Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities
Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electron...
Uloženo v:
| Vydáno v: | Advanced energy materials Ročník 13; číslo 9 |
|---|---|
| Hlavní autoři: | , , , , , , , , , , , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
01.03.2023
|
| Témata: | |
| ISSN: | 1614-6832, 1614-6840 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electronic charge carriers and the dopant counterions. Previous studies have shown that at low doping levels carriers are strongly trapped in the vicinity of the counterions, while at high doping levels charge transport is not limited by Coulombic trapping, which manifests itself in the conductivity being independent of the size of the dopant counterion. Here a recently developed ion exchange doping method is used to investigate the ion size dependence of a semicrystalline polythiophene‐based model system across a wide range of conductivities. It is found that the regime in which the charge and thermoelectric transport is not or only weakly dependent on ion size, extends to surprisingly low conductivities. This surprising observation is explained by a heterogeneous doping that involves doping of the amorphous domains to high doping levels first before doping of the ordered, crystalline domains occurs. The study provides new insights into how the thermoelectric physics of conducting polymers evolves as a function of doping level.
In ion exchange doped polythiophene polymers the conductivity is independent of the size of the dopant counterion at the highest doping concentrations/conductivities (>100 S cm−1). At intermediate conductivities (10−1 to 102 S cm−1) doping occurs primarily in the amorphous domains, leading to an unexpected carrier delocalization due to high local carrier concentrations and a similar absence of counterion‐induced Coulombic trapping. |
|---|---|
| AbstractList | Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electronic charge carriers and the dopant counterions. Previous studies have shown that at low doping levels carriers are strongly trapped in the vicinity of the counterions, while at high doping levels charge transport is not limited by Coulombic trapping, which manifests itself in the conductivity being independent of the size of the dopant counterion. Here a recently developed ion exchange doping method is used to investigate the ion size dependence of a semicrystalline polythiophene‐based model system across a wide range of conductivities. It is found that the regime in which the charge and thermoelectric transport is not or only weakly dependent on ion size, extends to surprisingly low conductivities. This surprising observation is explained by a heterogeneous doping that involves doping of the amorphous domains to high doping levels first before doping of the ordered, crystalline domains occurs. The study provides new insights into how the thermoelectric physics of conducting polymers evolves as a function of doping level.
In ion exchange doped polythiophene polymers the conductivity is independent of the size of the dopant counterion at the highest doping concentrations/conductivities (>100 S cm−1). At intermediate conductivities (10−1 to 102 S cm−1) doping occurs primarily in the amorphous domains, leading to an unexpected carrier delocalization due to high local carrier concentrations and a similar absence of counterion‐induced Coulombic trapping. |
| Author | Ghosh, Raja Sun, Yuanhui McCulloch, Iain Statz, Martin Spano, Frank C. Kang, Boseok Huang, Yuxuan Hu, Yuanyuan Jellett, Cameron Sirringhaus, Henning Chen, Chen Jacobs, Ian E. Jiang, Lang Kang, Keehoon She, Xiaojian BaloochQarai, Mohammad Lee, Seon Baek Lin, Yue Ren, Xinglong Tjhe, Dion Wood, William |
| Author_xml | – sequence: 1 givenname: Chen surname: Chen fullname: Chen, Chen organization: University of Cambridge – sequence: 2 givenname: Ian E. surname: Jacobs fullname: Jacobs, Ian E. email: ij255@cam.ac.uk organization: University of Cambridge – sequence: 3 givenname: Keehoon surname: Kang fullname: Kang, Keehoon organization: Seoul National University – sequence: 4 givenname: Yue surname: Lin fullname: Lin, Yue organization: University of Cambridge – sequence: 5 givenname: Cameron surname: Jellett fullname: Jellett, Cameron organization: Imperial College London, South Kensington – sequence: 6 givenname: Boseok surname: Kang fullname: Kang, Boseok organization: Sungkyunkwan University – sequence: 7 givenname: Seon Baek surname: Lee fullname: Lee, Seon Baek organization: Pohang University of Science and Technology – sequence: 8 givenname: Yuxuan surname: Huang fullname: Huang, Yuxuan organization: University of Cambridge – sequence: 9 givenname: Mohammad surname: BaloochQarai fullname: BaloochQarai, Mohammad organization: Temple University – sequence: 10 givenname: Raja surname: Ghosh fullname: Ghosh, Raja organization: Temple University – sequence: 11 givenname: Martin surname: Statz fullname: Statz, Martin organization: University of Cambridge – sequence: 12 givenname: William surname: Wood fullname: Wood, William organization: University of Cambridge – sequence: 13 givenname: Xinglong surname: Ren fullname: Ren, Xinglong organization: University of Cambridge – sequence: 14 givenname: Dion surname: Tjhe fullname: Tjhe, Dion organization: University of Cambridge – sequence: 15 givenname: Yuanhui surname: Sun fullname: Sun, Yuanhui organization: University of Cambridge – sequence: 16 givenname: Xiaojian surname: She fullname: She, Xiaojian organization: Zhejiang University – sequence: 17 givenname: Yuanyuan surname: Hu fullname: Hu, Yuanyuan organization: Hunan University – sequence: 18 givenname: Lang surname: Jiang fullname: Jiang, Lang organization: Institute of Chemistry Chinese Academy of Sciences – sequence: 19 givenname: Frank C. surname: Spano fullname: Spano, Frank C. organization: Temple University – sequence: 20 givenname: Iain surname: McCulloch fullname: McCulloch, Iain organization: University of Oxford – sequence: 21 givenname: Henning orcidid: 0000-0001-9827-6061 surname: Sirringhaus fullname: Sirringhaus, Henning email: hs220@cam.ac.uk organization: University of Cambridge |
| BookMark | eNo9kMtOAjEUhhuDiYhsXfcFBttO57YkiEqCYhTDctJpz0B1piXtgOKj-LTOeOHkJOeS__8X3znqGWsAoUtKRpQQdiXA1CNGWNtJlpygPo0pD-KUk95xD9kZGnr_StriGSVh2Edfi8KD24tGW4NtiVcg3vDE7kwDrns960_A17AFo8BI6CTLDbjaQgWycVripRPGb61rsDZ41lqmH3IjzLq12S2oNsyonWy0WeNHWx1qcB6PpbPeY4FXWgF--lG3yf_SvW40-At0WorKw_BvDtDLzXQ5uQvmi9vZZDwPJI9IEqgo4mnBqCqyMEq4TGIRqrjMAEqVJqJQSSmBsSSN0oJCKYngmSJxGfOYsSKDcICy39x3XcEh3zpdC3fIKck7snlHNj-SzcfTh_vjFX4DSQh0fg |
| CitedBy_id | crossref_primary_10_1002_advs_202405676 crossref_primary_10_1002_adma_202404554 crossref_primary_10_1038_s41467_024_49208_x crossref_primary_10_1002_adfm_202507480 crossref_primary_10_1002_adma_202314062 crossref_primary_10_1088_1674_4926_25010027 crossref_primary_10_1557_s43579_024_00665_x crossref_primary_10_1002_ifm2_33 crossref_primary_10_1021_acsami_5c04471 crossref_primary_10_3390_ma17081797 crossref_primary_10_35848_1882_0786_ad2f66 crossref_primary_10_1002_adma_202311303 crossref_primary_10_7566_JPSJ_94_094705 crossref_primary_10_1002_cjoc_202300650 crossref_primary_10_1007_s10965_024_04140_y crossref_primary_10_1002_aelm_202400817 crossref_primary_10_1002_smtd_202400084 crossref_primary_10_1111_1541_4337_70045 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| Copyright_xml | – notice: 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH |
| DBID | 24P |
| DOI | 10.1002/aenm.202202797 |
| DatabaseName | Wiley Online Library Open Access |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1614-6840 |
| EndPage | n/a |
| ExternalDocumentID | AENM202202797 |
| Genre | article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 2022K1A4A7A04094482 – fundername: Royal Society Research Professorship funderid: RP\R1\201082; DE‐SC0020046 – fundername: Engineering and Physical Sciences Research Council funderid: EP/R031894/1 – fundername: European Research Council funderid: 610115 |
| GroupedDBID | 05W 0R~ 1OC 24P 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- |
| ID | FETCH-LOGICAL-c4507-d5548b21db93574c76a3d6f9eefd87abd7fce227858b1efc0a49d06f64622b9e3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913625500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1614-6832 |
| IngestDate | Wed Jan 22 16:14:52 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4507-d5548b21db93574c76a3d6f9eefd87abd7fce227858b1efc0a49d06f64622b9e3 |
| ORCID | 0000-0001-9827-6061 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202797 |
| PageCount | 15 |
| ParticipantIDs | wiley_primary_10_1002_aenm_202202797_AENM202202797 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Advanced energy materials |
| PublicationYear | 2023 |
| References | 2013 2011; 12 10 2014; 515 2007 2012 2006 2009; 129 6 5 3 2018; 122 2019; 9 2017 2020; 27 11 2021; 20 2019 2017; 8 3 2005 2020 2019; 72 12 31 2019; 5 2015 2018; 27 9 2019; 31 2010 2020; 142 2021; 125 2017; 27 2017 2008; 357 7 2020 2017; 49 29 2019; 18 1964 1982; 2 76 2015; 107 2016; 17 2012 2012 2019; 5 100 2014; 107 2016; 6 2020; 6 1985; 18 2013 2011; 12 84 2000; 18 2014; 508 2014 2019 2019 2016 2017 2019; 26 31 3 1 6 377 2020; 53 2022 2022; 34 144 2017; 16 2021; 119 2021 2021; 4 31 2016 2015; 15 5 2014; 13 2017 2020 2019 2018 2020 2014 2015 2021; 7 5 13 30 111 6 7 2005; 71 2018 2010 2019; 4 2 2019; 572 |
| References_xml | – volume: 515 start-page: 384 year: 2014 publication-title: Nature – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 26 31 3 1 6 377 start-page: 6829 53 year: 2014 2019 2019 2016 2017 2019 publication-title: Adv. Mater. Adv. Mater. Joule Nat. Rev. Mater. ECS J. Solid State Sci. Technol. Philos. Trans. R. Soc., A – volume: 27 11 start-page: 1737 year: 2017 2020 publication-title: Adv. Funct. Mater. Nat. Commun. – volume: 8 3 start-page: 112 year: 2019 2017 publication-title: Mater. Today Phys. Sci. Adv. – volume: 4 2 start-page: 15 year: 2018 2010 2019 publication-title: Sci. Adv. – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – volume: 49 29 start-page: 7210 year: 2020 2017 publication-title: Chem. Soc. Rev. Adv. Mater. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 71 year: 2005 publication-title: Phys. Rev. B – volume: 2 76 start-page: 219 4094 year: 1964 1982 publication-title: Theor. Chim. Acta J. Chem. Phys. – volume: 18 start-page: 242 year: 2019 publication-title: Nat. Mater. – volume: 17 start-page: 3836 year: 2016 publication-title: ChemPhysChem – volume: 13 start-page: 190 year: 2014 publication-title: Nat. Mater. – volume: 5 100 start-page: 9345 year: 2012 2012 2019 publication-title: Energy Environ. Sci. Phys. Rev. B – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 125 year: 2021 publication-title: J. Phys. Chem. C – volume: 4 31 start-page: 8 year: 2021 2021 publication-title: Commun. Phys. Adv. Funct. Mater. – volume: 16 start-page: 474 year: 2017 publication-title: Nat. Mater. – volume: 15 5 start-page: 896 year: 2016 2015 publication-title: Nat. Mater. Adv. Energy Mater. – volume: 6 year: 2020 publication-title: Adv. Electron. Mater. – volume: 7 5 13 30 111 6 7 start-page: 97 8356 year: 2020 2019 2018 2020 2014 2015 2021 publication-title: Adv. Sci. Sci. Adv. Nat. Nanotech. Adv. Funct. Mater. Proc. Natl. Acad. Sci. USA Nat. Commun. Sci. Adv. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 5 year: 2019 publication-title: Adv. Electron. Mater. – volume: 34 144 start-page: 3005 year: 2022 2022 publication-title: Adv. Mater. J. Am. Chem. Soc. – volume: 20 start-page: 518 year: 2021 publication-title: Nat. Mater. – volume: 53 start-page: 2201 year: 2020 publication-title: Acc. Chem. Res. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 142 start-page: 7434 year: 2020 publication-title: J. Am. Chem. Soc. – volume: 27 9 start-page: 6855 3817 year: 2015 2018 publication-title: Adv. Mater. Nat. Commun. – volume: 357 7 start-page: 105 year: 2017 2008 publication-title: Science Nat. Mat. – volume: 129 6 5 3 start-page: 3226 1849 328 780 year: 2007 2012 2006 2009 publication-title: J. Am. Chem. Soc. ACS Nano Nat. Mater. ACS Nano – volume: 16 start-page: 252 year: 2017 publication-title: Nat. Mater. – volume: 18 start-page: 309 year: 1985 publication-title: Acc. Chem. Res. – volume: 12 10 start-page: 719 429 year: 2013 2011 publication-title: Nat. Mater. Nat. Mater. – volume: 12 84 start-page: 1038 year: 2013 2011 publication-title: Nat. Mater. Phys. Rev. B – volume: 107 year: 2014 publication-title: Europhys. Lett. – volume: 572 start-page: 634 year: 2019 publication-title: Nature – year: 2017 – volume: 72 12 31 year: 2005 2020 2019 publication-title: Phys. Rev. B ACS Appl. Mater. Interfaces Adv. Mater. – volume: 107 year: 2015 publication-title: Appl. Phys. Lett. – volume: 508 start-page: 373 year: 2014 publication-title: Nature – volume: 18 year: 2000 – volume: 31 start-page: 8820 year: 2019 publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th – start-page: 121 year: 2010 |
| SSID | ssj0000491033 |
| Score | 2.5580633 |
| Snippet | Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge... |
| SourceID | wiley |
| SourceType | Publisher |
| SubjectTerms | counterion effect doping organic electronics semicrystalline polymers thermoelectrics |
| Title | Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202797 |
| Volume | 13 |
| WOSCitedRecordID | wos000913625500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgcIADO2KXD1yjJk5qx8eKtoIDpWJRe4u8jKUISFApFfApfC2204ZyhWMiexJNxvGbkec9hM6ZRcFEtSDgNvuxCYpWAQ9lGCgWuYSDCCWNF5tg_X46GvHBQhd_xQ9RF9zcyvD_a7fAhXxt_pCGCihcJzlx2Ttny2gliuLUiTeQZFBXWSz-jUKvJ2-RTRJQG79z5saQNH-b-A1P_f7S2_z_m22hjRm2xO0qGLbREhQ7aH2BcXAXfd3IugyLS4OHIB6x60t3lM321l3-CbgzE8ZV4IbYQBo_l5VcTq5wzYaO8wJf2Snd96p5GHfKF9DWWOEoZO3T8KB8-nBlcdz2ezEWeJhrwLd-tLU8Hzr1rK576KHXvb-4DGbyDIFKLIoMtEUiqSSRljxusUQxKmJNDQcwOmVCamYUuE7bViojMCoUCdchNTShhEgO8T5qFGUBBwjzlGsCxn4dbRJNYkFSRSNFIRExlSI8RMQ7PHupKDiyimyZZM7VWe3qrN3tX9dXR3-ZdIzWnKB8dcrsBDUm4zc4RatqOslfx2c-uL4BzjbStw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54ScCBN-JNDlwr2jRLm-PENg0BY4IhuFV5OFIFtGg8BPwUfi1JuhV2RRxbOW7lOvVnK_6M0FFiUTBRDQi4zX5sgqJVwEMZBiqJXMJBhJLGD5tIer307o73R6cJXS9MxQ9RF9zczvD_a7fBXUH6-Ic1VEDhWsmJS995Mo1mqQ01ztUJ7ddlFguAo9APlLfQhgbMOvCYujEkx5MqJvGpDzCd5X94tRW0NEKXuFm5wyqagmINLf7iHFxHX5eyLsTi0uBbEPfYdaY70mZ76zr_BNwajcZV4ESsKw0fy2pgTq5wzYeO8wKf2iXt96p9GLfKJ9BWWeFIZO3TcL98-HCFcdz00RgLfJtrwFde2moei755XtcNdNNpD066wWhAQ6CoxZGBtlgklSTSkseNhKqEiVgzwwGMThMhdWIUuF7bRiojMCoUlOuQGUYZIZJDvIlmirKALYR5yjUBYz-PNlSTWJBUsUgxoCJmUoTbiHiLZ08VCUdW0S2TzJk6q02dNdu9i_pq5y-LDtF8d3Bxnp2f9s520YIbL1-dOdtDMy_DV9hHc-rtJX8eHnhP-wZuRtai |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwELXYghAcYIFFfK8Pe41IHNeOjxVtBQJKBYvgFvljLEULSVUKAn4KvxbbKYFe0R4T2ZNoMo7fjDzvIfSHOxRMdBsi4bIfl6AYHYlYxZHmiU84iNTKBrEJPhhkt7diOD1N6Hthan6IpuDmV0b4X_sFDiNjDz9ZQyWUvpWc-PRd8B9onrZ54gOb0GFTZnEAOImDoLyDNjRiLoA_qBtjcjhrYhafhg2mv_ofXu0nWpmiS9ypw2ENzUG5jpa_cA5uoLcL1RRicWXxDch_2Heme9Jmd-uqeAXcnUrjavBDXCiN76taMKfQuOFDx0WJT9yU3nPdPoy71QiMM1Z6Eln3NDys7l58YRx3wm6MJb4pDODLMNpZ_hj6FHhdf6Hrfu_v0XE0FWiINHU4MjIOi2SKJEaJtM2p5kymhlkBYE3GpTLcavC9tu1MJWB1LKkwMbOMMkKUgHQTtcqqhC2ERSYMAes-j7HUkFSSTLNEM6AyZUrG24gEj-ejmoQjr-mWSe5dnTeuzju9wXlztfOdSb_R4rDbz89OBqe7aMmry9dHzvZQazJ-hH20oJ8mxcP4IATaO0r-1iY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+Weak+Counterion+Size+Dependence+of+Thermoelectric+Transport+in+Ion+Exchange+Doped+Conducting+Polymers+Across+a+Wide+Range+of+Conductivities&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Chen&rft.au=Jacobs%2C+Ian+E.&rft.au=Kang%2C+Keehoon&rft.au=Lin%2C+Yue&rft.date=2023-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202797&rft.externalDBID=10.1002%252Faenm.202202797&rft.externalDocID=AENM202202797 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |