Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities

Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electron...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced energy materials Ročník 13; číslo 9
Hlavní autoři: Chen, Chen, Jacobs, Ian E., Kang, Keehoon, Lin, Yue, Jellett, Cameron, Kang, Boseok, Lee, Seon Baek, Huang, Yuxuan, BaloochQarai, Mohammad, Ghosh, Raja, Statz, Martin, Wood, William, Ren, Xinglong, Tjhe, Dion, Sun, Yuanhui, She, Xiaojian, Hu, Yuanyuan, Jiang, Lang, Spano, Frank C., McCulloch, Iain, Sirringhaus, Henning
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.03.2023
Témata:
ISSN:1614-6832, 1614-6840
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electronic charge carriers and the dopant counterions. Previous studies have shown that at low doping levels carriers are strongly trapped in the vicinity of the counterions, while at high doping levels charge transport is not limited by Coulombic trapping, which manifests itself in the conductivity being independent of the size of the dopant counterion. Here a recently developed ion exchange doping method is used to investigate the ion size dependence of a semicrystalline polythiophene‐based model system across a wide range of conductivities. It is found that the regime in which the charge and thermoelectric transport is not or only weakly dependent on ion size, extends to surprisingly low conductivities. This surprising observation is explained by a heterogeneous doping that involves doping of the amorphous domains to high doping levels first before doping of the ordered, crystalline domains occurs. The study provides new insights into how the thermoelectric physics of conducting polymers evolves as a function of doping level. In ion exchange doped polythiophene polymers the conductivity is independent of the size of the dopant counterion at the highest doping concentrations/conductivities (>100 S cm−1). At intermediate conductivities (10−1 to 102 S cm−1) doping occurs primarily in the amorphous domains, leading to an unexpected carrier delocalization due to high local carrier concentrations and a similar absence of counterion‐induced Coulombic trapping.
AbstractList Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge transport physics include the structural disorder present in these highly doped polymer films and the Coulombic interactions between the electronic charge carriers and the dopant counterions. Previous studies have shown that at low doping levels carriers are strongly trapped in the vicinity of the counterions, while at high doping levels charge transport is not limited by Coulombic trapping, which manifests itself in the conductivity being independent of the size of the dopant counterion. Here a recently developed ion exchange doping method is used to investigate the ion size dependence of a semicrystalline polythiophene‐based model system across a wide range of conductivities. It is found that the regime in which the charge and thermoelectric transport is not or only weakly dependent on ion size, extends to surprisingly low conductivities. This surprising observation is explained by a heterogeneous doping that involves doping of the amorphous domains to high doping levels first before doping of the ordered, crystalline domains occurs. The study provides new insights into how the thermoelectric physics of conducting polymers evolves as a function of doping level. In ion exchange doped polythiophene polymers the conductivity is independent of the size of the dopant counterion at the highest doping concentrations/conductivities (>100 S cm−1). At intermediate conductivities (10−1 to 102 S cm−1) doping occurs primarily in the amorphous domains, leading to an unexpected carrier delocalization due to high local carrier concentrations and a similar absence of counterion‐induced Coulombic trapping.
Author Ghosh, Raja
Sun, Yuanhui
McCulloch, Iain
Statz, Martin
Spano, Frank C.
Kang, Boseok
Huang, Yuxuan
Hu, Yuanyuan
Jellett, Cameron
Sirringhaus, Henning
Chen, Chen
Jacobs, Ian E.
Jiang, Lang
Kang, Keehoon
She, Xiaojian
BaloochQarai, Mohammad
Lee, Seon Baek
Lin, Yue
Ren, Xinglong
Tjhe, Dion
Wood, William
Author_xml – sequence: 1
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  organization: University of Cambridge
– sequence: 2
  givenname: Ian E.
  surname: Jacobs
  fullname: Jacobs, Ian E.
  email: ij255@cam.ac.uk
  organization: University of Cambridge
– sequence: 3
  givenname: Keehoon
  surname: Kang
  fullname: Kang, Keehoon
  organization: Seoul National University
– sequence: 4
  givenname: Yue
  surname: Lin
  fullname: Lin, Yue
  organization: University of Cambridge
– sequence: 5
  givenname: Cameron
  surname: Jellett
  fullname: Jellett, Cameron
  organization: Imperial College London, South Kensington
– sequence: 6
  givenname: Boseok
  surname: Kang
  fullname: Kang, Boseok
  organization: Sungkyunkwan University
– sequence: 7
  givenname: Seon Baek
  surname: Lee
  fullname: Lee, Seon Baek
  organization: Pohang University of Science and Technology
– sequence: 8
  givenname: Yuxuan
  surname: Huang
  fullname: Huang, Yuxuan
  organization: University of Cambridge
– sequence: 9
  givenname: Mohammad
  surname: BaloochQarai
  fullname: BaloochQarai, Mohammad
  organization: Temple University
– sequence: 10
  givenname: Raja
  surname: Ghosh
  fullname: Ghosh, Raja
  organization: Temple University
– sequence: 11
  givenname: Martin
  surname: Statz
  fullname: Statz, Martin
  organization: University of Cambridge
– sequence: 12
  givenname: William
  surname: Wood
  fullname: Wood, William
  organization: University of Cambridge
– sequence: 13
  givenname: Xinglong
  surname: Ren
  fullname: Ren, Xinglong
  organization: University of Cambridge
– sequence: 14
  givenname: Dion
  surname: Tjhe
  fullname: Tjhe, Dion
  organization: University of Cambridge
– sequence: 15
  givenname: Yuanhui
  surname: Sun
  fullname: Sun, Yuanhui
  organization: University of Cambridge
– sequence: 16
  givenname: Xiaojian
  surname: She
  fullname: She, Xiaojian
  organization: Zhejiang University
– sequence: 17
  givenname: Yuanyuan
  surname: Hu
  fullname: Hu, Yuanyuan
  organization: Hunan University
– sequence: 18
  givenname: Lang
  surname: Jiang
  fullname: Jiang, Lang
  organization: Institute of Chemistry Chinese Academy of Sciences
– sequence: 19
  givenname: Frank C.
  surname: Spano
  fullname: Spano, Frank C.
  organization: Temple University
– sequence: 20
  givenname: Iain
  surname: McCulloch
  fullname: McCulloch, Iain
  organization: University of Oxford
– sequence: 21
  givenname: Henning
  orcidid: 0000-0001-9827-6061
  surname: Sirringhaus
  fullname: Sirringhaus, Henning
  email: hs220@cam.ac.uk
  organization: University of Cambridge
BookMark eNo9kMtOAjEUhhuDiYhsXfcFBttO57YkiEqCYhTDctJpz0B1piXtgOKj-LTOeOHkJOeS__8X3znqGWsAoUtKRpQQdiXA1CNGWNtJlpygPo0pD-KUk95xD9kZGnr_StriGSVh2Edfi8KD24tGW4NtiVcg3vDE7kwDrns960_A17AFo8BI6CTLDbjaQgWycVripRPGb61rsDZ41lqmH3IjzLq12S2oNsyonWy0WeNHWx1qcB6PpbPeY4FXWgF--lG3yf_SvW40-At0WorKw_BvDtDLzXQ5uQvmi9vZZDwPJI9IEqgo4mnBqCqyMEq4TGIRqrjMAEqVJqJQSSmBsSSN0oJCKYngmSJxGfOYsSKDcICy39x3XcEh3zpdC3fIKck7snlHNj-SzcfTh_vjFX4DSQh0fg
CitedBy_id crossref_primary_10_1002_advs_202405676
crossref_primary_10_1002_adma_202404554
crossref_primary_10_1038_s41467_024_49208_x
crossref_primary_10_1002_adfm_202507480
crossref_primary_10_1002_adma_202314062
crossref_primary_10_1088_1674_4926_25010027
crossref_primary_10_1557_s43579_024_00665_x
crossref_primary_10_1002_ifm2_33
crossref_primary_10_1021_acsami_5c04471
crossref_primary_10_3390_ma17081797
crossref_primary_10_35848_1882_0786_ad2f66
crossref_primary_10_1002_adma_202311303
crossref_primary_10_7566_JPSJ_94_094705
crossref_primary_10_1002_cjoc_202300650
crossref_primary_10_1007_s10965_024_04140_y
crossref_primary_10_1002_aelm_202400817
crossref_primary_10_1002_smtd_202400084
crossref_primary_10_1111_1541_4337_70045
ContentType Journal Article
Copyright 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
Copyright_xml – notice: 2023 The Authors. Advanced Energy Materials published by Wiley‐VCH GmbH
DBID 24P
DOI 10.1002/aenm.202202797
DatabaseName Wiley Online Library Open Access
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM202202797
Genre article
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 2022K1A4A7A04094482
– fundername: Royal Society Research Professorship
  funderid: RP\R1\201082; DE‐SC0020046
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/R031894/1
– fundername: European Research Council
  funderid: 610115
GroupedDBID 05W
0R~
1OC
24P
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
ID FETCH-LOGICAL-c4507-d5548b21db93574c76a3d6f9eefd87abd7fce227858b1efc0a49d06f64622b9e3
IEDL.DBID 24P
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000913625500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1614-6832
IngestDate Wed Jan 22 16:14:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4507-d5548b21db93574c76a3d6f9eefd87abd7fce227858b1efc0a49d06f64622b9e3
ORCID 0000-0001-9827-6061
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202797
PageCount 15
ParticipantIDs wiley_primary_10_1002_aenm_202202797_AENM202202797
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Advanced energy materials
PublicationYear 2023
References 2013 2011; 12 10
2014; 515
2007 2012 2006 2009; 129 6 5 3
2018; 122
2019; 9
2017 2020; 27 11
2021; 20
2019 2017; 8 3
2005 2020 2019; 72 12 31
2019; 5
2015 2018; 27 9
2019; 31
2010
2020; 142
2021; 125
2017; 27
2017 2008; 357 7
2020 2017; 49 29
2019; 18
1964 1982; 2 76
2015; 107
2016; 17
2012 2012 2019; 5 100
2014; 107
2016; 6
2020; 6
1985; 18
2013 2011; 12 84
2000; 18
2014; 508
2014 2019 2019 2016 2017 2019; 26 31 3 1 6 377
2020; 53
2022 2022; 34 144
2017; 16
2021; 119
2021 2021; 4 31
2016 2015; 15 5
2014; 13
2017
2020 2019 2018 2020 2014 2015 2021; 7 5 13 30 111 6 7
2005; 71
2018 2010 2019; 4 2
2019; 572
References_xml – volume: 515
  start-page: 384
  year: 2014
  publication-title: Nature
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 26 31 3 1 6 377
  start-page: 6829 53
  year: 2014 2019 2019 2016 2017 2019
  publication-title: Adv. Mater. Adv. Mater. Joule Nat. Rev. Mater. ECS J. Solid State Sci. Technol. Philos. Trans. R. Soc., A
– volume: 27 11
  start-page: 1737
  year: 2017 2020
  publication-title: Adv. Funct. Mater. Nat. Commun.
– volume: 8 3
  start-page: 112
  year: 2019 2017
  publication-title: Mater. Today Phys. Sci. Adv.
– volume: 4 2
  start-page: 15
  year: 2018 2010 2019
  publication-title: Sci. Adv.
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 49 29
  start-page: 7210
  year: 2020 2017
  publication-title: Chem. Soc. Rev. Adv. Mater.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 71
  year: 2005
  publication-title: Phys. Rev. B
– volume: 2 76
  start-page: 219 4094
  year: 1964 1982
  publication-title: Theor. Chim. Acta J. Chem. Phys.
– volume: 18
  start-page: 242
  year: 2019
  publication-title: Nat. Mater.
– volume: 17
  start-page: 3836
  year: 2016
  publication-title: ChemPhysChem
– volume: 13
  start-page: 190
  year: 2014
  publication-title: Nat. Mater.
– volume: 5 100
  start-page: 9345
  year: 2012 2012 2019
  publication-title: Energy Environ. Sci. Phys. Rev. B
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 125
  year: 2021
  publication-title: J. Phys. Chem. C
– volume: 4 31
  start-page: 8
  year: 2021 2021
  publication-title: Commun. Phys. Adv. Funct. Mater.
– volume: 16
  start-page: 474
  year: 2017
  publication-title: Nat. Mater.
– volume: 15 5
  start-page: 896
  year: 2016 2015
  publication-title: Nat. Mater. Adv. Energy Mater.
– volume: 6
  year: 2020
  publication-title: Adv. Electron. Mater.
– volume: 7 5 13 30 111 6 7
  start-page: 97 8356
  year: 2020 2019 2018 2020 2014 2015 2021
  publication-title: Adv. Sci. Sci. Adv. Nat. Nanotech. Adv. Funct. Mater. Proc. Natl. Acad. Sci. USA Nat. Commun. Sci. Adv.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 5
  year: 2019
  publication-title: Adv. Electron. Mater.
– volume: 34 144
  start-page: 3005
  year: 2022 2022
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 20
  start-page: 518
  year: 2021
  publication-title: Nat. Mater.
– volume: 53
  start-page: 2201
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 142
  start-page: 7434
  year: 2020
  publication-title: J. Am. Chem. Soc.
– volume: 27 9
  start-page: 6855 3817
  year: 2015 2018
  publication-title: Adv. Mater. Nat. Commun.
– volume: 357 7
  start-page: 105
  year: 2017 2008
  publication-title: Science Nat. Mat.
– volume: 129 6 5 3
  start-page: 3226 1849 328 780
  year: 2007 2012 2006 2009
  publication-title: J. Am. Chem. Soc. ACS Nano Nat. Mater. ACS Nano
– volume: 16
  start-page: 252
  year: 2017
  publication-title: Nat. Mater.
– volume: 18
  start-page: 309
  year: 1985
  publication-title: Acc. Chem. Res.
– volume: 12 10
  start-page: 719 429
  year: 2013 2011
  publication-title: Nat. Mater. Nat. Mater.
– volume: 12 84
  start-page: 1038
  year: 2013 2011
  publication-title: Nat. Mater. Phys. Rev. B
– volume: 107
  year: 2014
  publication-title: Europhys. Lett.
– volume: 572
  start-page: 634
  year: 2019
  publication-title: Nature
– year: 2017
– volume: 72 12 31
  year: 2005 2020 2019
  publication-title: Phys. Rev. B ACS Appl. Mater. Interfaces Adv. Mater.
– volume: 107
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 508
  start-page: 373
  year: 2014
  publication-title: Nature
– volume: 18
  year: 2000
– volume: 31
  start-page: 8820
  year: 2019
  publication-title: Chem. Anal. Biol. Fate: Polynucl. Aromat. Hydrocarbons, Int. Symp., 5th
– start-page: 121
  year: 2010
SSID ssj0000491033
Score 2.5580633
Snippet Conducting polymers are of interest for a broad range of applications from bioelectronics to thermoelectrics. The factors that govern their complex charge...
SourceID wiley
SourceType Publisher
SubjectTerms counterion effect
doping
organic electronics
semicrystalline polymers
thermoelectrics
Title Observation of Weak Counterion Size Dependence of Thermoelectric Transport in Ion Exchange Doped Conducting Polymers Across a Wide Range of Conductivities
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202202797
Volume 13
WOSCitedRecordID wos000913625500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgcIADO2KXD1yjJk5qx8eKtoIDpWJRe4u8jKUISFApFfApfC2204ZyhWMiexJNxvGbkec9hM6ZRcFEtSDgNvuxCYpWAQ9lGCgWuYSDCCWNF5tg_X46GvHBQhd_xQ9RF9zcyvD_a7fAhXxt_pCGCihcJzlx2Ttny2gliuLUiTeQZFBXWSz-jUKvJ2-RTRJQG79z5saQNH-b-A1P_f7S2_z_m22hjRm2xO0qGLbREhQ7aH2BcXAXfd3IugyLS4OHIB6x60t3lM321l3-CbgzE8ZV4IbYQBo_l5VcTq5wzYaO8wJf2Snd96p5GHfKF9DWWOEoZO3T8KB8-nBlcdz2ezEWeJhrwLd-tLU8Hzr1rK576KHXvb-4DGbyDIFKLIoMtEUiqSSRljxusUQxKmJNDQcwOmVCamYUuE7bViojMCoUCdchNTShhEgO8T5qFGUBBwjzlGsCxn4dbRJNYkFSRSNFIRExlSI8RMQ7PHupKDiyimyZZM7VWe3qrN3tX9dXR3-ZdIzWnKB8dcrsBDUm4zc4RatqOslfx2c-uL4BzjbStw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT8MwDI54ScCBN-JNDlwr2jRLm-PENg0BY4IhuFV5OFIFtGg8BPwUfi1JuhV2RRxbOW7lOvVnK_6M0FFiUTBRDQi4zX5sgqJVwEMZBiqJXMJBhJLGD5tIer307o73R6cJXS9MxQ9RF9zczvD_a7fBXUH6-Ic1VEDhWsmJS995Mo1mqQ01ztUJ7ddlFguAo9APlLfQhgbMOvCYujEkx5MqJvGpDzCd5X94tRW0NEKXuFm5wyqagmINLf7iHFxHX5eyLsTi0uBbEPfYdaY70mZ76zr_BNwajcZV4ESsKw0fy2pgTq5wzYeO8wKf2iXt96p9GLfKJ9BWWeFIZO3TcL98-HCFcdz00RgLfJtrwFde2moei755XtcNdNNpD066wWhAQ6CoxZGBtlgklSTSkseNhKqEiVgzwwGMThMhdWIUuF7bRiojMCoUlOuQGUYZIZJDvIlmirKALYR5yjUBYz-PNlSTWJBUsUgxoCJmUoTbiHiLZ08VCUdW0S2TzJk6q02dNdu9i_pq5y-LDtF8d3Bxnp2f9s520YIbL1-dOdtDMy_DV9hHc-rtJX8eHnhP-wZuRtai
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT-MwELXYghAcYIFFfK8Pe41IHNeOjxVtBQJKBYvgFvljLEULSVUKAn4KvxbbKYFe0R4T2ZNoMo7fjDzvIfSHOxRMdBsi4bIfl6AYHYlYxZHmiU84iNTKBrEJPhhkt7diOD1N6Hthan6IpuDmV0b4X_sFDiNjDz9ZQyWUvpWc-PRd8B9onrZ54gOb0GFTZnEAOImDoLyDNjRiLoA_qBtjcjhrYhafhg2mv_ofXu0nWpmiS9ypw2ENzUG5jpa_cA5uoLcL1RRicWXxDch_2Heme9Jmd-uqeAXcnUrjavBDXCiN76taMKfQuOFDx0WJT9yU3nPdPoy71QiMM1Z6Eln3NDys7l58YRx3wm6MJb4pDODLMNpZ_hj6FHhdf6Hrfu_v0XE0FWiINHU4MjIOi2SKJEaJtM2p5kymhlkBYE3GpTLcavC9tu1MJWB1LKkwMbOMMkKUgHQTtcqqhC2ERSYMAes-j7HUkFSSTLNEM6AyZUrG24gEj-ejmoQjr-mWSe5dnTeuzju9wXlztfOdSb_R4rDbz89OBqe7aMmry9dHzvZQazJ-hH20oJ8mxcP4IATaO0r-1iY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Observation+of+Weak+Counterion+Size+Dependence+of+Thermoelectric+Transport+in+Ion+Exchange+Doped+Conducting+Polymers+Across+a+Wide+Range+of+Conductivities&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Chen&rft.au=Jacobs%2C+Ian+E.&rft.au=Kang%2C+Keehoon&rft.au=Lin%2C+Yue&rft.date=2023-03-01&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=13&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.202202797&rft.externalDBID=10.1002%252Faenm.202202797&rft.externalDocID=AENM202202797
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon