Emotional deep learning programming controller for automatic voltage control of power systems

In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep le...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 9; s. 1
Hlavní autoři: Yin, Linfei, Zhang, Chenwei, Wang, Yaoxiong, Gao, Fang, Yu, Jun, Cheng, Lefeng
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2021
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep learning programming controller (EDLPC) for automatic voltage control of power systems. The designed EDLPC contains an emotional deep neural network (EDNN) structure and an artificial emotional Q-learning algorithm. Besides, a specially defined proportional-integral-derivative (PID) controller is added to the deep neural networks (DNNs) structure as the actuator of an EDNN to realize the automatic tuning of PID controller parameters. In terms of control, the controller combines the advantages of the EDNN and PID controller, meanwhile adopts a reinforcement learning algorithm to optimize the parameters. From the perspective of reinforcement learning, embedding prior knowledge into the output instructions of EDNN is helpful to weaken the fitting problem in the training process. Compared with the outputs of the DNN and Q-learning algorithm under the two cases, the EDLPC could gain the highest control performance with smaller voltage deviations. The simulation results verify the feasibility and effectiveness of the proposed method for automatic voltage control of power systems.
AbstractList In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep learning programming controller (EDLPC) for automatic voltage control of power systems. The designed EDLPC contains an emotional deep neural network (EDNN) structure and an artificial emotional Q-learning algorithm. Besides, a specially defined proportional-integral-derivative (PID) controller is added to the deep neural networks (DNNs) structure as the actuator of an EDNN to realize the automatic tuning of PID controller parameters. In terms of control, the controller combines the advantages of the EDNN and PID controller, meanwhile adopts a reinforcement learning algorithm to optimize the parameters. From the perspective of reinforcement learning, embedding prior knowledge into the output instructions of EDNN is helpful to weaken the fitting problem in the training process. Compared with the outputs of the DNN and Q-learning algorithm under the two cases, the EDLPC could gain the highest control performance with smaller voltage deviations. The simulation results verify the feasibility and effectiveness of the proposed method for automatic voltage control of power systems.
Author Wang, Yaoxiong
Yin, Linfei
Zhang, Chenwei
Gao, Fang
Cheng, Lefeng
Yu, Jun
Author_xml – sequence: 1
  givenname: Linfei
  surname: Yin
  fullname: Yin, Linfei
  organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China. (e-mail: yinlinfei@163.com)
– sequence: 2
  givenname: Chenwei
  surname: Zhang
  fullname: Zhang, Chenwei
  organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China
– sequence: 3
  givenname: Yaoxiong
  surname: Wang
  fullname: Wang, Yaoxiong
  organization: Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 4
  givenname: Fang
  surname: Gao
  fullname: Gao, Fang
  organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China
– sequence: 5
  givenname: Jun
  surname: Yu
  fullname: Yu, Jun
  organization: Department of Automation, University of Science and Technology of China, Hefei 230026, China
– sequence: 6
  givenname: Lefeng
  surname: Cheng
  fullname: Cheng, Lefeng
  organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
BookMark eNp9kFFLwzAUhYNMcM79gr30D3QmTZsmj2NMHQx8mD5KuE1uS0fbjDQq-_d2bhPxwftyL4f7HQ7nlow61yEhM0bnjFF1v1guV9vtPKEJm3MqqEjoFRknTKiYZ1yMft03ZNr3OzqMHKQsH5O3VetC7TpoIou4jxoE39VdFe29qzy07fE2rgveNQ36qHQ-gvfgWgi1iT5cE6DCy0PkymjvPoe3_tAHbPs7cl1C0-P0vCfk9WH1snyKN8-P6-ViE5s0oyFmxlibSSWgUMpmBgQrmSgkSygyVSBnnKoChsjJoBVFqaSVuSxyaVIlU8snZH3ytQ52eu_rFvxBO6j1t-B8pcEPgRvUKc1LQOQchUjz1EiwqUwEs1YgppkavNTJy3jX9x5LbeoAx46Ch7rRjOpj7fpUuz7Wrs-1Dyz_w16y_E_NTlSNiD-E4plMGOdfsJiSCw
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_fractalfract8050300
crossref_primary_10_1016_j_epsr_2024_110711
crossref_primary_10_1016_j_engappai_2023_107129
crossref_primary_10_1016_j_jestch_2023_101499
crossref_primary_10_1049_tje2_12111
crossref_primary_10_1109_ACCESS_2023_3282182
crossref_primary_10_1109_JETCAS_2023_3252667
crossref_primary_10_3389_frai_2023_1289669
crossref_primary_10_1016_j_egyr_2022_01_047
crossref_primary_10_1051_e3sconf_202456404002
crossref_primary_10_1109_ACCESS_2022_3195053
crossref_primary_10_1186_s13677_023_00527_2
crossref_primary_10_1016_j_apenergy_2023_121740
crossref_primary_10_3390_en18112681
crossref_primary_10_1016_j_heliyon_2023_e18707
crossref_primary_10_1016_j_asoc_2024_111825
crossref_primary_10_1016_j_ijepes_2023_109654
crossref_primary_10_1109_TSG_2022_3154718
crossref_primary_10_3390_ai6050103
crossref_primary_10_1016_j_apenergy_2022_119797
crossref_primary_10_1016_j_engappai_2023_106050
crossref_primary_10_3390_en17040764
Cites_doi 10.1109/PTC.2019.8810899
10.1016/j.rser.2017.10.096
10.1016/j.enconman.2019.111793
10.1049/iet-rpg.2017.0351
10.1109/ACCESS.2018.2837082
10.1109/TCDS.2017.2728003
10.1109/ACCESS.2019.2941229
10.1109/TIE.2018.2814013
10.1016/j.ijepes.2017.06.024
10.1016/j.ijepes.2018.07.001
10.1016/j.ijepes.2017.11.035
10.1109/TPWRS.2019.2948132
10.1109/ACCESS.2019.2906980
10.1109/TPWRS.2019.2941134
10.17775/CSEEJPES.2019.01840
10.1109/TSG.2018.2790704
10.1016/j.apenergy.2018.08.042
10.1016/j.asej.2016.02.004
10.1007/978-3-030-12082-5_65
10.1109/JSYST.2018.2830504
10.1007/978-981-13-1405-6_71
10.1002/asjc.1710
10.1002/2050-7038.12176
10.1016/j.isatra.2019.11.031
10.1109/SmartGridComm.2019.8909764
10.1016/j.jfranklin.2018.05.056
10.1016/j.ijhydene.2019.04.174
10.1002/jnm.2718
10.5755/j01.itc.48.1.20296
10.1109/TII.2018.2795584
10.1016/j.enconman.2018.05.097
10.1016/j.rser.2017.10.022
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2021.3060620
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459
10_1109_ACCESS_2021_3060620
9358213
Genre orig-research
GrantInformation_xml – fundername: Department of Education of Guangdong Province Innovative of 2020 and Strong School Project Natural SciencesYoung Innovators Project Natural Sciences
  grantid: 2020KQNCX05
– fundername: University of Science and Technology of China USTC Research Funds of the Double
  grantid: YD2350002001
– fundername: Natural Science Foundation of Guangxi Province
  grantid: 2020GXNSFBA159025; AD19245001
  funderid: 10.13039/501100004607
– fundername: National Natural Science Foundation of China
  grantid: 61720106009; 61773359; U1736123
  funderid: 10.13039/501100001809
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
ID FETCH-LOGICAL-c450t-1ccdd5896ab99d5ca61f16b8120e19be31309ba1692812bbf98d878b78c4984d3
IEDL.DBID DOA
ISICitedReferencesCount 26
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:42:23 EDT 2025
Sat Nov 29 06:11:59 EST 2025
Tue Nov 18 22:27:33 EST 2025
Wed Aug 27 02:49:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c450t-1ccdd5896ab99d5ca61f16b8120e19be31309ba1692812bbf98d878b78c4984d3
ORCID 0000-0003-1816-5420
0000-0002-3197-8103
0000-0002-7007-7535
0000-0001-8343-3669
OpenAccessLink https://doaj.org/article/407faee33e66474c8ad48261dd6ee459
PageCount 1
ParticipantIDs ieee_primary_9358213
doaj_primary_oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459
crossref_citationtrail_10_1109_ACCESS_2021_3060620
crossref_primary_10_1109_ACCESS_2021_3060620
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref16
ref19
ref18
hekimoäÿlu (ref24) 2018
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/PTC.2019.8810899
– ident: ref2
  doi: 10.1016/j.rser.2017.10.096
– ident: ref16
  doi: 10.1016/j.enconman.2019.111793
– ident: ref3
  doi: 10.1049/iet-rpg.2017.0351
– ident: ref25
  doi: 10.1109/ACCESS.2018.2837082
– ident: ref21
  doi: 10.1109/TCDS.2017.2728003
– ident: ref23
  doi: 10.1109/ACCESS.2019.2941229
– ident: ref27
  doi: 10.1109/TIE.2018.2814013
– ident: ref11
  doi: 10.1016/j.ijepes.2017.06.024
– ident: ref26
  doi: 10.1016/j.ijepes.2018.07.001
– ident: ref13
  doi: 10.1016/j.ijepes.2017.11.035
– ident: ref15
  doi: 10.1109/TPWRS.2019.2948132
– ident: ref8
  doi: 10.1109/ACCESS.2019.2906980
– ident: ref14
  doi: 10.1109/TPWRS.2019.2941134
– start-page: 152
  year: 2018
  ident: ref24
  article-title: Grasshopper optimization algorithm for automatic voltage regulator system
  publication-title: Proc 5th Int Conf Electr Electron Eng (ICEEE)
– ident: ref19
  doi: 10.17775/CSEEJPES.2019.01840
– ident: ref22
  doi: 10.1109/TSG.2018.2790704
– ident: ref1
  doi: 10.1016/j.apenergy.2018.08.042
– ident: ref10
  doi: 10.1016/j.asej.2016.02.004
– ident: ref20
  doi: 10.1007/978-3-030-12082-5_65
– ident: ref32
  doi: 10.1109/JSYST.2018.2830504
– ident: ref9
  doi: 10.1007/978-981-13-1405-6_71
– ident: ref30
  doi: 10.1002/asjc.1710
– ident: ref4
  doi: 10.1002/2050-7038.12176
– ident: ref33
  doi: 10.1016/j.isatra.2019.11.031
– ident: ref18
  doi: 10.1109/SmartGridComm.2019.8909764
– ident: ref6
  doi: 10.1016/j.jfranklin.2018.05.056
– ident: ref31
  doi: 10.1016/j.ijhydene.2019.04.174
– ident: ref29
  doi: 10.1002/jnm.2718
– ident: ref7
  doi: 10.5755/j01.itc.48.1.20296
– ident: ref12
  doi: 10.1109/TII.2018.2795584
– ident: ref5
  doi: 10.1016/j.enconman.2018.05.097
– ident: ref28
  doi: 10.1016/j.rser.2017.10.022
SSID ssj0000816957
Score 2.3387613
Snippet In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in...
SourceID doaj
crossref
ieee
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Automatic voltage control
Automatic voltage regulator
Deep learning
emotional deep learning programming controller
emotional deep neural network
Neural networks
Neurons
Power system stability
Training
Tuning
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qEcKC1FLAXkA0cCceL440hXIA4I9VAkLlXkj0mFRHdXu1l-P2PHRFRClXqJLGtiOX6JPeN43gM45cp12vmuEK7ydDGyMMrpInAuXV2itk1KFL5Vd3f64cH82ICzMRcGEdPhMzyPxfQvP8z9Om6VXZiU1llvwqZScsjVGvdTooCEaVQmFuKlubicTukZKASs-Dk5xqWMmt5vFp_E0f-XqEpaU64__V9vdmEn-47scgD7M2zg7Atsv2EU3INfV4MsD5kFxAXLohC_WT6H9SeW8_H0J1wyclmZXffzRNzKaKrqaX55NWDzji2iihob-J5XX-H--urn9KbICgqFF03ZF9z7EBptpHXGhMZbyTvCgBb1ErlxWNMKZpylkauozrnO6KCVdkp7YbQI9T5szeYzPABWCaSmSoqvrBd18DaYJvpi6GnUyWuZQPU6tK3P9OJR5eKpTWFGadoBjzbi0WY8JnA23rQY2DX-bf49YjaaRmrsVEG4tPlLaylC7SxiXaOUQgmvbRAUQ_EQJKJozAT2IpZjIxnGw_erv8HH2INh0-UItvrlGo_hg3_uH1fLk_QKvgCxtNs_
  priority: 102
  providerName: IEEE
Title Emotional deep learning programming controller for automatic voltage control of power systems
URI https://ieeexplore.ieee.org/document/9358213
https://doaj.org/article/407faee33e66474c8ad48261dd6ee459
Volume 9
WOSCitedRecordID wos000623417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADAgqiPCoPjITGiePYYymtGKDqAKgLiuJHEFJpqpIy8ts522kVFlhYrMi6WM7nk-8uuvsOoUuSyoJLVQRURgoGwQKRSh5oQpiMQ8PzxBUK36fjMZ9OxaTR6svmhHl6YA9cDwKOIjcmjg1jNKWK55qCS0y0ZsbQxJXuhaloBFPuDuaEiSStaYZIKHr9wQC-CALCiFyDmxwy2-G7YYocY_-PFivOwoz20V7tGuK-39IB2jLzQ7TbIAxso5eh77oDYrfGLHDNjvqKJz7N6t0-D3z2-cwsMXikuL-qSsfLip_LWQXXx1oAlwWe2CZpuKYtP0JPo-Hj4C6oGyQEiiZhFRCltE64YLkUQicqZ6QAiMFmh4YIaWIwUELmAEUEc1IWgmuecplyRQWnOj5GrXk5NycIR9TAUiGET7misVa5Fol1tYwCGMEp6aBojVWmavZw28RilrkoIhSZBzizAGc1wB10tXlp4ckzfhe_sYewEbXM124C9CGr9SH7Sx86qG2PcLOIcKXA8el_rH2Gdux-_R-Yc9SqlitzgbbVZ_X2sew6DYTx4WvYdXWE31Tc33Y
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BRYIeKI9WbMvDB44E4sRJ7CNdgai6rHqgEhcU-TFBlba7qyXb39-xYyKQEBKXyLImluMvsWccz_cBnPDKNNLYJhEms3RRZaIqIxPHeWnyFKUuQqLwqBqP5d2d-rUCp30uDCKGw2d45ovhX76b2aXfKjtXIa0zX4UPhRBZ2mVr9TsqXkJCFVWkFuKpOr8YDukpKAjM-Bm5xmnpVb2fLT-Bpf-FrEpYVa4-va8_27AVvUd20cG9Ays43YWPzzgF9-D-shPmITOHOGdRFuKBxZNYf305HlCf4IKR08r0sp0F6lZGk1VLM8yTAZs1bO511FjH-Pz4GX5fXd4Or5OooZBYUaRtwq11rpCq1EYpV1hd8oZQoGU9Ra4M5rSGKaNp5DKqM6ZR0slKmkpaoaRw-RdYm86muA8sE0hNpRRhaStyZ7VThffG0NKok98ygOxpaGsbCca9zsWkDoFGquoOj9rjUUc8BnDa3zTv-DXeNv_uMetNPTl2qCBc6vit1RSjNhoxz7EsRSWs1E5QFMWdKxFFoQaw57HsG4kwfn29-hg2rm9vRvXox_jnN9j0vem2YA5grV0s8RDW7b_2z-PiKLyO_wE-Q96G
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotional+Deep+Learning+Programming+Controller+for+Automatic+Voltage+Control+of+Power+Systems&rft.jtitle=IEEE+access&rft.au=Linfei+Yin&rft.au=Chenwei+Zhang&rft.au=Yaoxiong+Wang&rft.au=Fang+Gao&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=31880&rft.epage=31891&rft_id=info:doi/10.1109%2FACCESS.2021.3060620&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon