Emotional deep learning programming controller for automatic voltage control of power systems
In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep le...
Uloženo v:
| Vydáno v: | IEEE access Ročník 9; s. 1 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
IEEE
01.01.2021
|
| Témata: | |
| ISSN: | 2169-3536, 2169-3536 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep learning programming controller (EDLPC) for automatic voltage control of power systems. The designed EDLPC contains an emotional deep neural network (EDNN) structure and an artificial emotional Q-learning algorithm. Besides, a specially defined proportional-integral-derivative (PID) controller is added to the deep neural networks (DNNs) structure as the actuator of an EDNN to realize the automatic tuning of PID controller parameters. In terms of control, the controller combines the advantages of the EDNN and PID controller, meanwhile adopts a reinforcement learning algorithm to optimize the parameters. From the perspective of reinforcement learning, embedding prior knowledge into the output instructions of EDNN is helpful to weaken the fitting problem in the training process. Compared with the outputs of the DNN and Q-learning algorithm under the two cases, the EDLPC could gain the highest control performance with smaller voltage deviations. The simulation results verify the feasibility and effectiveness of the proposed method for automatic voltage control of power systems. |
|---|---|
| AbstractList | In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in the fields of power system stability analysis, coordination along with scheduling and load forecasting. This paper designs an emotional deep learning programming controller (EDLPC) for automatic voltage control of power systems. The designed EDLPC contains an emotional deep neural network (EDNN) structure and an artificial emotional Q-learning algorithm. Besides, a specially defined proportional-integral-derivative (PID) controller is added to the deep neural networks (DNNs) structure as the actuator of an EDNN to realize the automatic tuning of PID controller parameters. In terms of control, the controller combines the advantages of the EDNN and PID controller, meanwhile adopts a reinforcement learning algorithm to optimize the parameters. From the perspective of reinforcement learning, embedding prior knowledge into the output instructions of EDNN is helpful to weaken the fitting problem in the training process. Compared with the outputs of the DNN and Q-learning algorithm under the two cases, the EDLPC could gain the highest control performance with smaller voltage deviations. The simulation results verify the feasibility and effectiveness of the proposed method for automatic voltage control of power systems. |
| Author | Wang, Yaoxiong Yin, Linfei Zhang, Chenwei Gao, Fang Cheng, Lefeng Yu, Jun |
| Author_xml | – sequence: 1 givenname: Linfei surname: Yin fullname: Yin, Linfei organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China. (e-mail: yinlinfei@163.com) – sequence: 2 givenname: Chenwei surname: Zhang fullname: Zhang, Chenwei organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China – sequence: 3 givenname: Yaoxiong surname: Wang fullname: Wang, Yaoxiong organization: Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei 230031, China – sequence: 4 givenname: Fang surname: Gao fullname: Gao, Fang organization: College of Electrical Engineering, Guangxi University, Nanning, Guangxi,530004, China – sequence: 5 givenname: Jun surname: Yu fullname: Yu, Jun organization: Department of Automation, University of Science and Technology of China, Hefei 230026, China – sequence: 6 givenname: Lefeng surname: Cheng fullname: Cheng, Lefeng organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China |
| BookMark | eNp9kFFLwzAUhYNMcM79gr30D3QmTZsmj2NMHQx8mD5KuE1uS0fbjDQq-_d2bhPxwftyL4f7HQ7nlow61yEhM0bnjFF1v1guV9vtPKEJm3MqqEjoFRknTKiYZ1yMft03ZNr3OzqMHKQsH5O3VetC7TpoIou4jxoE39VdFe29qzy07fE2rgveNQ36qHQ-gvfgWgi1iT5cE6DCy0PkymjvPoe3_tAHbPs7cl1C0-P0vCfk9WH1snyKN8-P6-ViE5s0oyFmxlibSSWgUMpmBgQrmSgkSygyVSBnnKoChsjJoBVFqaSVuSxyaVIlU8snZH3ytQ52eu_rFvxBO6j1t-B8pcEPgRvUKc1LQOQchUjz1EiwqUwEs1YgppkavNTJy3jX9x5LbeoAx46Ch7rRjOpj7fpUuz7Wrs-1Dyz_w16y_E_NTlSNiD-E4plMGOdfsJiSCw |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_3390_fractalfract8050300 crossref_primary_10_1016_j_epsr_2024_110711 crossref_primary_10_1016_j_engappai_2023_107129 crossref_primary_10_1016_j_jestch_2023_101499 crossref_primary_10_1049_tje2_12111 crossref_primary_10_1109_ACCESS_2023_3282182 crossref_primary_10_1109_JETCAS_2023_3252667 crossref_primary_10_3389_frai_2023_1289669 crossref_primary_10_1016_j_egyr_2022_01_047 crossref_primary_10_1051_e3sconf_202456404002 crossref_primary_10_1109_ACCESS_2022_3195053 crossref_primary_10_1186_s13677_023_00527_2 crossref_primary_10_1016_j_apenergy_2023_121740 crossref_primary_10_3390_en18112681 crossref_primary_10_1016_j_heliyon_2023_e18707 crossref_primary_10_1016_j_asoc_2024_111825 crossref_primary_10_1016_j_ijepes_2023_109654 crossref_primary_10_1109_TSG_2022_3154718 crossref_primary_10_3390_ai6050103 crossref_primary_10_1016_j_apenergy_2022_119797 crossref_primary_10_1016_j_engappai_2023_106050 crossref_primary_10_3390_en17040764 |
| Cites_doi | 10.1109/PTC.2019.8810899 10.1016/j.rser.2017.10.096 10.1016/j.enconman.2019.111793 10.1049/iet-rpg.2017.0351 10.1109/ACCESS.2018.2837082 10.1109/TCDS.2017.2728003 10.1109/ACCESS.2019.2941229 10.1109/TIE.2018.2814013 10.1016/j.ijepes.2017.06.024 10.1016/j.ijepes.2018.07.001 10.1016/j.ijepes.2017.11.035 10.1109/TPWRS.2019.2948132 10.1109/ACCESS.2019.2906980 10.1109/TPWRS.2019.2941134 10.17775/CSEEJPES.2019.01840 10.1109/TSG.2018.2790704 10.1016/j.apenergy.2018.08.042 10.1016/j.asej.2016.02.004 10.1007/978-3-030-12082-5_65 10.1109/JSYST.2018.2830504 10.1007/978-981-13-1405-6_71 10.1002/asjc.1710 10.1002/2050-7038.12176 10.1016/j.isatra.2019.11.031 10.1109/SmartGridComm.2019.8909764 10.1016/j.jfranklin.2018.05.056 10.1016/j.ijhydene.2019.04.174 10.1002/jnm.2718 10.5755/j01.itc.48.1.20296 10.1109/TII.2018.2795584 10.1016/j.enconman.2018.05.097 10.1016/j.rser.2017.10.022 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2021.3060620 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459 10_1109_ACCESS_2021_3060620 9358213 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Department of Education of Guangdong Province Innovative of 2020 and Strong School Project Natural SciencesYoung Innovators Project Natural Sciences grantid: 2020KQNCX05 – fundername: University of Science and Technology of China USTC Research Funds of the Double grantid: YD2350002001 – fundername: Natural Science Foundation of Guangxi Province grantid: 2020GXNSFBA159025; AD19245001 funderid: 10.13039/501100004607 – fundername: National Natural Science Foundation of China grantid: 61720106009; 61773359; U1736123 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c450t-1ccdd5896ab99d5ca61f16b8120e19be31309ba1692812bbf98d878b78c4984d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 26 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:42:23 EDT 2025 Sat Nov 29 06:11:59 EST 2025 Tue Nov 18 22:27:33 EST 2025 Wed Aug 27 02:49:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c450t-1ccdd5896ab99d5ca61f16b8120e19be31309ba1692812bbf98d878b78c4984d3 |
| ORCID | 0000-0003-1816-5420 0000-0002-3197-8103 0000-0002-7007-7535 0000-0001-8343-3669 |
| OpenAccessLink | https://doaj.org/article/407faee33e66474c8ad48261dd6ee459 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_9358213 doaj_primary_oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459 crossref_citationtrail_10_1109_ACCESS_2021_3060620 crossref_primary_10_1109_ACCESS_2021_3060620 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref17 ref16 ref19 ref18 hekimoäÿlu (ref24) 2018 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/PTC.2019.8810899 – ident: ref2 doi: 10.1016/j.rser.2017.10.096 – ident: ref16 doi: 10.1016/j.enconman.2019.111793 – ident: ref3 doi: 10.1049/iet-rpg.2017.0351 – ident: ref25 doi: 10.1109/ACCESS.2018.2837082 – ident: ref21 doi: 10.1109/TCDS.2017.2728003 – ident: ref23 doi: 10.1109/ACCESS.2019.2941229 – ident: ref27 doi: 10.1109/TIE.2018.2814013 – ident: ref11 doi: 10.1016/j.ijepes.2017.06.024 – ident: ref26 doi: 10.1016/j.ijepes.2018.07.001 – ident: ref13 doi: 10.1016/j.ijepes.2017.11.035 – ident: ref15 doi: 10.1109/TPWRS.2019.2948132 – ident: ref8 doi: 10.1109/ACCESS.2019.2906980 – ident: ref14 doi: 10.1109/TPWRS.2019.2941134 – start-page: 152 year: 2018 ident: ref24 article-title: Grasshopper optimization algorithm for automatic voltage regulator system publication-title: Proc 5th Int Conf Electr Electron Eng (ICEEE) – ident: ref19 doi: 10.17775/CSEEJPES.2019.01840 – ident: ref22 doi: 10.1109/TSG.2018.2790704 – ident: ref1 doi: 10.1016/j.apenergy.2018.08.042 – ident: ref10 doi: 10.1016/j.asej.2016.02.004 – ident: ref20 doi: 10.1007/978-3-030-12082-5_65 – ident: ref32 doi: 10.1109/JSYST.2018.2830504 – ident: ref9 doi: 10.1007/978-981-13-1405-6_71 – ident: ref30 doi: 10.1002/asjc.1710 – ident: ref4 doi: 10.1002/2050-7038.12176 – ident: ref33 doi: 10.1016/j.isatra.2019.11.031 – ident: ref18 doi: 10.1109/SmartGridComm.2019.8909764 – ident: ref6 doi: 10.1016/j.jfranklin.2018.05.056 – ident: ref31 doi: 10.1016/j.ijhydene.2019.04.174 – ident: ref29 doi: 10.1002/jnm.2718 – ident: ref7 doi: 10.5755/j01.itc.48.1.20296 – ident: ref12 doi: 10.1109/TII.2018.2795584 – ident: ref5 doi: 10.1016/j.enconman.2018.05.097 – ident: ref28 doi: 10.1016/j.rser.2017.10.022 |
| SSID | ssj0000816957 |
| Score | 2.3387613 |
| Snippet | In recent years, the rapid development of artificial intelligence, especially deep learning technology, makes machine learning have application scenarios in... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Automatic voltage control Automatic voltage regulator Deep learning emotional deep learning programming controller emotional deep neural network Neural networks Neurons Power system stability Training Tuning |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0B6qEcKC1FLAXkA0cCceL440hXIA4I9VAkLlXkj0mFRHdXu1l-P2PHRFRClXqJLGtiOX6JPeN43gM45cp12vmuEK7ydDGyMMrpInAuXV2itk1KFL5Vd3f64cH82ICzMRcGEdPhMzyPxfQvP8z9Om6VXZiU1llvwqZScsjVGvdTooCEaVQmFuKlubicTukZKASs-Dk5xqWMmt5vFp_E0f-XqEpaU64__V9vdmEn-47scgD7M2zg7Atsv2EU3INfV4MsD5kFxAXLohC_WT6H9SeW8_H0J1wyclmZXffzRNzKaKrqaX55NWDzji2iihob-J5XX-H--urn9KbICgqFF03ZF9z7EBptpHXGhMZbyTvCgBb1ErlxWNMKZpylkauozrnO6KCVdkp7YbQI9T5szeYzPABWCaSmSoqvrBd18DaYJvpi6GnUyWuZQPU6tK3P9OJR5eKpTWFGadoBjzbi0WY8JnA23rQY2DX-bf49YjaaRmrsVEG4tPlLaylC7SxiXaOUQgmvbRAUQ_EQJKJozAT2IpZjIxnGw_erv8HH2INh0-UItvrlGo_hg3_uH1fLk_QKvgCxtNs_ priority: 102 providerName: IEEE |
| Title | Emotional deep learning programming controller for automatic voltage control of power systems |
| URI | https://ieeexplore.ieee.org/document/9358213 https://doaj.org/article/407faee33e66474c8ad48261dd6ee459 |
| Volume | 9 |
| WOSCitedRecordID | wos000623417200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQADAgqiPCoPjITGiePYYymtGKDqAKgLiuJHEFJpqpIy8ts522kVFlhYrMi6WM7nk-8uuvsOoUuSyoJLVQRURgoGwQKRSh5oQpiMQ8PzxBUK36fjMZ9OxaTR6svmhHl6YA9cDwKOIjcmjg1jNKWK55qCS0y0ZsbQxJXuhaloBFPuDuaEiSStaYZIKHr9wQC-CALCiFyDmxwy2-G7YYocY_-PFivOwoz20V7tGuK-39IB2jLzQ7TbIAxso5eh77oDYrfGLHDNjvqKJz7N6t0-D3z2-cwsMXikuL-qSsfLip_LWQXXx1oAlwWe2CZpuKYtP0JPo-Hj4C6oGyQEiiZhFRCltE64YLkUQicqZ6QAiMFmh4YIaWIwUELmAEUEc1IWgmuecplyRQWnOj5GrXk5NycIR9TAUiGET7misVa5Fol1tYwCGMEp6aBojVWmavZw28RilrkoIhSZBzizAGc1wB10tXlp4ckzfhe_sYewEbXM124C9CGr9SH7Sx86qG2PcLOIcKXA8el_rH2Gdux-_R-Yc9SqlitzgbbVZ_X2sew6DYTx4WvYdXWE31Tc33Y |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4BRYIeKI9WbMvDB44E4sRJ7CNdgai6rHqgEhcU-TFBlba7qyXb39-xYyKQEBKXyLImluMvsWccz_cBnPDKNNLYJhEms3RRZaIqIxPHeWnyFKUuQqLwqBqP5d2d-rUCp30uDCKGw2d45ovhX76b2aXfKjtXIa0zX4UPhRBZ2mVr9TsqXkJCFVWkFuKpOr8YDukpKAjM-Bm5xmnpVb2fLT-Bpf-FrEpYVa4-va8_27AVvUd20cG9Ays43YWPzzgF9-D-shPmITOHOGdRFuKBxZNYf305HlCf4IKR08r0sp0F6lZGk1VLM8yTAZs1bO511FjH-Pz4GX5fXd4Or5OooZBYUaRtwq11rpCq1EYpV1hd8oZQoGU9Ra4M5rSGKaNp5DKqM6ZR0slKmkpaoaRw-RdYm86muA8sE0hNpRRhaStyZ7VThffG0NKok98ygOxpaGsbCca9zsWkDoFGquoOj9rjUUc8BnDa3zTv-DXeNv_uMetNPTl2qCBc6vit1RSjNhoxz7EsRSWs1E5QFMWdKxFFoQaw57HsG4kwfn29-hg2rm9vRvXox_jnN9j0vem2YA5grV0s8RDW7b_2z-PiKLyO_wE-Q96G |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotional+Deep+Learning+Programming+Controller+for+Automatic+Voltage+Control+of+Power+Systems&rft.jtitle=IEEE+access&rft.au=Linfei+Yin&rft.au=Chenwei+Zhang&rft.au=Yaoxiong+Wang&rft.au=Fang+Gao&rft.date=2021-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=31880&rft.epage=31891&rft_id=info:doi/10.1109%2FACCESS.2021.3060620&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_407faee33e66474c8ad48261dd6ee459 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |