Investigating Electrode Flooding in a Flowing Electrolyte, Gas‐Fed Carbon Dioxide Electrolyzer

Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide sele...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ChemSusChem Ročník 13; číslo 2; s. 400 - 411
Hlavní autori: Leonard, McLain E., Clarke, Lauren E., Forner‐Cuenca, Antoni, Brown, Steven M., Brushett, Fikile R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Germany Wiley Subscription Services, Inc 19.01.2020
Predmet:
ISSN:1864-5631, 1864-564X, 1864-564X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. A matter of time: Gas‐diffusion electrodes (GDEs) for carbon dioxide electroreduction are screened over a range of applied current densities, and an inverse correlation is observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.
AbstractList Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver-catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double-layer capacitance, a proxy for wetted electrode area. Plotting current-dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half-reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post-test GDEs retain less hydrophobicity than pristine materials and that water-rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver-catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double-layer capacitance, a proxy for wetted electrode area. Plotting current-dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half-reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post-test GDEs retain less hydrophobicity than pristine materials and that water-rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.
Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.
Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction. By screening silver‐catalyzed GDEs over a range of applied current densities, an inverse correlation was observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. Plotting current‐dependent performance as a function of cumulative charge led to data collapse onto a single sigmoidal curve indicating that the passage of faradaic current accelerates flooding. It was hypothesized that high cathode alkalinity, driven by both initial electrolyte conditions and cathode half‐reactions, promotes carbonate formation and precipitation which, in turn, facilitates electrolyte permeation. This mechanism was reinforced by the observations that post‐test GDEs retain less hydrophobicity than pristine materials and that water‐rinsing and drying electrodes temporarily recovers peak selectivity. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity. A matter of time: Gas‐diffusion electrodes (GDEs) for carbon dioxide electroreduction are screened over a range of applied current densities, and an inverse correlation is observed between carbon monoxide selectivity and the electrochemical double‐layer capacitance, a proxy for wetted electrode area. This knowledge offers an opportunity to design electrodes with greater carbonation tolerance to improve device longevity.
Author Forner‐Cuenca, Antoni
Leonard, McLain E.
Clarke, Lauren E.
Brown, Steven M.
Brushett, Fikile R.
Author_xml – sequence: 1
  givenname: McLain E.
  orcidid: 0000-0003-4572-5251
  surname: Leonard
  fullname: Leonard, McLain E.
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Lauren E.
  orcidid: 0000-0003-4780-2791
  surname: Clarke
  fullname: Clarke, Lauren E.
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Antoni
  orcidid: 0000-0002-7681-0435
  surname: Forner‐Cuenca
  fullname: Forner‐Cuenca, Antoni
  organization: Eindhoven University of Technology
– sequence: 4
  givenname: Steven M.
  orcidid: 0000-0002-4360-6286
  surname: Brown
  fullname: Brown, Steven M.
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Fikile R.
  orcidid: 0000-0002-7361-6637
  surname: Brushett
  fullname: Brushett, Fikile R.
  email: brushett@mit.edu
  organization: Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31736202$$D View this record in MEDLINE/PubMed
BookMark eNqFkctKAzEUhoMoXqpblzLgxoWtSSaZy1JGqwXBhQru4pkkI5FposlUrSsfwWf0SUypVhHEVW7fdzj5zwZats5qhLYJHhCM6YEMQQ4oJiWmnOVLaJ0UGevzjF0vL_YpWUMbIdxhnOEyy1bRWkryNKOYrqObkX3UoTO30Bl7mxy3WnbeKZ0MW-fU7MrYBGanpx_v7bTT-8kJhPfXt6FWSQW-djY5Mu7ZRHdBvWi_iVYaaIPe-lx76Gp4fFmd9s_OT0bV4VlfMo7zfgN5rZQihOqi4KQuMa91U6e0gIxAIwsAyXJWFqDyDAgFWadM5VBjWhAJkPbQ3rzuvXcPk_glMTZB6rYFq90kCJoSzikvUhrR3V_onZt4G7uLFCOMxth4pHY-qUk91krcezMGPxVf2UWAzQHpXQheN0KaLsbobOfBtIJgMRuRmI1ILEYUtcEv7avyn0I5F55Mq6f_0KK6uKi-3Q8XVqVE
CitedBy_id crossref_primary_10_1002_smll_202204012
crossref_primary_10_1016_j_rser_2021_111450
crossref_primary_10_1002_smll_202310427
crossref_primary_10_1021_acs_energyfuels_5c00893
crossref_primary_10_1039_D5EE01464F
crossref_primary_10_1038_s41929_021_00640_y
crossref_primary_10_1002_adma_202103900
crossref_primary_10_1021_jacs_5c07944
crossref_primary_10_1016_j_jcou_2024_102766
crossref_primary_10_1149_1945_7111_add181
crossref_primary_10_1002_advs_202505994
crossref_primary_10_1016_j_cej_2021_131303
crossref_primary_10_1016_j_cej_2024_148944
crossref_primary_10_1021_acs_energyfuels_5c03120
crossref_primary_10_1016_j_coelec_2021_100789
crossref_primary_10_1080_00194506_2024_2431547
crossref_primary_10_1016_j_electacta_2021_139526
crossref_primary_10_1016_j_jcou_2024_102772
crossref_primary_10_1016_j_compchemeng_2022_108106
crossref_primary_10_1016_j_nanoen_2020_105030
crossref_primary_10_1016_j_ceja_2025_100865
crossref_primary_10_1002_cjce_24397
crossref_primary_10_1002_aesr_202400031
crossref_primary_10_1088_2515_7655_ac7823
crossref_primary_10_1016_j_chemosphere_2021_133353
crossref_primary_10_1002_smtd_202400200
crossref_primary_10_1016_j_apcatb_2021_120538
crossref_primary_10_1002_celc_202200615
crossref_primary_10_1016_j_cej_2022_138476
crossref_primary_10_1016_j_ccr_2025_216650
crossref_primary_10_1002_cite_202200206
crossref_primary_10_1016_j_jpowsour_2022_230998
crossref_primary_10_1016_j_mser_2025_101064
crossref_primary_10_1039_D1SC05519D
crossref_primary_10_1002_ange_202415894
crossref_primary_10_1016_j_cej_2025_167396
crossref_primary_10_3390_en17194977
crossref_primary_10_1002_cssc_202202376
crossref_primary_10_1016_j_electacta_2023_142862
crossref_primary_10_1016_j_apcatb_2023_123467
crossref_primary_10_1007_s12209_024_00390_5
crossref_primary_10_1016_j_copbio_2021_11_007
crossref_primary_10_1002_EXP_20210046
crossref_primary_10_1002_ange_202211396
crossref_primary_10_1016_j_jcou_2023_102493
crossref_primary_10_1016_j_cej_2024_152854
crossref_primary_10_3390_catal10060713
crossref_primary_10_3390_catal12050453
crossref_primary_10_1088_2515_7655_acb8db
crossref_primary_10_1007_s12274_021_3675_6
crossref_primary_10_1002_cssc_202101460
crossref_primary_10_1595_205651323X16703459968311
crossref_primary_10_1016_j_electacta_2025_146559
crossref_primary_10_1002_ange_202208534
crossref_primary_10_1016_j_jechem_2025_04_040
crossref_primary_10_1039_D0EE01604G
crossref_primary_10_1016_j_apcatb_2023_122589
crossref_primary_10_1002_inf2_12253
crossref_primary_10_1039_D5EE02408K
crossref_primary_10_1038_s41467_022_33694_y
crossref_primary_10_1007_s11814_021_1009_8
crossref_primary_10_1007_s41918_023_00183_9
crossref_primary_10_1016_j_cej_2023_145335
crossref_primary_10_1016_j_jechem_2021_07_006
crossref_primary_10_1039_D4EE04163A
crossref_primary_10_1002_celc_202400536
crossref_primary_10_1149_1945_7111_adee4b
crossref_primary_10_1002_cctc_202400281
crossref_primary_10_1021_jacs_2c04081
crossref_primary_10_1038_s41467_022_34926_x
crossref_primary_10_1016_j_rser_2024_114516
crossref_primary_10_1016_j_matchemphys_2025_131191
crossref_primary_10_1021_acsaem_4c01896
crossref_primary_10_1016_j_apcatb_2025_125506
crossref_primary_10_1038_s41467_023_41396_2
crossref_primary_10_1002_ange_202109600
crossref_primary_10_1016_j_jechem_2023_11_019
crossref_primary_10_1002_ange_202218208
crossref_primary_10_1016_j_apcatb_2023_122597
crossref_primary_10_1016_j_ces_2022_117735
crossref_primary_10_1134_S1023193524700149
crossref_primary_10_3390_molecules28041951
crossref_primary_10_1038_s41557_023_01163_8
crossref_primary_10_1002_cite_202000192
crossref_primary_10_3390_catal11020253
crossref_primary_10_1016_j_apcatb_2021_119945
crossref_primary_10_1021_acsaem_5c00222
crossref_primary_10_1038_s41467_023_39351_2
crossref_primary_10_1039_D2CY01576E
crossref_primary_10_1016_j_ijhydene_2024_12_174
crossref_primary_10_1002_anie_202109600
crossref_primary_10_1002_adfm_202311226
crossref_primary_10_1016_j_cclet_2025_111861
crossref_primary_10_1016_j_coche_2023_100979
crossref_primary_10_1039_D3EY00140G
crossref_primary_10_1016_j_elecom_2023_107487
crossref_primary_10_1016_j_mtener_2023_101352
crossref_primary_10_1016_j_apcatb_2025_125527
crossref_primary_10_1016_j_jechem_2021_03_050
crossref_primary_10_1039_D5EE02225H
crossref_primary_10_1038_s41467_021_23065_4
crossref_primary_10_1039_D3NR05982K
crossref_primary_10_1002_anie_202415894
crossref_primary_10_3389_fmicb_2023_1192187
crossref_primary_10_1039_D2EE01818G
crossref_primary_10_1002_adma_202409106
crossref_primary_10_1038_s41467_020_16847_9
crossref_primary_10_1016_j_chempr_2021_12_002
crossref_primary_10_1002_smtd_202200369
crossref_primary_10_1039_D3EY00314K
crossref_primary_10_1039_D3QM01190A
crossref_primary_10_1002_aenm_202402942
crossref_primary_10_1002_anie_202211396
crossref_primary_10_1016_j_jpowsour_2023_233201
crossref_primary_10_1002_cctc_202400361
crossref_primary_10_1039_D0EE02219E
crossref_primary_10_1016_j_jechem_2023_02_002
crossref_primary_10_1016_j_checat_2022_10_026
crossref_primary_10_1038_s41467_023_42348_6
crossref_primary_10_1038_s41557_024_01465_5
crossref_primary_10_1038_s41560_024_01695_4
crossref_primary_10_1016_j_jcou_2025_103163
crossref_primary_10_1016_j_apcatb_2025_125700
crossref_primary_10_1016_j_apcatb_2024_124311
crossref_primary_10_1016_j_mtsust_2022_100185
crossref_primary_10_1016_j_jcou_2020_101365
crossref_primary_10_1016_j_jcat_2022_02_014
crossref_primary_10_1039_D3SE00236E
crossref_primary_10_3390_catal14110807
crossref_primary_10_1016_j_electacta_2023_143662
crossref_primary_10_1039_D2EE02121H
crossref_primary_10_1016_j_apcatb_2023_122885
crossref_primary_10_1016_j_ijhydene_2024_10_007
crossref_primary_10_1016_j_ijhydene_2025_01_245
crossref_primary_10_1016_j_jcou_2025_103155
crossref_primary_10_1002_adfm_202508825
crossref_primary_10_1002_ente_202200972
crossref_primary_10_1021_jacs_0c13427
crossref_primary_10_1016_j_apcatb_2025_125276
crossref_primary_10_1016_j_electacta_2021_138987
crossref_primary_10_35848_1347_4065_addd2a
crossref_primary_10_1002_anie_202218208
crossref_primary_10_1016_j_ijhydene_2024_07_175
crossref_primary_10_1002_adma_202509784
crossref_primary_10_1002_elsa_202100160
crossref_primary_10_1002_anie_202208534
crossref_primary_10_1039_D0EE03756G
crossref_primary_10_1016_j_cej_2024_150040
crossref_primary_10_1039_D3QM00277B
crossref_primary_10_1016_j_carbon_2023_01_030
crossref_primary_10_1002_adsu_202000088
crossref_primary_10_1039_D3SE01347B
crossref_primary_10_1039_D2SC05705K
crossref_primary_10_1038_s41560_021_00813_w
crossref_primary_10_1038_s41467_020_20397_5
crossref_primary_10_1039_D2SE00858K
crossref_primary_10_1038_s44286_024_00076_8
crossref_primary_10_1016_j_cattod_2023_114284
crossref_primary_10_1038_s41467_024_50269_1
crossref_primary_10_1039_D5EY00232J
crossref_primary_10_1016_j_jcat_2024_115798
crossref_primary_10_1016_j_joule_2021_02_005
crossref_primary_10_1039_D1RA05062A
crossref_primary_10_1038_s41578_021_00356_2
crossref_primary_10_1039_D3NR00561E
crossref_primary_10_1002_admi_202300203
crossref_primary_10_1002_anie_202414416
crossref_primary_10_1149_1945_7111_ad377f
crossref_primary_10_1038_s41598_021_90581_0
crossref_primary_10_1016_j_jece_2024_112369
crossref_primary_10_1002_cssc_202300657
crossref_primary_10_1002_anie_202210432
crossref_primary_10_1016_j_apcatb_2022_121362
crossref_primary_10_1039_D3EY00006K
crossref_primary_10_1016_j_jcou_2022_102210
crossref_primary_10_1021_acsenergylett_5c01909
crossref_primary_10_1016_S1872_2067_24_60106_3
crossref_primary_10_1002_cnma_202200020
crossref_primary_10_1016_j_cej_2023_142573
crossref_primary_10_1038_s43586_022_00148_0
crossref_primary_10_1016_j_cej_2025_167758
crossref_primary_10_1016_j_chempr_2025_102582
crossref_primary_10_1007_s40843_024_2835_3
crossref_primary_10_1073_pnas_2505151122
crossref_primary_10_1002_smll_202301338
crossref_primary_10_1134_S1023193523100087
crossref_primary_10_1002_adma_202505287
crossref_primary_10_1002_ange_202210432
crossref_primary_10_1016_j_jpowsour_2021_230879
crossref_primary_10_1021_acs_chemmater_4c03459
crossref_primary_10_1002_adfm_202505372
crossref_primary_10_1021_jacs_3c08930
crossref_primary_10_1039_D5SE01129A
crossref_primary_10_1002_chem_202302461
crossref_primary_10_1016_j_mcat_2025_115235
crossref_primary_10_1016_j_joule_2024_07_004
crossref_primary_10_1002_adma_202303902
crossref_primary_10_1016_j_coelec_2024_101479
crossref_primary_10_1016_j_joule_2023_01_013
crossref_primary_10_1002_ange_202414416
crossref_primary_10_1039_D0RE00396D
crossref_primary_10_1016_j_coelec_2023_101295
crossref_primary_10_1016_j_cej_2023_146486
Cites_doi 10.1016/j.jpowsour.2019.226809
10.1016/j.jpowsour.2005.05.086
10.1021/acs.jpcc.6b10658
10.1039/C8EE01684D
10.1021/acsami.9b13081
10.1038/s41929-017-0005-1
10.1039/C9EE00909D
10.1039/C8EE03134G
10.1021/cr020729l
10.1021/acsenergylett.9b01142
10.1021/jp303844t
10.1126/science.aas9100
10.1007/978-0-387-49489-0_3
10.1016/j.memsci.2005.03.049
10.1115/1.4033411
10.1002/aenm.201200759
10.1149/2.0271608jes
10.1021/acs.energyfuels.5b01807
10.1016/j.jpowsour.2016.06.125
10.1016/0378-7753(80)80106-6
10.1016/j.jpowsour.2009.04.052
10.1149/2.0511609jes
10.1063/1.555900
10.1021/acsenergylett.8b01734
10.1038/1961312a0
10.1103/PhysRevE.81.066110
10.1007/978-3-319-92917-0_10
10.1016/j.marchem.2005.11.001
10.1007/s11242-017-0973-2
10.1021/acsenergylett.7b01017
10.1016/j.joule.2018.05.006
10.1149/2.0891613jes
10.1016/j.chempr.2018.08.019
10.1021/acsenergylett.7b01096
10.1016/j.electacta.2015.03.064
10.1016/j.carbon.2016.10.064
10.1016/j.cej.2019.122224
10.1016/j.jpowsour.2012.06.099
10.1016/B978-0-444-56325-5.00003-X
10.1039/C8CP01319E
10.1039/C6CP05287H
10.1039/c2ee21234j
10.1149/1.3468615
10.1021/acsenergylett.9b00137
10.1021/acs.jpcc.6b07861
10.1016/j.jpowsour.2015.09.124
10.1016/j.jcou.2017.04.011
10.1021/acs.langmuir.6b04193
10.1149/2.0401603jes
10.1126/science.aav3506
10.1021/acs.langmuir.6b02072
10.1002/anie.201604654
10.1016/j.coelec.2017.07.012
10.1149/1.2086515
10.1021/la304645w
10.1016/j.jpowsour.2016.02.043
10.1149/2.1021414jes
10.1016/j.elecom.2008.12.053
10.1149/1.3261850
10.1016/j.elecom.2012.03.038
10.1039/C0EE00303D
10.1149/2.1201410jes
10.1149/2.0321412jes
10.1016/0032-3950(85)90325-9
10.1039/C4CP00692E
10.1039/C9EE01204D
10.1002/ange.201604654
10.1103/PhysRevLett.108.054502
10.1039/C5CP05665A
10.1016/j.jpowsour.2010.09.114
10.1149/1.1488651
10.1007/BF00249861
10.1007/s10800-019-01332-z
10.1149/2.1321714jes
10.1149/1.2085745
10.1016/j.elecom.2008.08.008
10.1149/2.0501815jes
10.1016/j.pecs.2017.05.005
10.1016/j.jcou.2019.03.022
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201902547
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 411
ExternalDocumentID 31736202
10_1002_cssc_201902547
CSSC201902547
Genre article
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: PZEZP2_172183
– fundername: Small Business Innovative Research and Small Business Technology Transfer
  funderid: DE-SC0015173
– fundername: National Science Foundation
  funderid: DMR-1419807
– fundername: National Science Foundation
  grantid: DMR-1419807
– fundername: Swiss National Science Foundation
  grantid: PZEZP2_172183
– fundername: Small Business Innovative Research and Small Business Technology Transfer
  grantid: DE-SC0015173
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAMMB
AAYXX
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c4507-fa7bddd112e8851b905befb328a61afc8aac47498ad76a12acb34d7ab0281caa3
IEDL.DBID DRFUL
ISICitedReferencesCount 317
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000502907700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 07:16:09 EDT 2025
Sat Nov 29 14:59:17 EST 2025
Wed Feb 19 02:31:34 EST 2025
Sat Nov 29 07:10:20 EST 2025
Tue Nov 18 21:39:54 EST 2025
Wed Jan 22 16:35:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords gas diffusion electrodes
wetting
energy conversion
electrochemistry
carbon dioxide reduction
Language English
License 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4507-fa7bddd112e8851b905befb328a61afc8aac47498ad76a12acb34d7ab0281caa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7361-6637
0000-0003-4572-5251
0000-0002-7681-0435
0000-0003-4780-2791
0000-0002-4360-6286
OpenAccessLink https://www.osti.gov/biblio/1579595
PMID 31736202
PQID 2341428645
PQPubID 986333
PageCount 12
ParticipantIDs proquest_miscellaneous_2315525832
proquest_journals_2341428645
pubmed_primary_31736202
crossref_citationtrail_10_1002_cssc_201902547
crossref_primary_10_1002_cssc_201902547
wiley_primary_10_1002_cssc_201902547_CSSC201902547
PublicationCentury 2000
PublicationDate January 19, 2020
PublicationDateYYYYMMDD 2020-01-19
PublicationDate_xml – month: 01
  year: 2020
  text: January 19, 2020
  day: 19
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2013; 29
2018; 165
2018; 121
2013; 3
2018; 360
2019; 11
2019; 12
2016; 32
1994; 24
2009; 194
2016; 301
2017; 111
2011; 196
2019; 364
1985; 27
2009; 11
2018; 3
2018; 2
2005; 261
2018; 4
1990; 137
1962; 196
2018; 1
2017; 33
2010; 157
2014; 16
2019; 435
2002; 149
2014; 161
2017; 164
2016; 312
2012; 20
2012; 218
2017; 62
2015; 162
2017; 20
2019; 4
2004; 104
2019; 31
2016; 327
2015; 166
2008
2008; 10
2016; 18
2011; 4
2010; 81
1991; 138
2018; 20
2016; 120
2006; 156
2016; 163
2012; 108
2016 2016; 55 128
2015; 29
2017; 14
1991; 20
2019; 49
1980; 5
2019
2018
2019; 378
2013
2018; 11
2012; 116
2012; 5
2006; 100
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_1_1
e_1_2_7_41_2
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Verma S. (e_1_2_7_66_1) 2019
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
(e_1_2_7_6_1) 2018
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
Hori Y. (e_1_2_7_2_1) 2008
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – volume: 11
  start-page: 576
  year: 2009
  end-page: 579
  publication-title: Electrochem. Commun.
– volume: 435
  start-page: 226809
  year: 2019
  publication-title: J. Power Sources
– volume: 157
  start-page: 1456
  year: 2010
  end-page: 1464
  publication-title: J. Electrochem. Soc.
– volume: 165
  start-page: 3371
  year: 2018
  end-page: 3377
  publication-title: J. Electrochem. Soc.
– volume: 12
  start-page: 2455
  year: 2019
  end-page: 2462
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 28701
  year: 2016
  end-page: 28711
  publication-title: J. Phys. Chem. C
– volume: 120
  start-page: 24794
  year: 2016
  end-page: 24802
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 7050
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 33
  start-page: 959
  year: 2017
  end-page: 967
  publication-title: Langmuir
– volume: 121
  start-page: 597
  year: 2018
  end-page: 620
  publication-title: Transp. Porous Media
– volume: 161
  start-page: 1184
  year: 2014
  end-page: 1193
  publication-title: J. Electrochem. Soc.
– volume: 4
  start-page: 639
  year: 2019
  end-page: 643
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 1520
  year: 2008
  end-page: 1523
  publication-title: Electrochem. Commun.
– volume: 137
  start-page: 607
  year: 1990
  end-page: 608
  publication-title: J. Electrochem. Soc.
– volume: 100
  start-page: 53
  year: 2006
  end-page: 65
  publication-title: Mar. Chem.
– volume: 161
  start-page: 1124
  year: 2014
  end-page: 1131
  publication-title: J. Electrochem. Soc.
– volume: 27
  start-page: 2427
  year: 1985
  end-page: 2431
  publication-title: Polym. Sci. USSR
– volume: 29
  start-page: 1457
  year: 2013
  end-page: 1465
  publication-title: Langmuir
– year: 2018
– volume: 4
  start-page: 1770
  year: 2019
  end-page: 1777
  publication-title: ACS Energy Lett.
– volume: 116
  start-page: 14461
  year: 2012
  end-page: 14470
  publication-title: J. Phys. Chem. C
– volume: 194
  start-page: 433
  year: 2009
  end-page: 444
  publication-title: J. Power Sources
– volume: 20
  start-page: 208
  year: 2017
  end-page: 217
  publication-title: J. CO2 Util.
– start-page: 37
  year: 2013
  end-page: 51
– volume: 162
  start-page: 23
  year: 2015
  end-page: 32
  publication-title: J. Electrochem. Soc.
– volume: 2
  start-page: 1573
  year: 2018
  end-page: 1594
  publication-title: Joule
– volume: 104
  start-page: 4679
  year: 2004
  end-page: 4726
  publication-title: Chem. Rev.
– volume: 166
  start-page: 271
  year: 2015
  end-page: 276
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 2835
  year: 2018
  end-page: 2840
  publication-title: ACS Energy Lett.
– volume: 301
  start-page: 219
  year: 2016
  end-page: 228
  publication-title: J. Power Sources
– volume: 3
  start-page: 589
  year: 2013
  end-page: 599
  publication-title: Adv. Energy Mater.
– volume: 20
  start-page: 1201
  year: 1991
  end-page: 1209
  publication-title: J. Phys. Chem. Ref. Data
– volume: 5
  start-page: 3
  year: 2017
  end-page: 10
  publication-title: Curr. Opin. Electrochem.
– volume: 14
  start-page: 020701
  year: 2017
  publication-title: J. Electrochem. Energy Conv. Storage
– start-page: 219
  year: 2019
  end-page: 251
– volume: 12
  start-page: 1950
  year: 2019
  end-page: 1968
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 193
  year: 2018
  end-page: 198
  publication-title: ACS Energy Lett.
– volume: 32
  start-page: 9697
  year: 2016
  end-page: 9705
  publication-title: Langmuir
– volume: 261
  start-page: 98
  year: 2005
  end-page: 106
  publication-title: J. Membr. Sci.
– volume: 138
  start-page: 905
  year: 1991
  end-page: 908
  publication-title: J. Electrochem. Soc.
– volume: 62
  start-page: 133
  year: 2017
  end-page: 154
  publication-title: Prog. Energy Combust. Sci.
– volume: 18
  start-page: 26777
  year: 2016
  end-page: 26785
  publication-title: Phys. Chem. Chem. Phys.
– volume: 163
  start-page: 1389
  year: 2016
  end-page: 1398
  publication-title: J. Electrochem. Soc.
– volume: 378
  start-page: 122224
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 29
  start-page: 7508
  year: 2015
  end-page: 7515
  publication-title: Energy Fuels
– volume: 149
  start-page: 59
  year: 2002
  end-page: 67
  publication-title: J. Electrochem. Soc.
– volume: 360
  start-page: 783
  year: 2018
  end-page: 787
  publication-title: Science
– volume: 111
  start-page: 782
  year: 2017
  end-page: 788
  publication-title: Carbon
– volume: 24
  start-page: 575
  year: 1994
  end-page: 580
  publication-title: J. Appl. Electrochem.
– volume: 196
  start-page: 1312
  year: 1962
  end-page: 1313
  publication-title: Nature
– volume: 11
  start-page: 2531
  year: 2018
  end-page: 2539
  publication-title: Energy Environ. Sci.
– volume: 18
  start-page: 7075
  year: 2016
  end-page: 7084
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  start-page: 16973
  year: 2018
  end-page: 16984
  publication-title: Phys. Chem. Chem. Phys.
– volume: 157
  start-page: 195
  year: 2010
  end-page: 206
  publication-title: J. Electrochem. Soc.
– volume: 55 128
  start-page: 9748 9900
  year: 2016 2016
  end-page: 9752 9904
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 163
  start-page: 788
  year: 2016
  end-page: 801
  publication-title: J. Electrochem. Soc.
– volume: 31
  start-page: 244
  year: 2019
  end-page: 250
  publication-title: J. CO2 Util.
– volume: 327
  start-page: 151
  year: 2016
  end-page: 159
  publication-title: J. Power Sources
– volume: 49
  start-page: 917
  year: 2019
  end-page: 928
  publication-title: J. Appl. Electrochem.
– volume: 312
  start-page: 192
  year: 2016
  end-page: 198
  publication-title: J. Power Sources
– volume: 4
  start-page: 1319
  year: 2011
  end-page: 1328
  publication-title: Energy Environ. Sci.
– volume: 163
  start-page: 202
  year: 2016
  end-page: 209
  publication-title: J. Electrochem. Soc.
– volume: 163
  start-page: 1038
  year: 2016
  end-page: 1048
  publication-title: J. Electrochem. Soc.
– volume: 20
  start-page: 67
  year: 2012
  end-page: 70
  publication-title: Electrochem. Commun.
– volume: 108
  start-page: 054502
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 196
  start-page: 1762
  year: 2011
  end-page: 1768
  publication-title: J. Power Sources
– volume: 16
  start-page: 13814
  year: 2014
  end-page: 13819
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 1442
  year: 2019
  end-page: 1453
  publication-title: Energy Environ. Sci.
– volume: 164
  start-page: 1697
  year: 2017
  end-page: 1711
  publication-title: J. Electrochem. Soc.
– start-page: 89
  year: 2008
  end-page: 189
– volume: 1
  start-page: 32
  year: 2018
  end-page: 39
  publication-title: Nat. Catal.
– volume: 3
  start-page: 149
  year: 2018
  end-page: 154
  publication-title: ACS Energy Lett.
– volume: 81
  start-page: 066110
  year: 2010
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 41281
  year: 2019
  end-page: 41288
  publication-title: ACS Appl. Mater. Interfaces
– volume: 218
  start-page: 393
  year: 2012
  end-page: 404
  publication-title: J. Power Sources
– volume: 5
  start-page: 189
  year: 1980
  end-page: 196
  publication-title: J. Power Sources
– volume: 4
  start-page: 2571
  year: 2018
  end-page: 2586
  publication-title: Chem
– volume: 156
  start-page: 375
  year: 2006
  end-page: 387
  publication-title: J. Power Sources
– volume: 364
  start-page: 3506
  year: 2019
  publication-title: Science
– ident: e_1_2_7_27_1
  doi: 10.1016/j.jpowsour.2019.226809
– ident: e_1_2_7_63_1
  doi: 10.1016/j.jpowsour.2005.05.086
– ident: e_1_2_7_28_1
  doi: 10.1021/acs.jpcc.6b10658
– ident: e_1_2_7_46_1
  doi: 10.1039/C8EE01684D
– ident: e_1_2_7_79_1
  doi: 10.1021/acsami.9b13081
– ident: e_1_2_7_40_1
  doi: 10.1038/s41929-017-0005-1
– ident: e_1_2_7_60_1
  doi: 10.1039/C9EE00909D
– ident: e_1_2_7_17_1
  doi: 10.1039/C8EE03134G
– ident: e_1_2_7_18_1
  doi: 10.1021/cr020729l
– ident: e_1_2_7_71_1
  doi: 10.1021/acsenergylett.9b01142
– ident: e_1_2_7_54_1
  doi: 10.1021/jp303844t
– ident: e_1_2_7_12_1
  doi: 10.1126/science.aas9100
– start-page: 89
  volume-title: Modern Aspects of Electrochemistry, No. 42
  year: 2008
  ident: e_1_2_7_2_1
  doi: 10.1007/978-0-387-49489-0_3
– ident: e_1_2_7_62_1
  doi: 10.1016/j.memsci.2005.03.049
– ident: e_1_2_7_57_1
  doi: 10.1115/1.4033411
– ident: e_1_2_7_69_1
  doi: 10.1002/aenm.201200759
– ident: e_1_2_7_21_1
  doi: 10.1149/2.0271608jes
– ident: e_1_2_7_56_1
  doi: 10.1021/acs.energyfuels.5b01807
– ident: e_1_2_7_44_1
  doi: 10.1016/j.jpowsour.2016.06.125
– ident: e_1_2_7_58_1
  doi: 10.1016/0378-7753(80)80106-6
– ident: e_1_2_7_67_1
  doi: 10.1016/j.jpowsour.2009.04.052
– ident: e_1_2_7_22_1
  doi: 10.1149/2.0511609jes
– ident: e_1_2_7_5_1
  doi: 10.1063/1.555900
– ident: e_1_2_7_13_1
  doi: 10.1021/acsenergylett.8b01734
– ident: e_1_2_7_61_1
  doi: 10.1038/1961312a0
– ident: e_1_2_7_32_1
– ident: e_1_2_7_73_1
  doi: 10.1103/PhysRevE.81.066110
– start-page: 219
  volume-title: Nanocarbons for Energy Conversion: Supramolecular Approaches
  year: 2019
  ident: e_1_2_7_66_1
  doi: 10.1007/978-3-319-92917-0_10
– ident: e_1_2_7_52_1
  doi: 10.1016/j.marchem.2005.11.001
– ident: e_1_2_7_65_1
  doi: 10.1007/s11242-017-0973-2
– ident: e_1_2_7_39_1
  doi: 10.1021/acsenergylett.7b01017
– ident: e_1_2_7_51_1
  doi: 10.1016/j.joule.2018.05.006
– ident: e_1_2_7_23_1
  doi: 10.1149/2.0891613jes
– ident: e_1_2_7_9_1
  doi: 10.1016/j.chempr.2018.08.019
– ident: e_1_2_7_16_1
  doi: 10.1021/acsenergylett.7b01096
– ident: e_1_2_7_48_1
  doi: 10.1016/j.electacta.2015.03.064
– ident: e_1_2_7_37_1
  doi: 10.1016/j.carbon.2016.10.064
– ident: e_1_2_7_72_1
  doi: 10.1016/j.cej.2019.122224
– ident: e_1_2_7_43_1
  doi: 10.1016/j.jpowsour.2012.06.099
– ident: e_1_2_7_77_1
  doi: 10.1016/B978-0-444-56325-5.00003-X
– ident: e_1_2_7_8_1
  doi: 10.1039/C8CP01319E
– ident: e_1_2_7_7_1
  doi: 10.1039/C6CP05287H
– ident: e_1_2_7_4_1
  doi: 10.1039/c2ee21234j
– ident: e_1_2_7_19_1
  doi: 10.1149/1.3468615
– ident: e_1_2_7_29_1
  doi: 10.1021/acsenergylett.9b00137
– ident: e_1_2_7_36_1
  doi: 10.1021/acs.jpcc.6b07861
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jpowsour.2015.09.124
– ident: e_1_2_7_14_1
  doi: 10.1016/j.jcou.2017.04.011
– ident: e_1_2_7_30_1
  doi: 10.1021/acs.langmuir.6b04193
– ident: e_1_2_7_68_1
  doi: 10.1149/2.0401603jes
– ident: e_1_2_7_1_1
  doi: 10.1126/science.aav3506
– ident: e_1_2_7_31_1
  doi: 10.1021/acs.langmuir.6b02072
– ident: e_1_2_7_41_1
  doi: 10.1002/anie.201604654
– ident: e_1_2_7_26_1
  doi: 10.1016/j.coelec.2017.07.012
– ident: e_1_2_7_10_1
  doi: 10.1149/1.2086515
– ident: e_1_2_7_34_1
  doi: 10.1021/la304645w
– ident: e_1_2_7_35_1
  doi: 10.1016/j.jpowsour.2016.02.043
– ident: e_1_2_7_49_1
  doi: 10.1149/2.1021414jes
– ident: e_1_2_7_20_1
  doi: 10.1016/j.elecom.2008.12.053
– ident: e_1_2_7_33_1
  doi: 10.1149/1.3261850
– ident: e_1_2_7_24_1
  doi: 10.1016/j.elecom.2012.03.038
– ident: e_1_2_7_55_1
  doi: 10.1039/C0EE00303D
– ident: e_1_2_7_47_1
  doi: 10.1149/2.1201410jes
– ident: e_1_2_7_53_1
  doi: 10.1149/2.0321412jes
– ident: e_1_2_7_70_1
  doi: 10.1016/0032-3950(85)90325-9
– ident: e_1_2_7_3_1
  doi: 10.1039/C4CP00692E
– ident: e_1_2_7_80_1
  doi: 10.1039/C9EE01204D
– ident: e_1_2_7_41_2
  doi: 10.1002/ange.201604654
– ident: e_1_2_7_59_1
  doi: 10.1103/PhysRevLett.108.054502
– ident: e_1_2_7_38_1
  doi: 10.1039/C5CP05665A
– ident: e_1_2_7_76_1
  doi: 10.1016/j.jpowsour.2010.09.114
– ident: e_1_2_7_78_1
  doi: 10.1149/1.1488651
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2018
  ident: e_1_2_7_6_1
– ident: e_1_2_7_75_1
  doi: 10.1007/BF00249861
– ident: e_1_2_7_45_1
  doi: 10.1007/s10800-019-01332-z
– ident: e_1_2_7_25_1
  doi: 10.1149/2.1321714jes
– ident: e_1_2_7_74_1
  doi: 10.1149/1.2085745
– ident: e_1_2_7_64_1
  doi: 10.1016/j.elecom.2008.08.008
– ident: e_1_2_7_15_1
  doi: 10.1149/2.0501815jes
– ident: e_1_2_7_11_1
  doi: 10.1016/j.pecs.2017.05.005
– ident: e_1_2_7_42_1
  doi: 10.1016/j.jcou.2019.03.022
SSID ssj0060966
Score 2.6752396
Snippet Managing the gas–liquid interface within gas‐diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction....
Managing the gas-liquid interface within gas-diffusion electrodes (GDEs) is key to maintaining high product selectivities in carbon dioxide electroreduction....
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 400
SubjectTerms Alkalinity
Carbon
Carbon dioxide
carbon dioxide reduction
Carbon monoxide
Carbonation
Cathodes
Collapse
Diffusion electrodes
electrochemistry
Electrodes
Electrolytes
Energy conversion
Flooding
gas diffusion electrodes
Hydrophobicity
Selectivity
Wetted electrodes
wetting
Title Investigating Electrode Flooding in a Flowing Electrolyte, Gas‐Fed Carbon Dioxide Electrolyzer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902547
https://www.ncbi.nlm.nih.gov/pubmed/31736202
https://www.proquest.com/docview/2341428645
https://www.proquest.com/docview/2315525832
Volume 13
WOSCitedRecordID wos000502907700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1864-564X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060966
  issn: 1864-5631
  databaseCode: DRFUL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB4aJ5Bc-kjSVmlqVAj00iXSSlrJx6BY7aGY0tTgmzr7cDEYuVh2mvSUn5Df2F_SWesRmxAK6XG1s9IyO7vzza72G4ATSU6cgGfAhNIUoCg0DIXxmYkiZbSntPCqZBPxYJCMRr0va7f4K36IdsPNzozVem0nOMry9I40VJWlpSD07TlZGG_BNifjjTqwff41G35uVmNBEH11wygRIYtE4DfEjR4_3XzDpmO6hzY3wevK-2TP_r_fz-FpjTzds8pUXsATU-zDbtokfDuA72ucG8UPt18lyNHGzezP7fbRpHDRln6t1U-vF-aD-xHLPze3mdFuinM5K9zzyexqQm1bqd9mfgjDrP8t_cTqBAxMhYQT2RhjqbUmSGYSQmay50XSjGXAExQ-jlWCqMI47CWoY4E-RyWDUMcoCbT4CjF4CZ1iVpjX4Iqx8giK6Uhoy2DnyVhxowhsED5FmQgHWKP9XNXs5DZJxjSveJV5bvWWt3pz4H0r_7Pi5XhQ8rgZzLyen2XOyXlT4CXCyIF3bTXp2x6XYGFmSytj6ekiWvIceFUZQfspQl3k-T2q4aux_kcf8vTiIm1LR49p9Ab2uA31PZ_5vWPoLOZL8xZ21OViUs67sBWPkm5t-38BcJsEmw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ZT9tAEB6VgAQvtOUMpcVISLywis-184gcXCrSCHFIvLmzR1Ak5KA4HO0TP4HfyC9hNj5KhKpKiEd7Z-3V7MzOt9c3ADuCgjgBT49xqWiCIlEz5NphOgikVrZU3C6STYS9XnRx0T4uTxOauzAFP0S94GY8YzJeGwc3C9Ktv6yhMs8NB6FjNsr8cAZmfbIlMvLZzkly3q2GY04YfXLFKOI-C7jnVMyNttua_sJ0ZHoFN6fR6yT8JB_foeGfYLHEntZ-YSyf4YPOlmA-rlK-LcOvF6wb2aV1UKTIUdpKzPF282qQWWie7l6UX_0e6z3rO-ZPD4-JVlaMIzHMrM5geD-gurXUHz1agfPk4Cw-ZGUKBiZ9Qoqsj6FQShEo0xFhM9G2A6H7wnMj5A72ZYQo_dBvR6hCjo6LUni-ClEQbHEkorcKjWyY6XWweF_aBMZUwJXhsLNFKF0tCW4QQkUR8SawSv2pLPnJTZqMq7RgVnZTo7e01lsTdmv564KZ45-Sm1VvpqWH5qlL4ZumXtwPmrBdF5O-zYYJZnp4Y2QMQV1Ag14T1gorqH9FuItiv00l7qSz_9OGND49jeunjbdU2oL5w7Of3bT7o3f0BRZcM_G3Hea0N6ExHt3orzAnb8eDfPStdIFn6YAHow
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6VBQEXCoXCAqWphNQLFnk62SPKkrYqWqECErcwfqRaCWXRZnn11J_Ab-SXMN48YIUQEuLoeJxYY4_nm9j-BmBbkBMn4OkxLhUFKBI1Q64dpoNAamVLxe0y2UTY60Wnp53D6jShuQtT8kM0P9yMZYzXa2Pg-kJlu4-sobIoDAehYzbK_HAKpn2TSaYF090_yclBvRxzwujjK0YR91nAPadmbrTd3ck3THqmZ3BzEr2O3U_y8R06vggLFfa09srJsgQfdP4J5uI65dsynD1h3cj_WvtlihylrcQcbzeP-rmFpnT9pP78dqR3rB9Y3P-_S7SyYhyKQW51-4ObPrVtpP7p4QqcJPvH8U9WpWBg0iekyDIMhVKKQJmOCJuJjh0InQnPjZA7mMkIUfqh34lQhRwdF6XwfBWiINjiSETvM7TyQa7XwOKZtAmMqYArw2Fni1C6WhLcIISKIuJtYLX6U1nxk5s0GedpyazspkZvaaO3Nnxv5C9KZo4XJTfr0UwrCy1Sl9w3hV7cD9rwrakmfZsNE8z14NLIGIK6gBa9NqyWs6D5FOEu8v021bjjwX6lD2l8dBQ3pfW3NPoKs4fdJD341fu9AfOuiftthzmdTWiNhpf6C8zIq1G_GG5VFvAAaPEHHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+Electrode+Flooding+in+a+Flowing+Electrolyte%2C+Gas%E2%80%90Fed+Carbon+Dioxide+Electrolyzer&rft.jtitle=ChemSusChem&rft.au=Leonard%2C+McLain+E.&rft.au=Clarke%2C+Lauren+E.&rft.au=Forner%E2%80%90Cuenca%2C+Antoni&rft.au=Brown%2C+Steven+M.&rft.date=2020-01-19&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=13&rft.issue=2&rft.spage=400&rft.epage=411&rft_id=info:doi/10.1002%2Fcssc.201902547&rft.externalDBID=10.1002%252Fcssc.201902547&rft.externalDocID=CSSC201902547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon