MEDnet, a neural network for automated detection of avascular area in OCT angiography

Screening and assessing diabetic retinopathy (DR) are essential for reducing morbidity associated with diabetes. Macular ischemia is known to correlate with the severity of retinopathy. Recent studies have shown that optical coherence tomography angiography (OCTA), with intrinsic contrast from blood...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Biomedical optics express Ročník 9; číslo 11; s. 5147 - 5158
Hlavní autoři: Guo, Yukun, Camino, Acner, Wang, Jie, Huang, David, Hwang, Thomas S., Jia, Yali
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Optical Society of America 01.11.2018
ISSN:2156-7085, 2156-7085
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Screening and assessing diabetic retinopathy (DR) are essential for reducing morbidity associated with diabetes. Macular ischemia is known to correlate with the severity of retinopathy. Recent studies have shown that optical coherence tomography angiography (OCTA), with intrinsic contrast from blood flow motion, is well suited for quantified analysis of the avascular area, which is potentially a useful biomarker in DR. In this study, we propose the first deep learning solution to segment the avascular area in OCTA of DR. The network design consists of a multi-scaled encoder-decoder neural network (MEDnet) to detect the non-perfusion area in 6 × 6 mm and in ultra-wide field retinal angiograms. Avascular areas were effectively detected in DR subjects of various disease stages as well as in the foveal avascular zone of healthy subjects.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2156-7085
2156-7085
DOI:10.1364/BOE.9.005147