5aa4f829156b0b5cefe56f881b77a8423cddce3
Notes scopus-id:2-s2.0-85091484261
ORCID 0000-0002-0654-8435
OpenAccessLink https://orbi.uliege.be/handle/2268/251473
ParticipantIDs liege_orbi_v2_oai_orbi_ulg_ac_be_2268_251473
crossref_primary_10_1016_j_est_2020_101756
crossref_citationtrail_10_1016_j_est_2020_101756
elsevier_sciencedirect_doi_10_1016_j_est_2020_101756
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of energy storage
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Morandin, Maréchal, Mercangöz, Buchter (bib0027) 2012; 45
Antonelli, Barsali, Desideri, Giglioli, Paganucci, Pasini (bib0081) 2017; 194
Hasnain (bib0061) 1998
Yang (bib0073) 2018
Dumont, Lemort (bib0050) 2020
Obi, Bass (bib0007) 2016; 58
Luo, Wang, Dooner, Clarke, Krupke (bib0013) 2014; 62
Jockenhöfer, Steinmann, Bauer (bib0035) 2018; 145
Okazaki, Yasuyuki, Taketsune (bib0052) 2015; 83
White, Parks, Markides (bib0021) 2013; 53
Frate, Antonelli, Desideri (bib0033) 2017; 121
Mehling, Cabeza (bib0066) 2008
(bib0001) 2016
Dumont, Carmo, Fontaine, Randaxhe, Quoilin, Lemort, Elmegaard, Nielsen (bib0046) 2016
Hou, Zhang, Du, Miao, Peng, Kang (bib0006) 2019; 242
Guo, Cai, Chen, Zhou (bib0022) 2016; 113
Shao (bib0068) 2016
.
Schimpf, Uitz, Span (bib0045) 2011
Lee, You (bib0083) 2019; 242
consulted on the 10/10/2019.
Frate G, Antonelli, Desideri (bib0032) 2017
BMWi (bib0089) 2010
Howes (bib0020) 2012
Ge (bib0070) 2013
Farres-Antunez, Xue, White (bib0023) 2018; 18
Gimeno-Gutiérrez, Lacal-Arántegui (bib0003) 2015; 75
Tafone, Borri, Comodi, van denBroek, Romagnoli (bib0082) 2018; 228
Benato, Stoppato (bib0024) 2018; 147
Roskosch, Atakan (bib0037) 2017; 129
(bib0005) 2018
Dumont, Lemort (bib0039) 2020
Few S., Schmidt O., Offer G.J., Brandon N., Nelson J., Gambhir A.. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert eli.
Henchoz, Buchter, Favrat, Morandin, Mercangöz (bib0034) 2012; 45
Pillai A., Kaya A., De Paepe M., Lecompte S., Performance analysis of an organic rankine cycle for integration in a carnot battery. 5th International Seminar on ORC Power Systems.
Peris, Dumont, Quoilin, Navarro-Esbría (bib0044) 2016
Frate, Ferrari, Desideri (bib0094) 2019; 137
consulted on the 03/06/2019.
consulted on the 14/10/2019.
Steinmann (bib0055) 2014
Argyrou, Christodoulides, Kalogirou (bib0010) 2018; 94
Attonaty, Stouffs, Pouvreau, Oriol, Deydier (bib0018) 2019; 172
Dumont (bib0047) 2017
“Highview Power.” 2019. 2019.
Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a Pumped Thermal Electricity Storage (PTES) system with thermal integration and sensible heat storage, Energy Convers. Manag. 208, doi
Desrues, Ruer, Marty, Fourmigué (bib0019) 2010; 30
Hu, Feng, Liu, Zhang, Xie, Liu (bib0004) 2019; 114
Kotas (bib0059) 1985
Jahnke, Strenge, Fleßner, Wolf, Jungnickel, Ziegler (bib0054) 2013; 8
consulted on the 10/10/2020.
Pal (bib0071) 1997
Lecompte S., Gusev S., Vanslambrouck B., De Paepe M., Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation. Appl. Energy 226, 82–106 10.1016/j.apenergy.2018.05.103.
AES, 2019.
Dumont, Quoilin, Lemort (bib0048) 2015; 54
Sarbu (bib0060) 2018
Furbo (bib0062) 2015
Siemens, 2019.
Damak, Leducq, Hoang, Negro, Delahaye (bib0014) 2019
Steinmann (bib0031) 2014; 69
Dumont, Lemort (bib0042) 2019
Malta, 2019.
Kalaiselvam, Parameshwaran (bib0064) 2014
Gurrum (bib0069) 2002
Krane (bib0077) 1987; 30
Chester, 2019.
Georgiou (bib0093) 2018
Li, Cao, Wang, Jin, Li, Wang, Ding (bib0075) 2014; 113
Lott (bib0078) 2014
WG. (bib0076) 2015
(bib0009) 2018
(bib0088) 2014
Morgan, Nelmes, Gibson, Brett (bib0080) 2015; 137
McTigue, White, Markides (bib0058) 2015; 137
Yang (bib0072) 2017
Smallbone, Jülch, Wardle, Roskilly (bib0017) 2017; 152
Honigmann M.Utilization of exhaust-steam. Specification forming part of Reissued Patent No. 10,675, dated 22 December 1885. Original No. 287,937, dated 6 November 1883. Application for reissue filed 6 October 1884, Serial No. 144,891. United States Patent Office.
(bib0002) 2015
Kim, Shin, Lee, Favrat (bib0028) 2013; 49
Benato, Stoppato (bib0011) 2018; 6
Peng, Fuchs (bib0086) 2004
Gallo, Simões-Moreira (bib0063) 2016
Olivier, G., 2006. Système et Procédé de Gestion d’énergie d'un Véhicule. French patent FR29132117.
consulted on the 15/09/2017. Consulted on the 09/09/2019.
Muñoz, Solé, Barreneche, Cabeza (bib0074) 2015; 76
Luo, Wang, Dooner, Clarke (bib0012) 2015; 137
Staub, Bazan, Braimakis, Müller, Regensburger, Scharrer (bib0038) 2018
Ni, Caram (bib0025) 2015; 84
Mercangöz, Hemrle, Kaufmann, Z'Graggen, Ohler (bib0029) 2012; 45
Fursch, Hagspiel, Jagemann, Nagl, Lindenberger, Troster (bib0091) 2013; 104
Caraino, Nader, Breque, Nemer (bib0049) 2019
Steinmann (bib0015) 2017; 75
Commission (bib0090) 2011
White, McTigue, Markides (bib0026) 2014; 130
Peterson (bib0036) 2011; 36
Wang, Lin, Chai, Peng, Yu, Liu (bib0065) 2019; 185
WG. (bib0087) 2015
Benato (bib0092) 2017; 138
Guo (10.1016/j.est.2020.101756_bib0022) 2016; 113
Benato (10.1016/j.est.2020.101756_bib0092) 2017; 138
Staub (10.1016/j.est.2020.101756_bib0038) 2018
Jockenhöfer (10.1016/j.est.2020.101756_bib0035) 2018; 145
Commission (10.1016/j.est.2020.101756_bib0090) 2011
Frate G (10.1016/j.est.2020.101756_bib0032) 2017
(10.1016/j.est.2020.101756_bib0009) 2018
Frate (10.1016/j.est.2020.101756_bib0033) 2017; 121
10.1016/j.est.2020.101756_bib0040
Yang (10.1016/j.est.2020.101756_bib0072) 2017
10.1016/j.est.2020.101756_bib0084
10.1016/j.est.2020.101756_bib0041
(10.1016/j.est.2020.101756_bib0002) 2015
10.1016/j.est.2020.101756_bib0043
Morgan (10.1016/j.est.2020.101756_bib0080) 2015; 137
WG. (10.1016/j.est.2020.101756_bib0087) 2015
Frate (10.1016/j.est.2020.101756_bib0094) 2019; 137
10.1016/j.est.2020.101756_bib0008
Luo (10.1016/j.est.2020.101756_bib0013) 2014; 62
Sarbu (10.1016/j.est.2020.101756_bib0060) 2018
Hu (10.1016/j.est.2020.101756_bib0004) 2019; 114
Mercangöz (10.1016/j.est.2020.101756_bib0029) 2012; 45
(10.1016/j.est.2020.101756_bib0088) 2014
Benato (10.1016/j.est.2020.101756_bib0011) 2018; 6
Roskosch (10.1016/j.est.2020.101756_bib0037) 2017; 129
Ge (10.1016/j.est.2020.101756_bib0070) 2013
Li (10.1016/j.est.2020.101756_bib0075) 2014; 113
BMWi (10.1016/j.est.2020.101756_bib0089) 2010
Dumont (10.1016/j.est.2020.101756_bib0048) 2015; 54
Ni (10.1016/j.est.2020.101756_bib0025) 2015; 84
White (10.1016/j.est.2020.101756_bib0026) 2014; 130
Morandin (10.1016/j.est.2020.101756_bib0027) 2012; 45
10.1016/j.est.2020.101756_bib0051
10.1016/j.est.2020.101756_bib0095
Kim (10.1016/j.est.2020.101756_bib0028) 2013; 49
10.1016/j.est.2020.101756_bib0096
Dumont (10.1016/j.est.2020.101756_bib0047) 2017
10.1016/j.est.2020.101756_bib0053
Kotas (10.1016/j.est.2020.101756_bib0059) 1985
10.1016/j.est.2020.101756_bib0097
Yang (10.1016/j.est.2020.101756_bib0073) 2018
(10.1016/j.est.2020.101756_bib0005) 2018
10.1016/j.est.2020.101756_bib0057
Luo (10.1016/j.est.2020.101756_bib0012) 2015; 137
10.1016/j.est.2020.101756_bib0016
Benato (10.1016/j.est.2020.101756_bib0024) 2018; 147
Fursch (10.1016/j.est.2020.101756_bib0091) 2013; 104
Mehling (10.1016/j.est.2020.101756_bib0066) 2008
Gallo (10.1016/j.est.2020.101756_bib0063) 2016
Smallbone (10.1016/j.est.2020.101756_bib0017) 2017; 152
Peterson (10.1016/j.est.2020.101756_bib0036) 2011; 36
Kalaiselvam (10.1016/j.est.2020.101756_bib0064) 2014
WG. (10.1016/j.est.2020.101756_bib0076) 2015
Attonaty (10.1016/j.est.2020.101756_bib0018) 2019; 172
Antonelli (10.1016/j.est.2020.101756_bib0081) 2017; 194
Hasnain (10.1016/j.est.2020.101756_bib0061) 1998
Lott (10.1016/j.est.2020.101756_bib0078) 2014
McTigue (10.1016/j.est.2020.101756_bib0058) 2015; 137
Muñoz (10.1016/j.est.2020.101756_bib0074) 2015; 76
Hou (10.1016/j.est.2020.101756_bib0006) 2019; 242
Furbo (10.1016/j.est.2020.101756_bib0062) 2015
Dumont (10.1016/j.est.2020.101756_bib0039) 2020
Howes (10.1016/j.est.2020.101756_bib0020) 2012
Lee (10.1016/j.est.2020.101756_bib0083) 2019; 242
Argyrou (10.1016/j.est.2020.101756_bib0010) 2018; 94
White (10.1016/j.est.2020.101756_bib0021) 2013; 53
Georgiou (10.1016/j.est.2020.101756_bib0093) 2018
Caraino (10.1016/j.est.2020.101756_bib0049) 2019
Dumont (10.1016/j.est.2020.101756_sbref0050) 2020
Jahnke (10.1016/j.est.2020.101756_bib0054) 2013; 8
Desrues (10.1016/j.est.2020.101756_bib0019) 2010; 30
Peng (10.1016/j.est.2020.101756_bib0086) 2004
Pal (10.1016/j.est.2020.101756_bib0071) 1997
Steinmann (10.1016/j.est.2020.101756_bib0015) 2017; 75
Farres-Antunez (10.1016/j.est.2020.101756_bib0023) 2018; 18
Steinmann (10.1016/j.est.2020.101756_bib0031) 2014; 69
Dumont (10.1016/j.est.2020.101756_bib0042) 2019
Shao (10.1016/j.est.2020.101756_bib0068) 2016
Steinmann (10.1016/j.est.2020.101756_bib0055) 2014
Krane (10.1016/j.est.2020.101756_bib0077) 1987; 30
Gimeno-Gutiérrez (10.1016/j.est.2020.101756_bib0003) 2015; 75
10.1016/j.est.2020.101756_bib0079
(10.1016/j.est.2020.101756_bib0001) 2016
Okazaki (10.1016/j.est.2020.101756_bib0052) 2015; 83
Henchoz (10.1016/j.est.2020.101756_bib0034) 2012; 45
Schimpf (10.1016/j.est.2020.101756_bib0045) 2011
Gurrum (10.1016/j.est.2020.101756_bib0069) 2002
Tafone (10.1016/j.est.2020.101756_bib0082) 2018; 228
Dumont (10.1016/j.est.2020.101756_bib0046) 2016
Wang (10.1016/j.est.2020.101756_bib0065) 2019; 185
Obi (10.1016/j.est.2020.101756_bib0007) 2016; 58
Peris (10.1016/j.est.2020.101756_bib0044) 2016
Damak (10.1016/j.est.2020.101756_bib0014) 2019
References_xml – volume: 242
  start-page: 205
  year: 2019
  end-page: 215
  ident: bib0006
  article-title: Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China
  publication-title: Appl. Energy
– volume: 114
  year: 2019
  ident: bib0004
  article-title: State estimation for advanced battery management: key challenges and future trends
  publication-title: Renew. Sustain. Energy Rev.
– volume: 53
  start-page: 291
  year: 2013
  end-page: 298
  ident: bib0021
  article-title: Thermodynamic analysis of pumped thermal electricity storage
  publication-title: Appl. Therm. Eng.
– start-page: 31
  year: 2015
  end-page: 47
  ident: bib0062
  article-title: Using water for heat storage in thermal energy storage (TES) systems
  publication-title: Advances in Thermal Energy Storage Systems
– volume: 129
  start-page: 1026
  year: 2017
  end-page: 1033
  ident: bib0037
  article-title: Pumped heat electricity storage: potential analysis and orc requirements
  publication-title: Energy Procedia
– start-page: 1
  year: 2017
  end-page: 12
  ident: bib0032
  article-title: Pumped thermal electricity storage: an interesting technology for power-to-heat applications
  publication-title: 30th Int. Conf. Effic. Cost, Optim. Simul. Environ. Impact Energy Syst. ECOS 2017, International Measurement Confederation
– start-page: 543
  year: 2014
  end-page: 552
  ident: bib0055
  article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage
  publication-title: Energy
– volume: 76
  start-page: 465
  year: 2015
  end-page: 469
  ident: bib0074
  article-title: Corrosion of metal containers for use in PCM energy storage
  publication-title: Renew, Energy
– volume: 75
  start-page: 856
  year: 2015
  end-page: 868
  ident: bib0003
  article-title: Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs
  publication-title: Renew. Energy
– volume: 113
  start-page: 693
  year: 2016
  end-page: 701
  ident: bib0022
  article-title: Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system
  publication-title: Energy
– reference: Siemens, 2019.
– start-page: 777
  year: 2002
  end-page: 790
  ident: bib0069
  article-title: Thermal management of high temperature pulsed electronics using metallic phase change materials
  publication-title: Numer. Heat Transf. Part A
– volume: 130
  start-page: 648
  year: 2014
  end-page: 657
  ident: bib0026
  article-title: Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage
  publication-title: Appl. Energy
– volume: 94
  start-page: 804
  year: 2018
  end-page: 821
  ident: bib0010
  article-title: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications
  publication-title: Renew. Sustain. Energy Rev.
– reference: consulted on the 15/09/2017. Consulted on the 09/09/2019.
– year: 2014
  ident: bib0078
  article-title: Technology Roadmap: Energy storage
– year: 2011
  ident: bib0090
  article-title: Energy Roadmap 2050
– start-page: 11
  year: 2018
  ident: bib0038
  article-title: Reversible heat pump-organic rankine cycle systems for the storage of renewable electricity
  publication-title: Energies
– volume: 104
  start-page: 642
  year: 2013
  end-page: 652
  ident: bib0091
  article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050
  publication-title: Appl. Energy
– volume: 84
  start-page: 34
  year: 2015
  end-page: 44
  ident: bib0025
  article-title: Analysis of pumped heat electricity storage process using exponential matrix solutions
  publication-title: Appl. Therm. Eng.
– volume: 6
  start-page: 301
  year: 2018
  end-page: 315
  ident: bib0011
  article-title: Pumped thermal electricity storage: a technology overview
  publication-title: Therm. Sci. Eng. Prog.
– start-page: 34
  year: 2017
  end-page: 41
  ident: bib0072
  article-title: Evaluation and optimisation of low melting point metal PCM heat sink against ultra-high thermal shock
  publication-title: Appl. Therm. Eng.
– start-page: 29
  year: 1985
  end-page: 56
  ident: bib0059
  article-title: Basic exergy concepts
  publication-title: The Exergy Method of Thermal Plant Analysis
– volume: 58
  start-page: 1082
  year: 2016
  end-page: 1094
  ident: bib0007
  article-title: Trends and challenges of grid-connected photovoltaic systems - a review
  publication-title: Renew. Sustain Energy Rev.
– start-page: 800
  year: 2016
  end-page: 822
  ident: bib0063
  article-title: Energy storage in the energy transition context: a technology review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 194
  start-page: 522
  year: 2017
  end-page: 529
  ident: bib0081
  article-title: Liquid air energy storage: potential and challenges of hybrid power plants
  publication-title: Appl. Energy
– year: 2020
  ident: bib0050
  article-title: First Experimental Results of a Thermally Integrated Carnot Battery Using a Reversible Heat Pump / Organic Rankine Cycle
  publication-title: 2nd international workshop on Carnot batteries
– reference: Olivier, G., 2006. Système et Procédé de Gestion d’énergie d'un Véhicule. French patent FR29132117.
– start-page: 11
  year: 2016
  end-page: 2018
  ident: bib0046
  article-title: Performance of a reversible heat pump / organic Rankine cycle unit coupled with a passive house to get a Positive Energy Building
  publication-title: J. Build. Perform. Simul.
– volume: 45
  start-page: 358
  year: 2012
  end-page: 365
  ident: bib0034
  article-title: Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles
  publication-title: Energy
– start-page: 1127
  year: 1998
  end-page: 1138
  ident: bib0061
  article-title: Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques
  publication-title: Energy Convers. Manag.
– year: 2017
  ident: bib0047
  article-title: Investigation of a Heat Pump Reversible into an Organic Rankine Cycle and its Application in the Building Sector
– volume: 228
  start-page: 1810
  year: 2018
  end-page: 1821
  ident: bib0082
  article-title: Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller
  publication-title: Appl. Energy
– reference: Malta, 2019.
– year: 2008
  ident: bib0066
  article-title: Heat and Cold Storage with PCM
– volume: 145
  start-page: 665
  year: 2018
  end-page: 676
  ident: bib0035
  article-title: Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration
  publication-title: Energy
– year: 2018
  ident: bib0009
  article-title: South Australia's Tesla Battery on Track to Make Back a Third of Cost in a Year
– volume: 242
  start-page: 168
  year: 2019
  end-page: 180
  ident: bib0083
  article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy
  publication-title: Appl. Energy
– reference: Lecompte S., Gusev S., Vanslambrouck B., De Paepe M., Experimental results of a small-scale organic Rankine cycle: steady state identification and application to off-design model validation. Appl. Energy 226, 82–106 10.1016/j.apenergy.2018.05.103.
– volume: 45
  start-page: 407
  year: 2012
  end-page: 415
  ident: bib0029
  article-title: Electrothermal energy storage with transcritical CO2 cycles
  publication-title: Energy
– start-page: 191
  year: 2018
  ident: bib0060
  article-title: A comprehensive review of thermal energy storage
  publication-title: Sustainability
– volume: 18
  start-page: 90
  year: 2018
  end-page: 102
  ident: bib0023
  article-title: Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle.
  publication-title: J. Energy Storage
– volume: 185
  start-page: 593
  year: 2019
  end-page: 602
  ident: bib0065
  article-title: Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage
  publication-title: Energy Convers. Manag.
– volume: 30
  start-page: 425
  year: 2010
  end-page: 432
  ident: bib0019
  article-title: A thermal energy storage process for large scale electric applications
  publication-title: Appl. Therm. Eng.
– year: 2013
  ident: bib0070
  article-title: Keeping smartphones cool with gallium phase change material
  publication-title: J. Heat Transf.
– start-page: 764
  year: 2016
  end-page: 771
  ident: bib0068
  article-title: Figure-of-merit for phase-change materials used in thermal management
  publication-title: Int. J. Heat Mass Transf.
– year: 2012
  ident: bib0020
  article-title: Concept and Development of a Pumped Heat Electricity Storage Device
– volume: 49
  start-page: 484
  year: 2013
  end-page: 501
  ident: bib0028
  article-title: Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage
  publication-title: Energy
– reference: Pillai A., Kaya A., De Paepe M., Lecompte S., Performance analysis of an organic rankine cycle for integration in a carnot battery. 5th International Seminar on ORC Power Systems.
– start-page: 1119
  year: 2018
  end-page: 1133
  ident: bib0093
  article-title: A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems
  publication-title: Appl. energy
– volume: 54
  start-page: 190
  year: 2015
  end-page: 203
  ident: bib0048
  article-title: Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building
  publication-title: Int. J. Refrig.
– start-page: 467
  year: 2018
  end-page: 476
  ident: bib0073
  article-title: Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock
  publication-title: Energy Convers. Manag.
– year: 2010
  ident: bib0089
  article-title: Energiekonzept für eine Umweltschonende, Zuverlässige und Bezahlbare Energieversorgung
– volume: 8
  start-page: i55
  year: 2013
  end-page: i61
  ident: bib0054
  article-title: First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage
  publication-title: Int. J. Low-Carbon Technol.
– volume: 83
  start-page: 332
  year: 2015
  end-page: 338
  ident: bib0052
  article-title: Concept study of wind power utilising direct thermal energy conversion and thermal energy storage
  publication-title: Renew. Energy
– volume: 137
  start-page: 845
  year: 2015
  end-page: 853
  ident: bib0080
  article-title: Liquid air energy storage - analysis and first results from a pilot scale demonstration plant
  publication-title: Appl. Energy
– start-page: 40
  year: 1997
  end-page: 50
  ident: bib0071
  article-title: Application of phase change materials to thermal control of electronic modules: a computational study
  publication-title: J. Electron. Packag.
– reference: AES, 2019.
– year: 2015
  ident: bib0002
  article-title: Renewable Energy in the Clean Power Plan
– year: 2020
  ident: bib0039
  article-title: Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery
  publication-title: Energy
– reference: , consulted on the 10/10/2019.
– start-page: 1240
  year: 2004
  end-page: 1251
  ident: bib0086
  article-title: Polymeric phase change composites for thermal energy storage
  publication-title: J. Appl. Polym. Sci.
– volume: 75
  start-page: 205
  year: 2017
  end-page: 219
  ident: bib0015
  article-title: Thermo-mechanical concepts for bulk energy storage
  publication-title: Renew. Sustain. Energy Rev.
– volume: 113
  start-page: 1710
  year: 2014
  end-page: 1716
  ident: bib0075
  article-title: Load Shifting of nuclear power plants using cryogenic energy storage technology
  publication-title: Appl, Energy
– year: 2019
  ident: bib0049
  article-title: Assesing fuel consumption reduction of revercycle: a reversible mobile air conditioning/organic Rankine cycle system
  publication-title: Proceeding of ORC conference
– reference: Honigmann M.Utilization of exhaust-steam. Specification forming part of Reissued Patent No. 10,675, dated 22 December 1885. Original No. 287,937, dated 6 November 1883. Application for reissue filed 6 October 1884, Serial No. 144,891. United States Patent Office.
– reference: Few S., Schmidt O., Offer G.J., Brandon N., Nelson J., Gambhir A.. Prospective improvements in cost and cycle life of off-grid lithium-ion battery packs: an analysis informed by expert eli.
– volume: 45
  start-page: 375
  year: 2012
  end-page: 385
  ident: bib0027
  article-title: Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case
  publication-title: Energy
– year: 2018
  ident: bib0005
  article-title: World Energy Outlook 2018
– reference: , consulted on the 03/06/2019.
– reference: Chester, 2019.
– volume: 137
  start-page: 511
  year: 2015
  end-page: 536
  ident: bib0012
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl. Energy
– volume: 137
  start-page: 800
  year: 2015
  end-page: 811
  ident: bib0058
  article-title: Parametric studies and optimisation of pumped thermal electricity storage
  publication-title: Appl. Energy
– volume: 152
  start-page: 221
  year: 2017
  end-page: 228
  ident: bib0017
  article-title: Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies
  publication-title: Energy Convers. Manag.
– reference: Frate, G.F., Ferrari, L., Desideri, U., Multi-criteria investigation of a Pumped Thermal Electricity Storage (PTES) system with thermal integration and sensible heat storage, Energy Convers. Manag. 208, doi:
– year: 2019
  ident: bib0014
  article-title: Liquid Air Energy Storage(LAES) as a large-scale storage technology for renewable energy integration - a review of investigation studies and near perspectives of LAES
  publication-title: Int. J. Refrig.
– reference: “Highview Power.” 2019. 2019.
– year: 2014
  ident: bib0064
  article-title: Thermal energy storage technologies for sustainability systems design
  publication-title: Assess. Appl.
– reference: consulted on the 14/10/2019.
– year: 2016
  ident: bib0044
  article-title: Internal combustion engines cooling water valorisation through invertible HTHP/ORC systems
  publication-title: Symposium Waste Heat Valorisation in Industrial Processes, Kortrijk, Belgium
– year: 2011
  ident: bib0045
  article-title: Simulation of a solar assisted combined heat pump-organic Rankine cycle system
  publication-title: Proceedings of World renewable Energy Congress, 2011
– volume: 138
  start-page: 419
  year: 2017
  end-page: 436
  ident: bib0092
  article-title: Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system
  publication-title: Energy
– reference: consulted on the 10/10/2020.
– year: 2019
  ident: bib0042
  article-title: Thermo-technical approach to characterise the performance of a reversible heat pump/organic Rankine cycle power system depending on its operational conditions
  publication-title: Proceedings of the ECOS 2019 – The 32st International Conference on Efficiency, Cost, Optimisation, Simulation and Environmental Impact of Energy Systems
– volume: 121
  start-page: 1051
  year: 2017
  end-page: 1058
  ident: bib0033
  article-title: A novel pumped thermal electricity storage (PTES) system with thermal integration
  publication-title: Appl. Therm. Eng.
– volume: 62
  start-page: 603
  year: 2014
  end-page: 611
  ident: bib0013
  article-title: Overview of current development in compressed air energy storage technology
  publication-title: Energy Procedia
– reference: .
– volume: 172
  start-page: 1132
  year: 2019
  end-page: 1143
  ident: bib0018
  article-title: Thermodynamic analysis of a 200MWh electricity storage system based on high temperature thermal energy storage
  publication-title: Energy
– volume: 30
  start-page: 43
  year: 1987
  end-page: 57
  ident: bib0077
  article-title: A Second Law analysis of the optimum design and operation of thermal energy storage systems
  publication-title: Int. J. Heat Mass Transf.
– year: 2015
  ident: bib0076
  article-title: Compact Thermal Energy Storage: Material Development and System Integration
– year: 2015
  ident: bib0087
  article-title: Compact Thermal Energy Storage: Material Development and System Integration
– year: 2014
  ident: bib0088
  article-title: Technology Roadmap, Energy Storage
– volume: 69
  start-page: 543
  year: 2014
  end-page: 552
  ident: bib0031
  article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage
  publication-title: Energy
– volume: 147
  start-page: 155
  year: 2018
  end-page: 168
  ident: bib0024
  article-title: Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system
  publication-title: Energy
– volume: 137
  start-page: 01037
  year: 2019
  ident: bib0094
  article-title: Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications
  publication-title: E3S Web Conf
– year: 2016
  ident: bib0001
  article-title: Clean Energy for All Europeans
– volume: 36
  start-page: 6098
  year: 2011
  end-page: 6109
  ident: bib0036
  article-title: A concept for storing utility-scale electrical energy in the form of latent heat
  publication-title: Energy
– year: 2014
  ident: 10.1016/j.est.2020.101756_bib0088
– volume: 53
  start-page: 291
  year: 2013
  ident: 10.1016/j.est.2020.101756_bib0021
  article-title: Thermodynamic analysis of pumped thermal electricity storage
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.03.030
– volume: 45
  start-page: 407
  year: 2012
  ident: 10.1016/j.est.2020.101756_bib0029
  article-title: Electrothermal energy storage with transcritical CO2 cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.013
– volume: 75
  start-page: 205
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0015
  article-title: Thermo-mechanical concepts for bulk energy storage
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.10.065
– year: 2014
  ident: 10.1016/j.est.2020.101756_bib0064
  article-title: Thermal energy storage technologies for sustainability systems design
  publication-title: Assess. Appl.
– ident: 10.1016/j.est.2020.101756_bib0053
– ident: 10.1016/j.est.2020.101756_bib0095
– volume: 137
  start-page: 01037
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0094
  article-title: Critical review and economic feasibility analysis of electric energy storage technologies suited for grid scale applications
  publication-title: E3S Web Conf
  doi: 10.1051/e3sconf/201913701037
– volume: 58
  start-page: 1082
  year: 2016
  ident: 10.1016/j.est.2020.101756_bib0007
  article-title: Trends and challenges of grid-connected photovoltaic systems - a review
  publication-title: Renew. Sustain Energy Rev.
  doi: 10.1016/j.rser.2015.12.289
– volume: 30
  start-page: 43
  year: 1987
  ident: 10.1016/j.est.2020.101756_bib0077
  article-title: A Second Law analysis of the optimum design and operation of thermal energy storage systems
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(87)90059-7
– ident: 10.1016/j.est.2020.101756_bib0040
– year: 2011
  ident: 10.1016/j.est.2020.101756_bib0090
– year: 2018
  ident: 10.1016/j.est.2020.101756_bib0009
– start-page: 1119
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0093
  article-title: A thermo-economic analysis and comparison of pumped-thermal and liquid-air electricity storage systems
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2018.04.128
– volume: 130
  start-page: 648
  year: 2014
  ident: 10.1016/j.est.2020.101756_bib0026
  article-title: Wave propagation and thermodynamic losses in packed-bed thermal reservoirs for energy storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.02.071
– year: 2016
  ident: 10.1016/j.est.2020.101756_bib0001
– volume: 137
  start-page: 511
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0012
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.09.081
– start-page: 764
  year: 2016
  ident: 10.1016/j.est.2020.101756_bib0068
  article-title: Figure-of-merit for phase-change materials used in thermal management
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.05.040
– volume: 152
  start-page: 221
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0017
  article-title: Levelised cost of storage for pumped heat energy storage in comparison with other energy storage technologies
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2017.09.047
– ident: 10.1016/j.est.2020.101756_bib0008
– start-page: 467
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0073
  article-title: Finned heat pipe assisted low melting point metal PCM heat sink against extremely high power thermal shock
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.01.056
– ident: 10.1016/j.est.2020.101756_bib0057
  doi: 10.1016/j.enconman.2020.112530
– volume: 129
  start-page: 1026
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0037
  article-title: Pumped heat electricity storage: potential analysis and orc requirements
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.235
– year: 2015
  ident: 10.1016/j.est.2020.101756_bib0002
– start-page: 800
  year: 2016
  ident: 10.1016/j.est.2020.101756_bib0063
  article-title: Energy storage in the energy transition context: a technology review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.07.028
– start-page: 34
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0072
  article-title: Evaluation and optimisation of low melting point metal PCM heat sink against ultra-high thermal shock
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.050
– volume: 242
  start-page: 205
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0006
  article-title: Probabilistic duck curve in high PV penetration power system: concept, modeling, and empirical analysis in China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.067
– volume: 121
  start-page: 1051
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0033
  article-title: A novel pumped thermal electricity storage (PTES) system with thermal integration
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.04.127
– volume: 137
  start-page: 845
  issue: January
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0080
  article-title: Liquid air energy storage - analysis and first results from a pilot scale demonstration plant
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.07.109
– volume: 228
  start-page: 1810
  issue: October
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0082
  article-title: Liquid air energy storage performance enhancement by means of organic rankine cycle and absorption chiller
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.133
– volume: 45
  start-page: 375
  year: 2012
  ident: 10.1016/j.est.2020.101756_bib0027
  article-title: Conceptual design of a thermo-electrical energy storage system based on heat integration of thermodynamic cycles – Part A: Methodology and base case
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.031
– start-page: 31
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0062
  article-title: Using water for heat storage in thermal energy storage (TES) systems
– volume: 104
  start-page: 642
  year: 2013
  ident: 10.1016/j.est.2020.101756_bib0091
  article-title: The role of grid extensions in a cost-efficient transformation of the European electricity system until 2050
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.11.050
– volume: 54
  start-page: 190
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0048
  article-title: Experimental investigation of a reversible heat pump/organic Rankine cycle unit designed to be coupled with a passive house to get a Net Zero Energy Building
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2015.03.008
– volume: 69
  start-page: 543
  year: 2014
  ident: 10.1016/j.est.2020.101756_bib0031
  article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.049
– ident: 10.1016/j.est.2020.101756_bib0041
– start-page: 29
  year: 1985
  ident: 10.1016/j.est.2020.101756_bib0059
  article-title: Basic exergy concepts
– year: 2012
  ident: 10.1016/j.est.2020.101756_bib0020
– volume: 113
  start-page: 1710
  issue: January
  year: 2014
  ident: 10.1016/j.est.2020.101756_bib0075
  article-title: Load Shifting of nuclear power plants using cryogenic energy storage technology
  publication-title: Appl, Energy
  doi: 10.1016/j.apenergy.2013.08.077
– start-page: 1240
  year: 2004
  ident: 10.1016/j.est.2020.101756_bib0086
  article-title: Polymeric phase change composites for thermal energy storage
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20578
– year: 2020
  ident: 10.1016/j.est.2020.101756_sbref0050
  article-title: First Experimental Results of a Thermally Integrated Carnot Battery Using a Reversible Heat Pump / Organic Rankine Cycle
– volume: 62
  start-page: 603
  year: 2014
  ident: 10.1016/j.est.2020.101756_bib0013
  article-title: Overview of current development in compressed air energy storage technology
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.12.423
– start-page: 1
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0032
  article-title: Pumped thermal electricity storage: an interesting technology for power-to-heat applications
– year: 2008
  ident: 10.1016/j.est.2020.101756_bib0066
– volume: 6
  start-page: 301
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0011
  article-title: Pumped thermal electricity storage: a technology overview
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2018.01.017
– volume: 30
  start-page: 425
  year: 2010
  ident: 10.1016/j.est.2020.101756_bib0019
  article-title: A thermal energy storage process for large scale electric applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2009.10.002
– start-page: 1127
  year: 1998
  ident: 10.1016/j.est.2020.101756_bib0061
  article-title: Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(98)00025-9
– volume: 145
  start-page: 665
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0035
  article-title: Detailed numerical investigation of a pumped thermal energy storage with low temperature heat integration
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.087
– year: 2014
  ident: 10.1016/j.est.2020.101756_bib0078
– year: 2016
  ident: 10.1016/j.est.2020.101756_bib0044
  article-title: Internal combustion engines cooling water valorisation through invertible HTHP/ORC systems
– year: 2020
  ident: 10.1016/j.est.2020.101756_bib0039
  article-title: Mapping of performance of pumped thermal energy storage (Carnot battery) using waste heat recovery
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118963
– volume: 49
  start-page: 484
  year: 2013
  ident: 10.1016/j.est.2020.101756_bib0028
  article-title: Isothermal transcritical CO2 cycles with TES (thermal energy storage) for electricity storage
  publication-title: Energy
  doi: 10.1016/j.energy.2012.09.057
– start-page: 11
  year: 2016
  ident: 10.1016/j.est.2020.101756_bib0046
  article-title: Performance of a reversible heat pump / organic Rankine cycle unit coupled with a passive house to get a Positive Energy Building
  publication-title: J. Build. Perform. Simul.
– start-page: 40
  year: 1997
  ident: 10.1016/j.est.2020.101756_bib0071
  article-title: Application of phase change materials to thermal control of electronic modules: a computational study
  publication-title: J. Electron. Packag.
  doi: 10.1115/1.2792199
– ident: 10.1016/j.est.2020.101756_bib0097
– ident: 10.1016/j.est.2020.101756_bib0051
– year: 2015
  ident: 10.1016/j.est.2020.101756_bib0087
– volume: 242
  start-page: 168
  issue: May
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0083
  article-title: Systems design and analysis of liquid air energy storage from liquefied natural gas cold energy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.087
– volume: 45
  start-page: 358
  year: 2012
  ident: 10.1016/j.est.2020.101756_bib0034
  article-title: Thermoeconomic analysis of a solar enhanced energy storage concept based on thermodynamic cycles
  publication-title: Energy
  doi: 10.1016/j.energy.2012.02.010
– year: 2019
  ident: 10.1016/j.est.2020.101756_bib0049
  article-title: Assesing fuel consumption reduction of revercycle: a reversible mobile air conditioning/organic Rankine cycle system
– volume: 113
  start-page: 693
  year: 2016
  ident: 10.1016/j.est.2020.101756_bib0022
  article-title: Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.080
– year: 2017
  ident: 10.1016/j.est.2020.101756_bib0047
– volume: 185
  start-page: 593
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0065
  article-title: Unbalanced mass flow rate of packed bed thermal energy storage and its influence on the Joule-Brayton based Pumped Thermal Electricity Storage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.02.022
– volume: 76
  start-page: 465
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0074
  article-title: Corrosion of metal containers for use in PCM energy storage
  publication-title: Renew, Energy
  doi: 10.1016/j.renene.2014.11.036
– volume: 75
  start-page: 856
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0003
  article-title: Assessment of the European potential for pumped hydropower energy storage based on two existing reservoirs
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.10.068
– year: 2013
  ident: 10.1016/j.est.2020.101756_bib0070
  article-title: Keeping smartphones cool with gallium phase change material
  publication-title: J. Heat Transf.
  doi: 10.1115/1.4023392
– volume: 84
  start-page: 34
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0025
  article-title: Analysis of pumped heat electricity storage process using exponential matrix solutions
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.02.046
– year: 2018
  ident: 10.1016/j.est.2020.101756_bib0005
– year: 2015
  ident: 10.1016/j.est.2020.101756_bib0076
– volume: 114
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0004
  article-title: State estimation for advanced battery management: key challenges and future trends
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109334
– year: 2019
  ident: 10.1016/j.est.2020.101756_bib0042
  article-title: Thermo-technical approach to characterise the performance of a reversible heat pump/organic Rankine cycle power system depending on its operational conditions
– start-page: 191
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0060
  article-title: A comprehensive review of thermal energy storage
  publication-title: Sustainability
  doi: 10.3390/su10010191
– year: 2019
  ident: 10.1016/j.est.2020.101756_bib0014
  article-title: Liquid Air Energy Storage(LAES) as a large-scale storage technology for renewable energy integration - a review of investigation studies and near perspectives of LAES
  publication-title: Int. J. Refrig.
– start-page: 777
  year: 2002
  ident: 10.1016/j.est.2020.101756_bib0069
  article-title: Thermal management of high temperature pulsed electronics using metallic phase change materials
  publication-title: Numer. Heat Transf. Part A
  doi: 10.1080/10407780290059800
– volume: 194
  start-page: 522
  issue: May
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0081
  article-title: Liquid air energy storage: potential and challenges of hybrid power plants
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.091
– volume: 172
  start-page: 1132
  year: 2019
  ident: 10.1016/j.est.2020.101756_bib0018
  article-title: Thermodynamic analysis of a 200MWh electricity storage system based on high temperature thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.153
– ident: 10.1016/j.est.2020.101756_bib0084
  doi: 10.1016/j.apenergy.2018.05.103
– ident: 10.1016/j.est.2020.101756_bib0079
– year: 2010
  ident: 10.1016/j.est.2020.101756_bib0089
– volume: 94
  start-page: 804
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0010
  article-title: Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.06.044
– start-page: 11
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0038
  article-title: Reversible heat pump-organic rankine cycle systems for the storage of renewable electricity
  publication-title: Energies
– year: 2011
  ident: 10.1016/j.est.2020.101756_bib0045
  article-title: Simulation of a solar assisted combined heat pump-organic Rankine cycle system
– volume: 8
  start-page: i55
  year: 2013
  ident: 10.1016/j.est.2020.101756_bib0054
  article-title: First cycle simulations of the Honigmann process with LiBr/H2O and NaOH/H2O as working fluid pairs as a thermochemical energy storage
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/ctt022
– volume: 138
  start-page: 419
  year: 2017
  ident: 10.1016/j.est.2020.101756_bib0092
  article-title: Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.066
– volume: 18
  start-page: 90
  issue: August
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0023
  article-title: Thermodynamic analysis and optimisation of a combined liquid air and pumped thermal energy storage cycle.
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2018.04.016
– volume: 83
  start-page: 332
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0052
  article-title: Concept study of wind power utilising direct thermal energy conversion and thermal energy storage
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.04.027
– volume: 137
  start-page: 800
  year: 2015
  ident: 10.1016/j.est.2020.101756_bib0058
  article-title: Parametric studies and optimisation of pumped thermal electricity storage
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.08.039
– ident: 10.1016/j.est.2020.101756_bib0096
– volume: 36
  start-page: 6098
  year: 2011
  ident: 10.1016/j.est.2020.101756_bib0036
  article-title: A concept for storing utility-scale electrical energy in the form of latent heat
  publication-title: Energy
  doi: 10.1016/j.energy.2011.08.003
– start-page: 543
  year: 2014
  ident: 10.1016/j.est.2020.101756_bib0055
  article-title: The CHEST (Compressed Heat Energy STorage) concept for facility scale thermo mechanical energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.049
– ident: 10.1016/j.est.2020.101756_bib0043
– ident: 10.1016/j.est.2020.101756_bib0016
– volume: 147
  start-page: 155
  year: 2018
  ident: 10.1016/j.est.2020.101756_bib0024
  article-title: Heat transfer fluid and material selection for an innovative pumped thermal electricity storage system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.045
SSID ssj0001651196
Score 2.6201024
Snippet •There is a need for large scale electrical energy storage.•The Carnot battery allows to store electricity at low cost with no geographical constraints.•Each...
The growth of renewable energy requires flexible, low-cost and efficient electrical storage to balance the mismatch between energy supply and demand. The...
SourceID liege
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 101756
SubjectTerms Carnot battery
Electrical storage
Energie
Energy
Engineering, computing & technology
Ingénierie, informatique & technologie
Pumped thermal energy storage
Review
Title Carnot battery technology: A state-of-the-art review
URI https://dx.doi.org/10.1016/j.est.2020.101756
https://orbi.uliege.be/handle/2268/251473
Volume 32
WOSCitedRecordID wos000599943200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 2352-1538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001651196
  issn: 2352-152X
  databaseCode: AIEXJ
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZglwMcUHmJlody4AS4Sh17bXNblVaAqsKhoL1ZtuNUW62Sah9Vf37HjyTLql3RA5coiuIomflkfxnPfIPQB53LqihLibl2OaaMaOw1SLARJreSuIKG0MCfE356KiYT-StVXC9COwFe1-L6Wl7-V1fDNXC2L529h7u7h8IFOAenwxHcDsd_cvyhntfN8pMJwpnALbvYeaxrDhVEuKkwMD-fFpeKV-4gqS6WBvoUSn3eYeDrCr4mzN4_Z1O_sHYo8MITIdS-mpZN7NrhFrbpJmDf4yjkD4xLoP_dknDifGp7HBr7rK1HI8hmZkdbJtPPYgQYHgaSMLl1vo6hg4t9WAH3_eOC7BO7RRt7Y836Sx27mZupWs3OlbbKOAWEUiigbZQXD9GQcCbFAA3H348mP_ro28jvn8bOg-n9-vNCtNvfIRFw493uIjDDmc9yWCMnZzvoaXJYNo5oeIYeuPo5erKmNfkC0YiLLOEi63HxJdPZJiqyiIqX6Pfx0dnhN5xaZmBLWb7E1OYlI9yVzBgnuTMsN_Kg4kwzrWkliIT_dZMbZl3l2KgS8NfCuRZAqm1ZWle8QoO6qd1rlFFpKu134lhhqR6NgJpbKgpXScOJO-C7KG_toGzSk_dtTWaqTRy8UGA65U2noul20cduyGUUU9l2M22NqxIbjCxPAXi2DfscHBFRcUXUdoTs3e_2N-hxj_q3aLCcr9w79MheLaeL-fuEshs2f48-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carnot+battery+technology%3A+a+state-of-the-art+review&rft.jtitle=Journal+of+energy+storage&rft.au=Dumont%2C+Olivier&rft.au=Frate%2C+Guido+Francesco&rft.au=Pillai%2C+Aditya&rft.au=Lecompte%2C+Steven&rft.date=2020-12-01&rft.pub=Elsevier&rft.issn=2352-152X&rft_id=info:doi/10.1016%2Fj.est.2020.101756&rft.externalDBID=n%2Fa&rft.externalDocID=oai_orbi_ulg_ac_be_2268_251473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon