Minimizing the number of paths in BDDs: Theory and algorithm

The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on computer-aided design of integrated circuits and systems Ročník 25; číslo 1; s. 4 - 11
Hlavní autoři: Fey, G., Drechsler, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.01.2006
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0278-0070, 1937-4151
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The complexity of circuit and systems design increases rapidly. Therefore, a main focus of research in the area of electronic-design automation are efficient algorithms and data structures. Among these, binary decision diagrams (BDDs) have been used in a wide variety of applications and were intensively studied from a theoretical point of view. But mostly, when complexity issues were considered, only the number of nodes in a BDD has been analyzed. Here, we study minimizing the number of paths in BDDs from a theoretical and a practical point of view. Connections to different areas in computer-aided design are outlined, theoretical studies are carried out, and an algorithm to minimize the number of paths is presented. Experimental results show the efficiency of the algorithm.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:0278-0070
1937-4151
DOI:10.1109/TCAD.2005.852662