A novel large-scale EV charging scheduling algorithm considering V2G and reactive power management based on ADMM

Electric vehicle aggregators (EVAs) that utilize vehicle-to-grid (V2G) technologies can function as both controllable loads and virtual power plants, providing key energy management services to the distribution system operator (DSO). EVAs can also balance the grid’s reactive power as a virtual stati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Frontiers in energy research Ročník 11
Hlavní autoři: Zhang, Chen, Sheinberg, Rachel, Narayana Gowda, Shashank, Sherman, Michael, Ahmadian, Amirhossein, Gadh, Rajit
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Frontiers Research Foundation 09.05.2023
Frontiers Media S.A
Témata:
ISSN:2296-598X, 2296-598X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Electric vehicle aggregators (EVAs) that utilize vehicle-to-grid (V2G) technologies can function as both controllable loads and virtual power plants, providing key energy management services to the distribution system operator (DSO). EVAs can also balance the grid’s reactive power as a virtual static VAR compensator (SVC) and provide voltage stability by utilizing advanced electric vehicle (EV) chargers that are capable of four-quadrant operations to provide reactive power management. Finally, managed charging can benefit EVAs themselves by minimizing power factor penalties in their electricity bills. In this paper, we propose a novel EV charging scheduling algorithm based on a hierarchical distributed optimization framework that minimizes peak load and provides reactive power compensation for the DSO by collaboration with EVAs that manage both the active and the reactive charging and discharging power of participating EVs. Utilizing the alternative direction method of multipliers (ADMM), the proposed distributed optimization approach scales well with increased EV charging infrastructure by balancing active and reactive power while decreasing computational burden. In our proposed hierarchical approach, each EVA schedules the active and reactive EV charging and discharging power for 1) reactive power compensation in order to minimize power factor penalty and electricity cost accrued by the EVA, 2) satisfaction of each EV’s energy demand at minimal charging cost, and 3) peak shaving and load management for the DSO. When compared with an uncoordinated charging model, the efficacy of this proposed model is successfully demonstrated through a 300% decreased peak EV load for the DSO, 28% lower electricity costs for EV users, and 98.55% smaller power factor penalty, along with 17.58% lower overall electricity costs, for EVAs. The performance of our approach is validated in a case study with 50 EVs at multiple EVAs in an IEEE 13-bus test case and compared the results with uncoordinated EV charging.
AbstractList Electric vehicle aggregators (EVAs) that utilize vehicle-to-grid (V2G) technologies can function as both controllable loads and virtual power plants, providing key energy management services to the distribution system operator (DSO). EVAs can also balance the grid’s reactive power as a virtual static VAR compensator (SVC) and provide voltage stability by utilizing advanced electric vehicle (EV) chargers that are capable of four-quadrant operations to provide reactive power management. Finally, managed charging can benefit EVAs themselves by minimizing power factor penalties in their electricity bills. In this paper, we propose a novel EV charging scheduling algorithm based on a hierarchical distributed optimization framework that minimizes peak load and provides reactive power compensation for the DSO by collaboration with EVAs that manage both the active and the reactive charging and discharging power of participating EVs. Utilizing the alternative direction method of multipliers (ADMM), the proposed distributed optimization approach scales well with increased EV charging infrastructure by balancing active and reactive power while decreasing computational burden. In our proposed hierarchical approach, each EVA schedules the active and reactive EV charging and discharging power for 1) reactive power compensation in order to minimize power factor penalty and electricity cost accrued by the EVA, 2) satisfaction of each EV’s energy demand at minimal charging cost, and 3) peak shaving and load management for the DSO. When compared with an uncoordinated charging model, the efficacy of this proposed model is successfully demonstrated through a 300% decreased peak EV load for the DSO, 28% lower electricity costs for EV users, and 98.55% smaller power factor penalty, along with 17.58% lower overall electricity costs, for EVAs. The performance of our approach is validated in a case study with 50 EVs at multiple EVAs in an IEEE 13-bus test case and compared the results with uncoordinated EV charging.
Author Zhang, Chen
Sherman, Michael
Gadh, Rajit
Sheinberg, Rachel
Narayana Gowda, Shashank
Ahmadian, Amirhossein
Author_xml – sequence: 1
  givenname: Chen
  surname: Zhang
  fullname: Zhang, Chen
– sequence: 2
  givenname: Rachel
  surname: Sheinberg
  fullname: Sheinberg, Rachel
– sequence: 3
  givenname: Shashank
  surname: Narayana Gowda
  fullname: Narayana Gowda, Shashank
– sequence: 4
  givenname: Michael
  surname: Sherman
  fullname: Sherman, Michael
– sequence: 5
  givenname: Amirhossein
  surname: Ahmadian
  fullname: Ahmadian, Amirhossein
– sequence: 6
  givenname: Rajit
  surname: Gadh
  fullname: Gadh, Rajit
BackLink https://www.osti.gov/servlets/purl/2424370$$D View this record in Osti.gov
BookMark eNp9UctOHDEQHCEiQQg_wMniPhu_ZsZzXBFCkEC5JCg3q223Z41m7ZXtEPH3mWWJFHHg1NWlqlKr62NzHFPEprlgdCWEGj97jHlaccrFitFBUT4cNaecj33bjerX8X_4pDkv5ZFSygTvJKOnzW5NYnrCmcyQJ2yLhRnJ9QOxm2UPcSLFbtD9nvcQ5inlUDdbYlMswWHesw_8hkB0JCPYGp6Q7NIfzGQLESbcYqzEQEFHUiTrL_f3n5oPHuaC56_zrPn59frH1bf27vvN7dX6rrWyo7UVDuzQjaOnvZIMlRXomOcj7zvoRwNoQHaDYr1hg2d-cI4710tvhRGDMUycNbeHXJfgUe9y2EJ-1gmCfiFSnjTkGuyM2vVgvB-lksZJqyiMIE2nlFOD63pqlqzLQ1YqNehiQ0W7WX4Q0VbNJZdioItIHUQ2p1Iyer3ooIYUa4Ywa0b1vi390pbet6Vf21qs_I31373vmP4C7RucTQ
CitedBy_id crossref_primary_10_3390_wevj14110310
crossref_primary_10_1109_OJITS_2025_3593437
crossref_primary_10_3390_su17093847
crossref_primary_10_1063_5_0212427
Cites_doi 10.1016/j.apenergy.2020.115285
10.1109/TDC.2018.8440531
10.1109/PMAPS.2018.8440360
10.1109/TPWRS.2015.2472957
10.1007/s10107-014-0841-6
10.3390/en13051162
10.1016/j.apenergy.2016.10.117
10.1109/PESW.2001.916993
10.1109/TPWRS.2012.2221750
10.1109/TPWRS.2012.2210288
10.1016/j.apenergy.2013.04.094
10.1109/TSG.2014.2384202
10.1109/TPEL.2013.2251007
10.1109/TVT.2014.2316153
10.1109/TSG.2015.2495181
10.1109/59.336109
10.3389/fenrg.2021.705066
10.3389/fenrg.2021.811964
10.1016/j.est.2020.102114
10.1561/2200000016
10.1109/TSG.2018.2816404
10.3390/en15020589
10.1016/j.neucom.2018.05.073
10.1016/j.enpol.2017.11.015
10.3390/wevj12040236
10.1109/COMST.2016.2518628
10.3389/fenrg.2022.873262
10.1109/ACCESS.2019.2939595
10.1109/PESGM.2018.8586132
10.1016/j.apenergy.2016.12.065
10.1109/TSG.2015.2509030
10.1016/j.jpowsour.2016.10.048
10.1016/j.energy.2019.06.118
10.1109/ICPEE50452.2021.9358582
10.1016/j.jclepro.2020.125203
10.1109/TPWRS.2018.2829021
10.3389/fenrg.2021.713510
10.1016/j.apenergy.2018.07.092
10.1016/j.ijepes.2019.105661
10.1109/TPWRS.2016.2582903
10.1016/j.enconman.2015.11.066
10.1109/TSG.2020.2995923
10.1109/TII.2018.2829710
10.1109/TVT.2015.2504264
10.1016/j.apenergy.2019.113490
10.1016/j.jpowsour.2016.09.116
10.1016/j.epsr.2019.03.003
10.3390/en11010178
10.1021/acssuschemeng.1c05490
10.1016/j.rser.2019.109618
10.1109/TSG.2010.2045163
10.1109/TPWRS.2015.2395723
10.1109/TIA.2015.2483705
10.1016/j.apenergy.2016.05.034
ContentType Journal Article
CorporateAuthor Univ. of California, Los Angeles, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Los Angeles, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOA
DOI 10.3389/fenrg.2023.1078027
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-598X
ExternalDocumentID oai_doaj_org_article_d6abff9484bd4c80a9a4b588d87d560b
2424370
10_3389_fenrg_2023_1078027
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
2XV
ACXDI
IAO
IEA
ISR
OIOZB
OTOTI
ID FETCH-LOGICAL-c450t-3dac7599f06841e8c3ed1f29265a69baeba457816b17f1f7dd2dd64fc3b37bb13
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000993716400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2296-598X
IngestDate Fri Oct 03 12:50:31 EDT 2025
Mon Feb 03 04:56:55 EST 2025
Sat Nov 29 03:07:04 EST 2025
Tue Nov 18 21:26:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-3dac7599f06841e8c3ed1f29265a69baeba457816b17f1f7dd2dd64fc3b37bb13
Notes USDOE
OpenAccessLink https://doaj.org/article/d6abff9484bd4c80a9a4b588d87d560b
ParticipantIDs doaj_primary_oai_doaj_org_article_d6abff9484bd4c80a9a4b588d87d560b
osti_scitechconnect_2424370
crossref_citationtrail_10_3389_fenrg_2023_1078027
crossref_primary_10_3389_fenrg_2023_1078027
PublicationCentury 2000
PublicationDate 2023-05-09
PublicationDateYYYYMMDD 2023-05-09
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-09
  day: 09
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Frontiers in energy research
PublicationYear 2023
Publisher Frontiers Research Foundation
Frontiers Media S.A
Publisher_xml – name: Frontiers Research Foundation
– name: Frontiers Media S.A
References Zha (B58) 2018; 311
Gao (B18) 2014; 63
Karfopoulos (B29) 2016; 31
Xiong (B54) 2018
(B36) 2022
Thurner (B47) 2018; 33
Gandhi (B17) 2021; 9
Han (B22) 2010; 1
Forrest (B14) 2016; 336
Colmenar-Santos (B8) 2019; 183
Khaki (B31) 2018
Rivera (B45) 2017; 8
Li (B35) 2019; 172
Mehboob (B38) 2019; 10
Haidar (B21) 2016; 52
Fang (B13) 2021; 9
Tan (B46) 1994; 9
Uddin (B49) 2018; 113
(B39) 2021
Peng (B43) 2017; 190
Bishop (B3) 2013; 111
Gowda (B19) 2019
Meelen (B37) 2021; 290
Kou (B33) 2020; 11
Zhang (B59) 2017; 32
Karfopoulos (B28) 2016; 31
Gan (B16) 2013; 28
Yi (B56) 2020; 117
(B48) 2022
Hussain (B26) 2021; 33
Hu (B23) 2021; 9
Kersting (B30) 2001
Al-Ogaili (B1) 2019; 7
Boyd (B4) 2010; 3
Wu (B53) 2019; 253
Wang (B52) 2019; 15
Ravi (B61) 2022; 15
Brinkel (B5) 2020; 276
Wang (B51); 18
Freund (B15) 2016; 155
Pinto (B44) 2015
Bhattarai (B2) 2015; 6
(B6) 2020
Faia (B12) 2021; 9
Wang (B50); 332
Xydas (B55) 2016; 177
Jian (B27) 2017; 186
Kisacikoglu (B32) 2013; 28
Lenka (B34) 2021
Pearre (B42) 2016; 109
Das (B9) 2020; 120
Zhang (B60) 2018; 229
Huda (B25) 2020; 13
Ortega-Vazquez (B41) 2013; 28
de Hoog (B10) 2016; 7
Chung (B7) 2018
Deb (B11) 2018; 11
Huber (B24) 2021; 12
Yu (B57) 2022; 10
Nikkhah Mojdehi (B40) 2016; 65
(B20) 2020
References_xml – volume: 276
  start-page: 115285
  year: 2020
  ident: B5
  article-title: Should we reinforce the grid? Cost and emission optimization of electric vehicle charging under different transformer limits
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115285
– year: 2018
  ident: B31
  article-title: A hierarchical ADMM based framework for EV charging scheduling
  doi: 10.1109/TDC.2018.8440531
– volume-title: Standard commercial/industrial rates
  year: 2022
  ident: B36
– year: 2018
  ident: B7
  article-title: Electric vehicle user behavior prediction using hybrid kernel density estimator
  doi: 10.1109/PMAPS.2018.8440360
– volume: 31
  start-page: 2834
  year: 2016
  ident: B29
  article-title: Distributed coordination of electric vehicles providing V2G regulation services
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2472957
– volume: 155
  start-page: 199
  year: 2016
  ident: B15
  article-title: New analysis and results for the Frank–Wolfe method
  publication-title: Math. Program
  doi: 10.1007/s10107-014-0841-6
– volume: 13
  start-page: 1162
  year: 2020
  ident: B25
  article-title: Techno economic analysis of vehicle to grid (V2G) integration as distributed energy resources in Indonesia power system
  publication-title: Energies (Basel)
  doi: 10.3390/en13051162
– volume: 186
  start-page: 46
  year: 2017
  ident: B27
  article-title: High efficient valley-filling strategy for centralized coordinated charging of large-scale electric vehicles
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.117
– year: 2001
  ident: B30
  article-title: Radial distribution test feeders
  doi: 10.1109/PESW.2001.916993
– volume: 28
  start-page: 1806
  year: 2013
  ident: B41
  article-title: Electric vehicle aggregator/system operator coordination for charging scheduling and services procurement
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2221750
– volume: 28
  start-page: 940
  year: 2013
  ident: B16
  article-title: Optimal decentralized protocol for electric vehicle charging
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2012.2210288
– volume: 111
  start-page: 206
  year: 2013
  ident: B3
  article-title: Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.04.094
– volume: 6
  start-page: 784
  year: 2015
  ident: B2
  article-title: Optimizing electric vehicle coordination over a heterogeneous mesh network in a scaled-down smart grid testbed
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2384202
– volume: 28
  start-page: 5717
  year: 2013
  ident: B32
  article-title: EV/PHEV bidirectional charger assessment for V2G reactive power operation
  publication-title: IEEE Trans. Power Electron
  doi: 10.1109/TPEL.2013.2251007
– volume: 63
  start-page: 3019
  year: 2014
  ident: B18
  article-title: Integrated energy management of plug-in electric vehicles in power grid with renewables
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2014.2316153
– volume: 7
  start-page: 827
  year: 2016
  ident: B10
  article-title: A market mechanism for electric vehicle charging under network constraints
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2495181
– volume: 9
  start-page: 1517
  year: 1994
  ident: B46
  article-title: Static VAR compensators for critical synchronous motor loads during voltage dips
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.336109
– volume: 9
  year: 2021
  ident: B12
  article-title: Local electricity markets for electric vehicles: An application study using a decentralized iterative approach
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.705066
– volume: 9
  year: 2021
  ident: B13
  article-title: Multi-objective comprehensive charging/discharging scheduling strategy for electric vehicles based on the improved particle swarm optimization algorithm
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.811964
– volume: 33
  start-page: 102114
  year: 2021
  ident: B26
  article-title: Optimal management strategies to solve issues of grid having electric vehicles (ev): A review
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2020.102114
– volume: 3
  start-page: 1
  year: 2010
  ident: B4
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume-title: End-use load profiles for the U.S. Building Stock
  year: 2021
  ident: B39
– volume: 10
  start-page: 2999
  year: 2019
  ident: B38
  article-title: Smart operation of electric vehicles with four-quadrant chargers considering Uncertainties
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2816404
– volume: 15
  year: 2022
  ident: B61
  article-title: Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives
  publication-title: Energies (Basel)
  doi: 10.3390/en15020589
– volume: 311
  start-page: 209
  year: 2018
  ident: B58
  article-title: Non-convex weighted ℓ nuclear norm based ADMM framework for image restoration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.073
– volume: 113
  start-page: 342
  year: 2018
  ident: B49
  article-title: The viability of vehicle-to-grid operations from a battery technology and policy perspective
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2017.11.015
– volume: 12
  start-page: 236
  year: 2021
  ident: B24
  article-title: Vehicle to grid impacts on the total cost of ownership for electric vehicle drivers
  publication-title: World Electr. Veh. J.
  doi: 10.3390/wevj12040236
– volume: 18
  start-page: 1500
  ident: B51
  article-title: Smart charging for electric vehicles: A survey from the algorithmic perspective
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2016.2518628
– volume: 10
  year: 2022
  ident: B57
  article-title: Optimal regulation strategy of electric vehicle charging and discharging based on dynamic regional dispatching price
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.873262
– volume: 7
  start-page: 128353
  year: 2019
  ident: B1
  article-title: Review on scheduling, clustering, and forecasting strategies for controlling electric vehicle charging: Challenges and recommendations
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939595
– volume-title: IEEE power and energy society
  year: 2018
  ident: B54
  article-title: Electric vehicle driver clustering using statistical model and machine learning
  doi: 10.1109/PESGM.2018.8586132
– volume-title: Treasury releases initial information on electric vehicle tax credit under newly enacted inflation reduction act
  year: 2022
  ident: B48
– volume: 190
  start-page: 591
  year: 2017
  ident: B43
  article-title: An optimal dispatching strategy for V2G aggregator participating in supplementary frequency regulation considering EV driving demand and aggregator’s benefits
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.065
– volume: 8
  start-page: 1852
  year: 2017
  ident: B45
  article-title: Distributed convex optimization for electric vehicle aggregators
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2015.2509030
– volume: 336
  start-page: 63
  year: 2016
  ident: B14
  article-title: Charging a renewable future: The impact of electric vehicle charging intelligence on energy storage requirements to meet renewable portfolio standards
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.048
– volume: 183
  start-page: 61
  year: 2019
  ident: B8
  article-title: Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.118
– year: 2021
  ident: B34
  article-title: Reactive power compensation using vehicle-to-grid enabled bidirectional off-board EV battery charger
  doi: 10.1109/ICPEE50452.2021.9358582
– volume: 290
  start-page: 125203
  year: 2021
  ident: B37
  article-title: Vehicle-to-Grid in the UK fleet market: An analysis of upscaling potential in a changing environment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.125203
– volume: 33
  start-page: 6510
  year: 2018
  ident: B47
  article-title: Pandapower - an open-source Python tool for convenient modeling, analysis, and optimization of electric power systems
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2018.2829021
– volume: 9
  year: 2021
  ident: B23
  article-title: Assessment for voltage violations considering reactive power compensation provided by smart inverters in distribution network
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2021.713510
– volume: 229
  start-page: 96
  year: 2018
  ident: B60
  article-title: A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.07.092
– volume: 117
  start-page: 105661
  year: 2020
  ident: B56
  article-title: A highly efficient control framework for centralized residential charging coordination of large electric vehicle populations
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105661
– start-page: 1
  year: 2019
  ident: B19
  article-title: Transmission, distribution deferral and congestion relief services by electric vehicles
– volume: 32
  start-page: 1451
  year: 2017
  ident: B59
  article-title: Scalable electric vehicle charging protocols
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2016.2582903
– volume: 109
  start-page: 130
  year: 2016
  ident: B42
  article-title: Electric vehicle charging to support renewable energy integration in a capacity constrained electricity grid
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.11.066
– volume: 11
  start-page: 4871
  year: 2020
  ident: B33
  article-title: A scalable and distributed algorithm for managing residential demand response programs using alternating direction method of multipliers (ADMM)
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.2995923
– volume: 15
  start-page: 54
  year: 2019
  ident: B52
  article-title: Coordinated electric vehicle charging with reactive power support to distribution grids
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2829710
– volume: 65
  start-page: 4572
  year: 2016
  ident: B40
  article-title: An on-demand compensation function for an EV as a reactive power service provider
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2015.2504264
– volume: 253
  start-page: 113490
  year: 2019
  ident: B53
  article-title: A hierarchical charging control of plug-in electric vehicles with simple flexibility model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113490
– volume: 332
  start-page: 193
  ident: B50
  article-title: Quantifying electric vehicle battery degradation from driving vs. vehicle-to-grid services
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.116
– start-page: 37
  year: 2015
  ident: B44
  article-title: An electric vehicle charging station: Monitoring and analysis of power quality
– volume: 172
  start-page: 152
  year: 2019
  ident: B35
  article-title: An MPC based optimized control approach for EV-based voltage regulation in distribution grid
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2019.03.003
– volume: 11
  start-page: 178
  year: 2018
  ident: B11
  article-title: Impact of electric vehicle charging station load on distribution network
  publication-title: Energies (Basel)
  doi: 10.3390/en11010178
– volume-title: Executive Order N-79-20
  year: 2020
  ident: B6
– volume: 9
  start-page: 14975
  year: 2021
  ident: B17
  article-title: City-wide modeling of vehicle-to-grid economics to understand effects of battery performance
  publication-title: ACS Sustain Chem. Eng.
  doi: 10.1021/acssuschemeng.1c05490
– volume: 120
  start-page: 109618
  year: 2020
  ident: B9
  article-title: Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.109618
– volume: 1
  start-page: 65
  year: 2010
  ident: B22
  article-title: Development of an optimal vehicle-to-grid aggregator for frequency regulation
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2010.2045163
– volume: 31
  start-page: 329
  year: 2016
  ident: B28
  article-title: Distributed coordination of electric vehicles providing V2G services
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2015.2395723
– volume-title: Gurobi optimizer reference manual
  year: 2020
  ident: B20
– volume: 52
  start-page: 483
  year: 2016
  ident: B21
  article-title: Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2015.2483705
– volume: 177
  start-page: 354
  year: 2016
  ident: B55
  article-title: A multi-agent based scheduling algorithm for adaptive electric vehicles charging
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.05.034
SSID ssj0001325410
Score 2.2724478
Snippet Electric vehicle aggregators (EVAs) that utilize vehicle-to-grid (V2G) technologies can function as both controllable loads and virtual power plants, providing...
SourceID doaj
osti
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms EV aggregator
EV charging scheduling
hierarchical ADMM
POWER TRANSMISSION AND DISTRIBUTION
reactive power management
V2G
Title A novel large-scale EV charging scheduling algorithm considering V2G and reactive power management based on ADMM
URI https://www.osti.gov/servlets/purl/2424370
https://doaj.org/article/d6abff9484bd4c80a9a4b588d87d560b
Volume 11
WOSCitedRecordID wos000993716400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2296-598X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001325410
  issn: 2296-598X
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQxQEOqHyJpRT5wA2FOrHjj-NStnDZigNUvVm2xy5I22TVLj3y2zuThFVOcOGSSJajRM9jj180fo-xdwnplksgKtNosjCzsoqqhQqyAe1kq-VkNmHOz-3lpfs6s_qimrBRHngE7gR0iKU4ZVUElawILqjYWgvWAGbrSKuvMG5Gpoa_KxKJTy3GUzLIwtxJweG4-kBm4UhYjRVkIzPLRINgP956nFizBHN2yJ5MO0O-HL_oKXuQu2fs8Uwv8DnbLnnX3-UN31D9dnWL-Ga-uuCD3BH24EhVMXXQCXMeNlc9Ev8f1zxNnpzUetF85qEDjlvFYaHjW3JJ49f7IhhOaQ143_Hlp_X6Bft-tvp2-qWaLBOqpFqxqySEZFrnitBW1dkmmaEujWt0G7SLIcegcI7WOtam1MUANABalSSjNDHW8iU76Pouv2I8pyB1XYRKTikwbYzaZSjKNCBARrNg9R_4fJr0xMnWYuORVxDkfoDcE-R-gnzB3u-f2Y5qGn_t_ZFGZd-TlLCHBowPP8WH_1d8LNgRjanHDQWp4iYqH0o7T6dipBGv_8crjtgj-uyhDNK9YQe7m1_5mD1Md7uftzdvh8DE6_r36h5c8enw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+large-scale+EV+charging+scheduling+algorithm+considering+V2G+and+reactive+power+management+based+on+ADMM&rft.jtitle=Frontiers+in+energy+research&rft.au=Zhang%2C+Chen&rft.au=Sheinberg%2C+Rachel&rft.au=Narayana+Gowda%2C+Shashank&rft.au=Sherman%2C+Michael&rft.date=2023-05-09&rft.pub=Frontiers+Research+Foundation&rft.issn=2296-598X&rft.eissn=2296-598X&rft.volume=11&rft_id=info:doi/10.3389%2Ffenrg.2023.1078027&rft.externalDocID=2424370
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-598X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-598X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-598X&client=summon