Investigating Electrode Flooding in a Flowing Electrolyte, Gas‐Fed Carbon Dioxide Electrolyzer
Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide sele...
Uložené v:
| Vydané v: | ChemSusChem Ročník 13; číslo 2; s. 400 - 411 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Germany
Wiley Subscription Services, Inc
19.01.2020
|
| Predmet: | |
| ISSN: | 1864-5631, 1864-564X, 1864-564X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.
A matter of time: Gas‐diffusion electrodes (GDEs) for carbon dioxide electroreduction are screened over a range of applied current densities, and an inverse correlation is observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. |
|---|---|
| AbstractList | Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver-catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double-layer capacitance, a proxy for wetted electrode area. Plotting current-dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half-reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post-test GDEs retain less hydrophobicity than pristine materials and that water-rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver-catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double-layer capacitance, a proxy for wetted electrode area. Plotting current-dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half-reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post-test GDEs retain less hydrophobicity than pristine materials and that water-rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. A matter of time: Gas‐diffusion electrodes (GDEs) for carbon dioxide electroreduction are screened over a range of applied current densities, and an inverse correlation is observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. |
| Author | Forner‐Cuenca, Antoni Leonard, McLain E. Clarke, Lauren E. Brown, Steven M. Brushett, Fikile R. |
| Author_xml | – sequence: 1 givenname: McLain E. orcidid: 0000-0003-4572-5251 surname: Leonard fullname: Leonard, McLain E. organization: Massachusetts Institute of Technology – sequence: 2 givenname: Lauren E. orcidid: 0000-0003-4780-2791 surname: Clarke fullname: Clarke, Lauren E. organization: Massachusetts Institute of Technology – sequence: 3 givenname: Antoni orcidid: 0000-0002-7681-0435 surname: Forner‐Cuenca fullname: Forner‐Cuenca, Antoni organization: Eindhoven University of Technology – sequence: 4 givenname: Steven M. orcidid: 0000-0002-4360-6286 surname: Brown fullname: Brown, Steven M. organization: Massachusetts Institute of Technology – sequence: 5 givenname: Fikile R. orcidid: 0000-0002-7361-6637 surname: Brushett fullname: Brushett, Fikile R. email: brushett@mit.edu organization: Massachusetts Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31736202$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctKAzEUhoMoXqpblzLgxoWtSSaZy1JGqwXBhQru4pkkI5FposlUrSsfwWf0SUypVhHEVW7fdzj5zwZats5qhLYJHhCM6YEMQQ4oJiWmnOVLaJ0UGevzjF0vL_YpWUMbIdxhnOEyy1bRWkryNKOYrqObkX3UoTO30Bl7mxy3WnbeKZ0MW-fU7MrYBGanpx_v7bTT-8kJhPfXt6FWSQW-djY5Mu7ZRHdBvWi_iVYaaIPe-lx76Gp4fFmd9s_OT0bV4VlfMo7zfgN5rZQihOqi4KQuMa91U6e0gIxAIwsAyXJWFqDyDAgFWadM5VBjWhAJkPbQ3rzuvXcPk_glMTZB6rYFq90kCJoSzikvUhrR3V_onZt4G7uLFCOMxth4pHY-qUk91krcezMGPxVf2UWAzQHpXQheN0KaLsbobOfBtIJgMRuRmI1ILEYUtcEv7avyn0I5F55Mq6f_0KK6uKi-3Q8XVqVE |
| CitedBy_id | crossref_primary_10_1002_smll_202204012 crossref_primary_10_1016_j_rser_2021_111450 crossref_primary_10_1002_smll_202310427 crossref_primary_10_1021_acs_energyfuels_5c00893 crossref_primary_10_1039_D5EE01464F crossref_primary_10_1038_s41929_021_00640_y crossref_primary_10_1002_adma_202103900 crossref_primary_10_1021_jacs_5c07944 crossref_primary_10_1016_j_jcou_2024_102766 crossref_primary_10_1149_1945_7111_add181 crossref_primary_10_1002_advs_202505994 crossref_primary_10_1016_j_cej_2021_131303 crossref_primary_10_1016_j_cej_2024_148944 crossref_primary_10_1021_acs_energyfuels_5c03120 crossref_primary_10_1016_j_coelec_2021_100789 crossref_primary_10_1080_00194506_2024_2431547 crossref_primary_10_1016_j_electacta_2021_139526 crossref_primary_10_1016_j_jcou_2024_102772 crossref_primary_10_1016_j_compchemeng_2022_108106 crossref_primary_10_1016_j_nanoen_2020_105030 crossref_primary_10_1016_j_ceja_2025_100865 crossref_primary_10_1002_cjce_24397 crossref_primary_10_1002_aesr_202400031 crossref_primary_10_1088_2515_7655_ac7823 crossref_primary_10_1016_j_chemosphere_2021_133353 crossref_primary_10_1002_smtd_202400200 crossref_primary_10_1016_j_apcatb_2021_120538 crossref_primary_10_1002_celc_202200615 crossref_primary_10_1016_j_cej_2022_138476 crossref_primary_10_1016_j_ccr_2025_216650 crossref_primary_10_1002_cite_202200206 crossref_primary_10_1016_j_jpowsour_2022_230998 crossref_primary_10_1016_j_mser_2025_101064 crossref_primary_10_1039_D1SC05519D crossref_primary_10_1002_ange_202415894 crossref_primary_10_1016_j_cej_2025_167396 crossref_primary_10_3390_en17194977 crossref_primary_10_1002_cssc_202202376 crossref_primary_10_1016_j_electacta_2023_142862 crossref_primary_10_1016_j_apcatb_2023_123467 crossref_primary_10_1007_s12209_024_00390_5 crossref_primary_10_1016_j_copbio_2021_11_007 crossref_primary_10_1002_EXP_20210046 crossref_primary_10_1002_ange_202211396 crossref_primary_10_1016_j_jcou_2023_102493 crossref_primary_10_1016_j_cej_2024_152854 crossref_primary_10_3390_catal10060713 crossref_primary_10_3390_catal12050453 crossref_primary_10_1088_2515_7655_acb8db crossref_primary_10_1007_s12274_021_3675_6 crossref_primary_10_1002_cssc_202101460 crossref_primary_10_1595_205651323X16703459968311 crossref_primary_10_1016_j_electacta_2025_146559 crossref_primary_10_1002_ange_202208534 crossref_primary_10_1016_j_jechem_2025_04_040 crossref_primary_10_1039_D0EE01604G crossref_primary_10_1016_j_apcatb_2023_122589 crossref_primary_10_1002_inf2_12253 crossref_primary_10_1039_D5EE02408K crossref_primary_10_1038_s41467_022_33694_y crossref_primary_10_1007_s11814_021_1009_8 crossref_primary_10_1007_s41918_023_00183_9 crossref_primary_10_1016_j_cej_2023_145335 crossref_primary_10_1016_j_jechem_2021_07_006 crossref_primary_10_1039_D4EE04163A crossref_primary_10_1002_celc_202400536 crossref_primary_10_1149_1945_7111_adee4b crossref_primary_10_1002_cctc_202400281 crossref_primary_10_1021_jacs_2c04081 crossref_primary_10_1038_s41467_022_34926_x crossref_primary_10_1016_j_rser_2024_114516 crossref_primary_10_1016_j_matchemphys_2025_131191 crossref_primary_10_1021_acsaem_4c01896 crossref_primary_10_1016_j_apcatb_2025_125506 crossref_primary_10_1038_s41467_023_41396_2 crossref_primary_10_1002_ange_202109600 crossref_primary_10_1016_j_jechem_2023_11_019 crossref_primary_10_1002_ange_202218208 crossref_primary_10_1016_j_apcatb_2023_122597 crossref_primary_10_1016_j_ces_2022_117735 crossref_primary_10_1134_S1023193524700149 crossref_primary_10_3390_molecules28041951 crossref_primary_10_1038_s41557_023_01163_8 crossref_primary_10_1002_cite_202000192 crossref_primary_10_3390_catal11020253 crossref_primary_10_1016_j_apcatb_2021_119945 crossref_primary_10_1021_acsaem_5c00222 crossref_primary_10_1038_s41467_023_39351_2 crossref_primary_10_1039_D2CY01576E crossref_primary_10_1016_j_ijhydene_2024_12_174 crossref_primary_10_1002_anie_202109600 crossref_primary_10_1002_adfm_202311226 crossref_primary_10_1016_j_cclet_2025_111861 crossref_primary_10_1016_j_coche_2023_100979 crossref_primary_10_1039_D3EY00140G crossref_primary_10_1016_j_elecom_2023_107487 crossref_primary_10_1016_j_mtener_2023_101352 crossref_primary_10_1016_j_apcatb_2025_125527 crossref_primary_10_1016_j_jechem_2021_03_050 crossref_primary_10_1039_D5EE02225H crossref_primary_10_1038_s41467_021_23065_4 crossref_primary_10_1039_D3NR05982K crossref_primary_10_1002_anie_202415894 crossref_primary_10_3389_fmicb_2023_1192187 crossref_primary_10_1039_D2EE01818G crossref_primary_10_1002_adma_202409106 crossref_primary_10_1038_s41467_020_16847_9 crossref_primary_10_1016_j_chempr_2021_12_002 crossref_primary_10_1002_smtd_202200369 crossref_primary_10_1039_D3EY00314K crossref_primary_10_1039_D3QM01190A crossref_primary_10_1002_aenm_202402942 crossref_primary_10_1002_anie_202211396 crossref_primary_10_1016_j_jpowsour_2023_233201 crossref_primary_10_1002_cctc_202400361 crossref_primary_10_1039_D0EE02219E crossref_primary_10_1016_j_jechem_2023_02_002 crossref_primary_10_1016_j_checat_2022_10_026 crossref_primary_10_1038_s41467_023_42348_6 crossref_primary_10_1038_s41557_024_01465_5 crossref_primary_10_1038_s41560_024_01695_4 crossref_primary_10_1016_j_jcou_2025_103163 crossref_primary_10_1016_j_apcatb_2025_125700 crossref_primary_10_1016_j_apcatb_2024_124311 crossref_primary_10_1016_j_mtsust_2022_100185 crossref_primary_10_1016_j_jcou_2020_101365 crossref_primary_10_1016_j_jcat_2022_02_014 crossref_primary_10_1039_D3SE00236E crossref_primary_10_3390_catal14110807 crossref_primary_10_1016_j_electacta_2023_143662 crossref_primary_10_1039_D2EE02121H crossref_primary_10_1016_j_apcatb_2023_122885 crossref_primary_10_1016_j_ijhydene_2024_10_007 crossref_primary_10_1016_j_ijhydene_2025_01_245 crossref_primary_10_1016_j_jcou_2025_103155 crossref_primary_10_1002_adfm_202508825 crossref_primary_10_1002_ente_202200972 crossref_primary_10_1021_jacs_0c13427 crossref_primary_10_1016_j_apcatb_2025_125276 crossref_primary_10_1016_j_electacta_2021_138987 crossref_primary_10_35848_1347_4065_addd2a crossref_primary_10_1002_anie_202218208 crossref_primary_10_1016_j_ijhydene_2024_07_175 crossref_primary_10_1002_adma_202509784 crossref_primary_10_1002_elsa_202100160 crossref_primary_10_1002_anie_202208534 crossref_primary_10_1039_D0EE03756G crossref_primary_10_1016_j_cej_2024_150040 crossref_primary_10_1039_D3QM00277B crossref_primary_10_1016_j_carbon_2023_01_030 crossref_primary_10_1002_adsu_202000088 crossref_primary_10_1039_D3SE01347B crossref_primary_10_1039_D2SC05705K crossref_primary_10_1038_s41560_021_00813_w crossref_primary_10_1038_s41467_020_20397_5 crossref_primary_10_1039_D2SE00858K crossref_primary_10_1038_s44286_024_00076_8 crossref_primary_10_1016_j_cattod_2023_114284 crossref_primary_10_1038_s41467_024_50269_1 crossref_primary_10_1039_D5EY00232J crossref_primary_10_1016_j_jcat_2024_115798 crossref_primary_10_1016_j_joule_2021_02_005 crossref_primary_10_1039_D1RA05062A crossref_primary_10_1038_s41578_021_00356_2 crossref_primary_10_1039_D3NR00561E crossref_primary_10_1002_admi_202300203 crossref_primary_10_1002_anie_202414416 crossref_primary_10_1149_1945_7111_ad377f crossref_primary_10_1038_s41598_021_90581_0 crossref_primary_10_1016_j_jece_2024_112369 crossref_primary_10_1002_cssc_202300657 crossref_primary_10_1002_anie_202210432 crossref_primary_10_1016_j_apcatb_2022_121362 crossref_primary_10_1039_D3EY00006K crossref_primary_10_1016_j_jcou_2022_102210 crossref_primary_10_1021_acsenergylett_5c01909 crossref_primary_10_1016_S1872_2067_24_60106_3 crossref_primary_10_1002_cnma_202200020 crossref_primary_10_1016_j_cej_2023_142573 crossref_primary_10_1038_s43586_022_00148_0 crossref_primary_10_1016_j_cej_2025_167758 crossref_primary_10_1016_j_chempr_2025_102582 crossref_primary_10_1007_s40843_024_2835_3 crossref_primary_10_1073_pnas_2505151122 crossref_primary_10_1002_smll_202301338 crossref_primary_10_1134_S1023193523100087 crossref_primary_10_1002_adma_202505287 crossref_primary_10_1002_ange_202210432 crossref_primary_10_1016_j_jpowsour_2021_230879 crossref_primary_10_1021_acs_chemmater_4c03459 crossref_primary_10_1002_adfm_202505372 crossref_primary_10_1021_jacs_3c08930 crossref_primary_10_1039_D5SE01129A crossref_primary_10_1002_chem_202302461 crossref_primary_10_1016_j_mcat_2025_115235 crossref_primary_10_1016_j_joule_2024_07_004 crossref_primary_10_1002_adma_202303902 crossref_primary_10_1016_j_coelec_2024_101479 crossref_primary_10_1016_j_joule_2023_01_013 crossref_primary_10_1002_ange_202414416 crossref_primary_10_1039_D0RE00396D crossref_primary_10_1016_j_coelec_2023_101295 crossref_primary_10_1016_j_cej_2023_146486 |
| Cites_doi | 10.1016/j.jpowsour.2019.226809 10.1016/j.jpowsour.2005.05.086 10.1021/acs.jpcc.6b10658 10.1039/C8EE01684D 10.1021/acsami.9b13081 10.1038/s41929-017-0005-1 10.1039/C9EE00909D 10.1039/C8EE03134G 10.1021/cr020729l 10.1021/acsenergylett.9b01142 10.1021/jp303844t 10.1126/science.aas9100 10.1007/978-0-387-49489-0_3 10.1016/j.memsci.2005.03.049 10.1115/1.4033411 10.1002/aenm.201200759 10.1149/2.0271608jes 10.1021/acs.energyfuels.5b01807 10.1016/j.jpowsour.2016.06.125 10.1016/0378-7753(80)80106-6 10.1016/j.jpowsour.2009.04.052 10.1149/2.0511609jes 10.1063/1.555900 10.1021/acsenergylett.8b01734 10.1038/1961312a0 10.1103/PhysRevE.81.066110 10.1007/978-3-319-92917-0_10 10.1016/j.marchem.2005.11.001 10.1007/s11242-017-0973-2 10.1021/acsenergylett.7b01017 10.1016/j.joule.2018.05.006 10.1149/2.0891613jes 10.1016/j.chempr.2018.08.019 10.1021/acsenergylett.7b01096 10.1016/j.electacta.2015.03.064 10.1016/j.carbon.2016.10.064 10.1016/j.cej.2019.122224 10.1016/j.jpowsour.2012.06.099 10.1016/B978-0-444-56325-5.00003-X 10.1039/C8CP01319E 10.1039/C6CP05287H 10.1039/c2ee21234j 10.1149/1.3468615 10.1021/acsenergylett.9b00137 10.1021/acs.jpcc.6b07861 10.1016/j.jpowsour.2015.09.124 10.1016/j.jcou.2017.04.011 10.1021/acs.langmuir.6b04193 10.1149/2.0401603jes 10.1126/science.aav3506 10.1021/acs.langmuir.6b02072 10.1002/anie.201604654 10.1016/j.coelec.2017.07.012 10.1149/1.2086515 10.1021/la304645w 10.1016/j.jpowsour.2016.02.043 10.1149/2.1021414jes 10.1016/j.elecom.2008.12.053 10.1149/1.3261850 10.1016/j.elecom.2012.03.038 10.1039/C0EE00303D 10.1149/2.1201410jes 10.1149/2.0321412jes 10.1016/0032-3950(85)90325-9 10.1039/C4CP00692E 10.1039/C9EE01204D 10.1002/ange.201604654 10.1103/PhysRevLett.108.054502 10.1039/C5CP05665A 10.1016/j.jpowsour.2010.09.114 10.1149/1.1488651 10.1007/BF00249861 10.1007/s10800-019-01332-z 10.1149/2.1321714jes 10.1149/1.2085745 10.1016/j.elecom.2008.08.008 10.1149/2.0501815jes 10.1016/j.pecs.2017.05.005 10.1016/j.jcou.2019.03.022 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim |
| DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| DOI | 10.1002/cssc.201902547 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1864-564X |
| EndPage | 411 |
| ExternalDocumentID | 31736202 10_1002_cssc_201902547 CSSC201902547 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: PZEZP2_172183 – fundername: Small Business Innovative Research and Small Business Technology Transfer funderid: DE-SC0015173 – fundername: National Science Foundation funderid: DMR-1419807 – fundername: National Science Foundation grantid: DMR-1419807 – fundername: Swiss National Science Foundation grantid: PZEZP2_172183 – fundername: Small Business Innovative Research and Small Business Technology Transfer grantid: DE-SC0015173 |
| GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAMMB AAYXX AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY CITATION NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
| ID | FETCH-LOGICAL-c4507-fa7bddd112e8851b905befb328a61afc8aac47498ad76a12acb34d7ab0281caa3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 317 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502907700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1864-5631 1864-564X |
| IngestDate | Fri Jul 11 07:16:09 EDT 2025 Sat Nov 29 14:59:17 EST 2025 Wed Feb 19 02:31:34 EST 2025 Sat Nov 29 07:10:20 EST 2025 Tue Nov 18 21:39:54 EST 2025 Wed Jan 22 16:35:34 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | gas diffusion electrodes wetting energy conversion electrochemistry carbon dioxide reduction |
| Language | English |
| License | 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4507-fa7bddd112e8851b905befb328a61afc8aac47498ad76a12acb34d7ab0281caa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-7361-6637 0000-0003-4572-5251 0000-0002-7681-0435 0000-0003-4780-2791 0000-0002-4360-6286 |
| OpenAccessLink | https://www.osti.gov/biblio/1579595 |
| PMID | 31736202 |
| PQID | 2341428645 |
| PQPubID | 986333 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2315525832 proquest_journals_2341428645 pubmed_primary_31736202 crossref_citationtrail_10_1002_cssc_201902547 crossref_primary_10_1002_cssc_201902547 wiley_primary_10_1002_cssc_201902547_CSSC201902547 |
| PublicationCentury | 2000 |
| PublicationDate | January 19, 2020 |
| PublicationDateYYYYMMDD | 2020-01-19 |
| PublicationDate_xml | – month: 01 year: 2020 text: January 19, 2020 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | ChemSusChem |
| PublicationTitleAlternate | ChemSusChem |
| PublicationYear | 2020 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2017; 5 2013; 29 2018; 165 2018; 121 2013; 3 2018; 360 2019; 11 2019; 12 2016; 32 1994; 24 2009; 194 2016; 301 2017; 111 2011; 196 2019; 364 1985; 27 2009; 11 2018; 3 2018; 2 2005; 261 2018; 4 1990; 137 1962; 196 2018; 1 2017; 33 2010; 157 2014; 16 2019; 435 2002; 149 2014; 161 2017; 164 2016; 312 2012; 20 2012; 218 2017; 62 2015; 162 2017; 20 2019; 4 2004; 104 2019; 31 2016; 327 2015; 166 2008 2008; 10 2016; 18 2011; 4 2010; 81 1991; 138 2018; 20 2016; 120 2006; 156 2016; 163 2012; 108 2016 2016; 55 128 2015; 29 2017; 14 1991; 20 2019; 49 1980; 5 2019 2018 2019; 378 2013 2018; 11 2012; 116 2012; 5 2006; 100 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_1_1 e_1_2_7_41_2 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Verma S. (e_1_2_7_66_1) 2019 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 (e_1_2_7_6_1) 2018 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 Hori Y. (e_1_2_7_2_1) 2008 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 e_1_2_7_38_1 |
| References_xml | – volume: 11 start-page: 576 year: 2009 end-page: 579 publication-title: Electrochem. Commun. – volume: 435 start-page: 226809 year: 2019 publication-title: J. Power Sources – volume: 157 start-page: 1456 year: 2010 end-page: 1464 publication-title: J. Electrochem. Soc. – volume: 165 start-page: 3371 year: 2018 end-page: 3377 publication-title: J. Electrochem. Soc. – volume: 12 start-page: 2455 year: 2019 end-page: 2462 publication-title: Energy Environ. Sci. – volume: 120 start-page: 28701 year: 2016 end-page: 28711 publication-title: J. Phys. Chem. C – volume: 120 start-page: 24794 year: 2016 end-page: 24802 publication-title: J. Phys. Chem. C – volume: 5 start-page: 7050 year: 2012 publication-title: Energy Environ. Sci. – volume: 33 start-page: 959 year: 2017 end-page: 967 publication-title: Langmuir – volume: 121 start-page: 597 year: 2018 end-page: 620 publication-title: Transp. Porous Media – volume: 161 start-page: 1184 year: 2014 end-page: 1193 publication-title: J. Electrochem. Soc. – volume: 4 start-page: 639 year: 2019 end-page: 643 publication-title: ACS Energy Lett. – volume: 10 start-page: 1520 year: 2008 end-page: 1523 publication-title: Electrochem. Commun. – volume: 137 start-page: 607 year: 1990 end-page: 608 publication-title: J. Electrochem. Soc. – volume: 100 start-page: 53 year: 2006 end-page: 65 publication-title: Mar. Chem. – volume: 161 start-page: 1124 year: 2014 end-page: 1131 publication-title: J. Electrochem. Soc. – volume: 27 start-page: 2427 year: 1985 end-page: 2431 publication-title: Polym. Sci. USSR – volume: 29 start-page: 1457 year: 2013 end-page: 1465 publication-title: Langmuir – year: 2018 – volume: 4 start-page: 1770 year: 2019 end-page: 1777 publication-title: ACS Energy Lett. – volume: 116 start-page: 14461 year: 2012 end-page: 14470 publication-title: J. Phys. Chem. C – volume: 194 start-page: 433 year: 2009 end-page: 444 publication-title: J. Power Sources – volume: 20 start-page: 208 year: 2017 end-page: 217 publication-title: J. CO2 Util. – start-page: 37 year: 2013 end-page: 51 – volume: 162 start-page: 23 year: 2015 end-page: 32 publication-title: J. Electrochem. Soc. – volume: 2 start-page: 1573 year: 2018 end-page: 1594 publication-title: Joule – volume: 104 start-page: 4679 year: 2004 end-page: 4726 publication-title: Chem. Rev. – volume: 166 start-page: 271 year: 2015 end-page: 276 publication-title: Electrochim. Acta – volume: 3 start-page: 2835 year: 2018 end-page: 2840 publication-title: ACS Energy Lett. – volume: 301 start-page: 219 year: 2016 end-page: 228 publication-title: J. Power Sources – volume: 3 start-page: 589 year: 2013 end-page: 599 publication-title: Adv. Energy Mater. – volume: 20 start-page: 1201 year: 1991 end-page: 1209 publication-title: J. Phys. Chem. Ref. Data – volume: 5 start-page: 3 year: 2017 end-page: 10 publication-title: Curr. Opin. Electrochem. – volume: 14 start-page: 020701 year: 2017 publication-title: J. Electrochem. Energy Conv. Storage – start-page: 219 year: 2019 end-page: 251 – volume: 12 start-page: 1950 year: 2019 end-page: 1968 publication-title: Energy Environ. Sci. – volume: 3 start-page: 193 year: 2018 end-page: 198 publication-title: ACS Energy Lett. – volume: 32 start-page: 9697 year: 2016 end-page: 9705 publication-title: Langmuir – volume: 261 start-page: 98 year: 2005 end-page: 106 publication-title: J. Membr. Sci. – volume: 138 start-page: 905 year: 1991 end-page: 908 publication-title: J. Electrochem. Soc. – volume: 62 start-page: 133 year: 2017 end-page: 154 publication-title: Prog. Energy Combust. Sci. – volume: 18 start-page: 26777 year: 2016 end-page: 26785 publication-title: Phys. Chem. Chem. Phys. – volume: 163 start-page: 1389 year: 2016 end-page: 1398 publication-title: J. Electrochem. Soc. – volume: 378 start-page: 122224 year: 2019 publication-title: Chem. Eng. J. – volume: 29 start-page: 7508 year: 2015 end-page: 7515 publication-title: Energy Fuels – volume: 149 start-page: 59 year: 2002 end-page: 67 publication-title: J. Electrochem. Soc. – volume: 360 start-page: 783 year: 2018 end-page: 787 publication-title: Science – volume: 111 start-page: 782 year: 2017 end-page: 788 publication-title: Carbon – volume: 24 start-page: 575 year: 1994 end-page: 580 publication-title: J. Appl. Electrochem. – volume: 196 start-page: 1312 year: 1962 end-page: 1313 publication-title: Nature – volume: 11 start-page: 2531 year: 2018 end-page: 2539 publication-title: Energy Environ. Sci. – volume: 18 start-page: 7075 year: 2016 end-page: 7084 publication-title: Phys. Chem. Chem. Phys. – volume: 20 start-page: 16973 year: 2018 end-page: 16984 publication-title: Phys. Chem. Chem. Phys. – volume: 157 start-page: 195 year: 2010 end-page: 206 publication-title: J. Electrochem. Soc. – volume: 55 128 start-page: 9748 9900 year: 2016 2016 end-page: 9752 9904 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 163 start-page: 788 year: 2016 end-page: 801 publication-title: J. Electrochem. Soc. – volume: 31 start-page: 244 year: 2019 end-page: 250 publication-title: J. CO2 Util. – volume: 327 start-page: 151 year: 2016 end-page: 159 publication-title: J. Power Sources – volume: 49 start-page: 917 year: 2019 end-page: 928 publication-title: J. Appl. Electrochem. – volume: 312 start-page: 192 year: 2016 end-page: 198 publication-title: J. Power Sources – volume: 4 start-page: 1319 year: 2011 end-page: 1328 publication-title: Energy Environ. Sci. – volume: 163 start-page: 202 year: 2016 end-page: 209 publication-title: J. Electrochem. Soc. – volume: 163 start-page: 1038 year: 2016 end-page: 1048 publication-title: J. Electrochem. Soc. – volume: 20 start-page: 67 year: 2012 end-page: 70 publication-title: Electrochem. Commun. – volume: 108 start-page: 054502 year: 2012 publication-title: Phys. Rev. Lett. – volume: 196 start-page: 1762 year: 2011 end-page: 1768 publication-title: J. Power Sources – volume: 16 start-page: 13814 year: 2014 end-page: 13819 publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 1442 year: 2019 end-page: 1453 publication-title: Energy Environ. Sci. – volume: 164 start-page: 1697 year: 2017 end-page: 1711 publication-title: J. Electrochem. Soc. – start-page: 89 year: 2008 end-page: 189 – volume: 1 start-page: 32 year: 2018 end-page: 39 publication-title: Nat. Catal. – volume: 3 start-page: 149 year: 2018 end-page: 154 publication-title: ACS Energy Lett. – volume: 81 start-page: 066110 year: 2010 publication-title: Phys. Rev. E – volume: 11 start-page: 41281 year: 2019 end-page: 41288 publication-title: ACS Appl. Mater. Interfaces – volume: 218 start-page: 393 year: 2012 end-page: 404 publication-title: J. Power Sources – volume: 5 start-page: 189 year: 1980 end-page: 196 publication-title: J. Power Sources – volume: 4 start-page: 2571 year: 2018 end-page: 2586 publication-title: Chem – volume: 156 start-page: 375 year: 2006 end-page: 387 publication-title: J. Power Sources – volume: 364 start-page: 3506 year: 2019 publication-title: Science – ident: e_1_2_7_27_1 doi: 10.1016/j.jpowsour.2019.226809 – ident: e_1_2_7_63_1 doi: 10.1016/j.jpowsour.2005.05.086 – ident: e_1_2_7_28_1 doi: 10.1021/acs.jpcc.6b10658 – ident: e_1_2_7_46_1 doi: 10.1039/C8EE01684D – ident: e_1_2_7_79_1 doi: 10.1021/acsami.9b13081 – ident: e_1_2_7_40_1 doi: 10.1038/s41929-017-0005-1 – ident: e_1_2_7_60_1 doi: 10.1039/C9EE00909D – ident: e_1_2_7_17_1 doi: 10.1039/C8EE03134G – ident: e_1_2_7_18_1 doi: 10.1021/cr020729l – ident: e_1_2_7_71_1 doi: 10.1021/acsenergylett.9b01142 – ident: e_1_2_7_54_1 doi: 10.1021/jp303844t – ident: e_1_2_7_12_1 doi: 10.1126/science.aas9100 – start-page: 89 volume-title: Modern Aspects of Electrochemistry, No. 42 year: 2008 ident: e_1_2_7_2_1 doi: 10.1007/978-0-387-49489-0_3 – ident: e_1_2_7_62_1 doi: 10.1016/j.memsci.2005.03.049 – ident: e_1_2_7_57_1 doi: 10.1115/1.4033411 – ident: e_1_2_7_69_1 doi: 10.1002/aenm.201200759 – ident: e_1_2_7_21_1 doi: 10.1149/2.0271608jes – ident: e_1_2_7_56_1 doi: 10.1021/acs.energyfuels.5b01807 – ident: e_1_2_7_44_1 doi: 10.1016/j.jpowsour.2016.06.125 – ident: e_1_2_7_58_1 doi: 10.1016/0378-7753(80)80106-6 – ident: e_1_2_7_67_1 doi: 10.1016/j.jpowsour.2009.04.052 – ident: e_1_2_7_22_1 doi: 10.1149/2.0511609jes – ident: e_1_2_7_5_1 doi: 10.1063/1.555900 – ident: e_1_2_7_13_1 doi: 10.1021/acsenergylett.8b01734 – ident: e_1_2_7_61_1 doi: 10.1038/1961312a0 – ident: e_1_2_7_32_1 – ident: e_1_2_7_73_1 doi: 10.1103/PhysRevE.81.066110 – start-page: 219 volume-title: Nanocarbons for Energy Conversion: Supramolecular Approaches year: 2019 ident: e_1_2_7_66_1 doi: 10.1007/978-3-319-92917-0_10 – ident: e_1_2_7_52_1 doi: 10.1016/j.marchem.2005.11.001 – ident: e_1_2_7_65_1 doi: 10.1007/s11242-017-0973-2 – ident: e_1_2_7_39_1 doi: 10.1021/acsenergylett.7b01017 – ident: e_1_2_7_51_1 doi: 10.1016/j.joule.2018.05.006 – ident: e_1_2_7_23_1 doi: 10.1149/2.0891613jes – ident: e_1_2_7_9_1 doi: 10.1016/j.chempr.2018.08.019 – ident: e_1_2_7_16_1 doi: 10.1021/acsenergylett.7b01096 – ident: e_1_2_7_48_1 doi: 10.1016/j.electacta.2015.03.064 – ident: e_1_2_7_37_1 doi: 10.1016/j.carbon.2016.10.064 – ident: e_1_2_7_72_1 doi: 10.1016/j.cej.2019.122224 – ident: e_1_2_7_43_1 doi: 10.1016/j.jpowsour.2012.06.099 – ident: e_1_2_7_77_1 doi: 10.1016/B978-0-444-56325-5.00003-X – ident: e_1_2_7_8_1 doi: 10.1039/C8CP01319E – ident: e_1_2_7_7_1 doi: 10.1039/C6CP05287H – ident: e_1_2_7_4_1 doi: 10.1039/c2ee21234j – ident: e_1_2_7_19_1 doi: 10.1149/1.3468615 – ident: e_1_2_7_29_1 doi: 10.1021/acsenergylett.9b00137 – ident: e_1_2_7_36_1 doi: 10.1021/acs.jpcc.6b07861 – ident: e_1_2_7_50_1 doi: 10.1016/j.jpowsour.2015.09.124 – ident: e_1_2_7_14_1 doi: 10.1016/j.jcou.2017.04.011 – ident: e_1_2_7_30_1 doi: 10.1021/acs.langmuir.6b04193 – ident: e_1_2_7_68_1 doi: 10.1149/2.0401603jes – ident: e_1_2_7_1_1 doi: 10.1126/science.aav3506 – ident: e_1_2_7_31_1 doi: 10.1021/acs.langmuir.6b02072 – ident: e_1_2_7_41_1 doi: 10.1002/anie.201604654 – ident: e_1_2_7_26_1 doi: 10.1016/j.coelec.2017.07.012 – ident: e_1_2_7_10_1 doi: 10.1149/1.2086515 – ident: e_1_2_7_34_1 doi: 10.1021/la304645w – ident: e_1_2_7_35_1 doi: 10.1016/j.jpowsour.2016.02.043 – ident: e_1_2_7_49_1 doi: 10.1149/2.1021414jes – ident: e_1_2_7_20_1 doi: 10.1016/j.elecom.2008.12.053 – ident: e_1_2_7_33_1 doi: 10.1149/1.3261850 – ident: e_1_2_7_24_1 doi: 10.1016/j.elecom.2012.03.038 – ident: e_1_2_7_55_1 doi: 10.1039/C0EE00303D – ident: e_1_2_7_47_1 doi: 10.1149/2.1201410jes – ident: e_1_2_7_53_1 doi: 10.1149/2.0321412jes – ident: e_1_2_7_70_1 doi: 10.1016/0032-3950(85)90325-9 – ident: e_1_2_7_3_1 doi: 10.1039/C4CP00692E – ident: e_1_2_7_80_1 doi: 10.1039/C9EE01204D – ident: e_1_2_7_41_2 doi: 10.1002/ange.201604654 – ident: e_1_2_7_59_1 doi: 10.1103/PhysRevLett.108.054502 – ident: e_1_2_7_38_1 doi: 10.1039/C5CP05665A – ident: e_1_2_7_76_1 doi: 10.1016/j.jpowsour.2010.09.114 – ident: e_1_2_7_78_1 doi: 10.1149/1.1488651 – volume-title: CRC Handbook of Chemistry and Physics year: 2018 ident: e_1_2_7_6_1 – ident: e_1_2_7_75_1 doi: 10.1007/BF00249861 – ident: e_1_2_7_45_1 doi: 10.1007/s10800-019-01332-z – ident: e_1_2_7_25_1 doi: 10.1149/2.1321714jes – ident: e_1_2_7_74_1 doi: 10.1149/1.2085745 – ident: e_1_2_7_64_1 doi: 10.1016/j.elecom.2008.08.008 – ident: e_1_2_7_15_1 doi: 10.1149/2.0501815jes – ident: e_1_2_7_11_1 doi: 10.1016/j.pecs.2017.05.005 – ident: e_1_2_7_42_1 doi: 10.1016/j.jcou.2019.03.022 |
| SSID | ssj0060966 |
| Score | 2.6752396 |
| Snippet | Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction.... Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction.... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 400 |
| SubjectTerms | Alkalinity Carbon Carbon dioxide carbon dioxide reduction Carbon monoxide Carbonation Cathodes Collapse Diffusion electrodes electrochemistry Electrodes Electrolytes Energy conversion Flooding gas diffusion electrodes Hydrophobicity Selectivity Wetted electrodes wetting |
| Title | Investigating Electrode Flooding in a Flowing Electrolyte, Gas‐Fed Carbon Dioxide Electrolyzer |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902547 https://www.ncbi.nlm.nih.gov/pubmed/31736202 https://www.proquest.com/docview/2341428645 https://www.proquest.com/docview/2315525832 |
| Volume | 13 |
| WOSCitedRecordID | wos000502907700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1864-564X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060966 issn: 1864-5631 databaseCode: DRFUL dateStart: 20080101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4aJ5Bc-kjSVmlqVAj00iXSSlrJx6BY7aGY0tTgmzr7cDEYuVh2mvSUn5Df2F_SWesRmxAK6XG1s9IyO7vzza72G4ATSU6cgGfAhNIUoCg0DIXxmYkiZbSntPCqZBPxYJCMRr0va7f4K36IdsPNzozVem0nOMry9I40VJWlpSD07TlZGG_BNifjjTqwff41G35uVmNBEH11wygRIYtE4DfEjR4_3XzDpmO6hzY3wevK-2TP_r_fz-FpjTzds8pUXsATU-zDbtokfDuA72ucG8UPt18lyNHGzezP7fbRpHDRln6t1U-vF-aD-xHLPze3mdFuinM5K9zzyexqQm1bqd9mfgjDrP8t_cTqBAxMhYQT2RhjqbUmSGYSQmay50XSjGXAExQ-jlWCqMI47CWoY4E-RyWDUMcoCbT4CjF4CZ1iVpjX4Iqx8giK6Uhoy2DnyVhxowhsED5FmQgHWKP9XNXs5DZJxjSveJV5bvWWt3pz4H0r_7Pi5XhQ8rgZzLyen2XOyXlT4CXCyIF3bTXp2x6XYGFmSytj6ekiWvIceFUZQfspQl3k-T2q4aux_kcf8vTiIm1LR49p9Ab2uA31PZ_5vWPoLOZL8xZ21OViUs67sBWPkm5t-38BcJsEmw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZT9tAEB6VgAQvtOUMpcVISLywis-184gcXCrSCHFIvLmzR1Ak5KA4HO0TP4HfyC9hNj5KhKpKiEd7Z-3V7MzOt9c3ADuCgjgBT49xqWiCIlEz5NphOgikVrZU3C6STYS9XnRx0T4uTxOauzAFP0S94GY8YzJeGwc3C9Ktv6yhMs8NB6FjNsr8cAZmfbIlMvLZzkly3q2GY04YfXLFKOI-C7jnVMyNttua_sJ0ZHoFN6fR6yT8JB_foeGfYLHEntZ-YSyf4YPOlmA-rlK-LcOvF6wb2aV1UKTIUdpKzPF282qQWWie7l6UX_0e6z3rO-ZPD4-JVlaMIzHMrM5geD-gurXUHz1agfPk4Cw-ZGUKBiZ9Qoqsj6FQShEo0xFhM9G2A6H7wnMj5A72ZYQo_dBvR6hCjo6LUni-ClEQbHEkorcKjWyY6XWweF_aBMZUwJXhsLNFKF0tCW4QQkUR8SawSv2pLPnJTZqMq7RgVnZTo7e01lsTdmv564KZ45-Sm1VvpqWH5qlL4ZumXtwPmrBdF5O-zYYJZnp4Y2QMQV1Ag14T1gorqH9FuItiv00l7qSz_9OGND49jeunjbdU2oL5w7Of3bT7o3f0BRZcM_G3Hea0N6ExHt3orzAnb8eDfPStdIFn6YAHow |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VBQEXCoXCAqWphNQLFnk62SPKkrYqWqECErcwfqRaCWXRZnn11J_Ab-SXMN48YIUQEuLoeJxYY4_nm9j-BmBbkBMn4OkxLhUFKBI1Q64dpoNAamVLxe0y2UTY60Wnp53D6jShuQtT8kM0P9yMZYzXa2Pg-kJlu4-sobIoDAehYzbK_HAKpn2TSaYF090_yclBvRxzwujjK0YR91nAPadmbrTd3ck3THqmZ3BzEr2O3U_y8R06vggLFfa09srJsgQfdP4J5uI65dsynD1h3cj_WvtlihylrcQcbzeP-rmFpnT9pP78dqR3rB9Y3P-_S7SyYhyKQW51-4ObPrVtpP7p4QqcJPvH8U9WpWBg0iekyDIMhVKKQJmOCJuJjh0InQnPjZA7mMkIUfqh34lQhRwdF6XwfBWiINjiSETvM7TyQa7XwOKZtAmMqYArw2Fni1C6WhLcIISKIuJtYLX6U1nxk5s0GedpyazspkZvaaO3Nnxv5C9KZo4XJTfr0UwrCy1Sl9w3hV7cD9rwrakmfZsNE8z14NLIGIK6gBa9NqyWs6D5FOEu8v021bjjwX6lD2l8dBQ3pfW3NPoKs4fdJD341fu9AfOuiftthzmdTWiNhpf6C8zIq1G_GG5VFvAAaPEHHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Electrode+Flooding+in+a+Flowing+Electrolyte%2C+Gas%E2%80%90Fed+Carbon+Dioxide+Electrolyzer&rft.jtitle=ChemSusChem&rft.au=Leonard%2C+McLain+E.&rft.au=Clarke%2C+Lauren+E.&rft.au=Forner%E2%80%90Cuenca%2C+Antoni&rft.au=Brown%2C+Steven+M.&rft.date=2020-01-19&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=13&rft.issue=2&rft.spage=400&rft.epage=411&rft_id=info:doi/10.1002%2Fcssc.201902547&rft.externalDBID=10.1002%252Fcssc.201902547&rft.externalDocID=CSSC201902547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |