Toward Robust Parameterizations in Ecosystem‐Level Photosynthesis Models

In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advances in modeling earth systems Vol. 15; no. 8
Main Authors: Bao, Shanning, Alonso, Lazaro, Wang, Siyuan, Gensheimer, Johannes, De, Ranit, Carvalhais, Nuno
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.08.2023
American Geophysical Union (AGU)
Subjects:
ISSN:1942-2466, 1942-2466
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed negative NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models. Plain Language Summary Parameters can represent ecosystem properties and sensitivities of ecosystem processes to environmental changes, affecting model accuracy and output uncertainties. Therefore determining parameters is of great importance for applying models. Current ecosystem‐level models mostly determine parameters according to biomes. For example, light use efficiency (LUE) models, a typical tool to estimate gross primary productivity (GPP), use plant‐functional‐type (PFT)‐specific parameters. However, PFT‐specific parameters cannot represent the spatial variance of GPP sensitivities to environmental conditions within PFT and introduce significant estimation errors. To overcome these issues, we propose a Simultaneous Parameter Inversion and Extrapolation method (SPIE). Taking an LUE model as an example, we estimated model parameters using SPIE based on the input features representing vegetation, climate and soil properties at 196 observational sites. We compared SPIE with 11 other parameter extrapolating methods and all of these methods with site‐specific calibrations based on full‐time‐series observed GPP. The results were validated and showed that SPIE was the best method to extrapolate parameters across various temporal and spatial scales. According to the importance of input features, vegetation features, bioclimatic variables, soil properties and some PFTs are dominating spatial changes of parameters. Overall, SPIE is a robust method that overcomes strong limitations in many standard parameter extrapolating methods. Key Points We propose a machine‐learning‐based parameterization method to model gross primary productivity The method overcomes significant biases in extrapolations using assumptions of biome‐dependent and globally fixed parameterizations Vegetation, climate and soil properties explain most variability in model parameters, challenging current prescriptions of their patterns
AbstractList In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed negative NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models. Plain Language Summary Parameters can represent ecosystem properties and sensitivities of ecosystem processes to environmental changes, affecting model accuracy and output uncertainties. Therefore determining parameters is of great importance for applying models. Current ecosystem‐level models mostly determine parameters according to biomes. For example, light use efficiency (LUE) models, a typical tool to estimate gross primary productivity (GPP), use plant‐functional‐type (PFT)‐specific parameters. However, PFT‐specific parameters cannot represent the spatial variance of GPP sensitivities to environmental conditions within PFT and introduce significant estimation errors. To overcome these issues, we propose a Simultaneous Parameter Inversion and Extrapolation method (SPIE). Taking an LUE model as an example, we estimated model parameters using SPIE based on the input features representing vegetation, climate and soil properties at 196 observational sites. We compared SPIE with 11 other parameter extrapolating methods and all of these methods with site‐specific calibrations based on full‐time‐series observed GPP. The results were validated and showed that SPIE was the best method to extrapolate parameters across various temporal and spatial scales. According to the importance of input features, vegetation features, bioclimatic variables, soil properties and some PFTs are dominating spatial changes of parameters. Overall, SPIE is a robust method that overcomes strong limitations in many standard parameter extrapolating methods. Key Points We propose a machine‐learning‐based parameterization method to model gross primary productivity The method overcomes significant biases in extrapolations using assumptions of biome‐dependent and globally fixed parameterizations Vegetation, climate and soil properties explain most variability in model parameters, challenging current prescriptions of their patterns
In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant-functional-type (PFT)-dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT- and climate-specific parameterizations, global and PFT-based parameter optimization, site-similarity, and regression approaches. All methods were assessed using Nash-Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site-specific calibrations. Ten-fold cross-validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site-level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed lower NSE. The Shapley value, layer-wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models.
In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed lower NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models. Parameters can represent ecosystem properties and sensitivities of ecosystem processes to environmental changes, affecting model accuracy and output uncertainties. Therefore determining parameters is of great importance for applying models. Current ecosystem‐level models mostly determine parameters according to biomes. For example, light use efficiency (LUE) models, a typical tool to estimate gross primary productivity (GPP), use plant‐functional‐type (PFT)‐specific parameters. However, PFT‐specific parameters cannot represent the spatial variance of GPP sensitivities to environmental conditions within PFT and introduce significant estimation errors. To overcome these issues, we propose a Simultaneous Parameter Inversion and Extrapolation method (SPIE). Taking an LUE model as an example, we estimated model parameters using SPIE based on the input features representing vegetation, climate and soil properties at 196 observational sites. We compared SPIE with 11 other parameter extrapolating methods and all of these methods with site‐specific calibrations based on full‐time‐series observed GPP. The results were validated and showed that SPIE was the best method to extrapolate parameters across various temporal and spatial scales. According to the importance of input features, vegetation features, bioclimatic variables, soil properties and some PFTs are dominating spatial changes of parameters. Overall, SPIE is a robust method that overcomes strong limitations in many standard parameter extrapolating methods. We propose a machine‐learning‐based parameterization method to model gross primary productivity The method overcomes biases in extrapolations using assumptions of biome‐dependent and globally fixed parameterizations Vegetation, climate and soil properties explain most variability in model parameters, improving current prescriptions of their patterns
Abstract In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and uncertainty. Taking a light use efficiency (LUE) model as an example, which is a typical approach for estimating gross primary productivity (GPP), we propose a Simultaneous Parameter Inversion and Extrapolation approach (SPIE) to overcome issues stemming from plant‐functional‐type (PFT)‐dependent parameterizations. SPIE refers to predicting model parameters using an artificial neural network based on collected variables, including PFT, climate types, bioclimatic variables, vegetation features, atmospheric nitrogen and phosphorus deposition, and soil properties. The neural network was optimized to minimize GPP errors and constrain LUE model sensitivity functions. We compared SPIE with 11 typical parameter extrapolating methods, including PFT‐ and climate‐specific parameterizations, global and PFT‐based parameter optimization, site‐similarity, and regression approaches. All methods were assessed using Nash‐Sutcliffe model efficiency (NSE), determination coefficient and normalized root mean squared error, and contrasted with site‐specific calibrations. Ten‐fold cross‐validated results showed that SPIE had the best performance across sites, various temporal scales and assessing metrics. Taking site‐level calibrations as a benchmark (NSE = 0.95), SPIE performed with an NSE of 0.68, while all the other investigated approaches showed lower NSE. The Shapley value, layer‐wise relevance and partial dependence showed that vegetation features, bioclimatic variables, soil properties and some PFTs determine parameters. SPIE overcomes strong limitations observed in many standard parameterization methods. We argue that expanding SPIE to other models overcomes current limits and serves as an entry point to investigate the robustness and generalization of different models.
Author Carvalhais, Nuno
Alonso, Lazaro
Gensheimer, Johannes
Bao, Shanning
Wang, Siyuan
De, Ranit
Author_xml – sequence: 1
  givenname: Shanning
  orcidid: 0000-0002-0893-1833
  surname: Bao
  fullname: Bao, Shanning
  email: baoshanning@nssc.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Lazaro
  surname: Alonso
  fullname: Alonso, Lazaro
  organization: Max‐Planck‐Institute for Biogeochemistry
– sequence: 3
  givenname: Siyuan
  surname: Wang
  fullname: Wang, Siyuan
  organization: Max‐Planck‐Institute for Biogeochemistry
– sequence: 4
  givenname: Johannes
  surname: Gensheimer
  fullname: Gensheimer, Johannes
  organization: Max‐Planck‐Institute for Biogeochemistry
– sequence: 5
  givenname: Ranit
  surname: De
  fullname: De, Ranit
  organization: Max‐Planck‐Institute for Biogeochemistry
– sequence: 6
  givenname: Nuno
  orcidid: 0000-0003-0465-1436
  surname: Carvalhais
  fullname: Carvalhais, Nuno
  email: ncarvalhais@bgc-jena.mpg.de
  organization: ELLIS Unit Jena
BookMark eNp9kE1OHDEQha2ISAGSXQ7QUrZMsMs_3b1EaEhAMwIlZG1V2zXBo5422J6gySpH4IychIYJEopEVlV6-t5T1dtjO0MciLGPgn8WHNpD4ADz75xLZdQbtitaBRNQxuy82N-xvZyXnBtjQO-ys8t4i8lX32K3zqW6wIQrKpTCbywhDrkKQzV1MW9yodX9n7sZ_aK-uriKZdSGckU55GoePfX5PXu7wD7Th79zn_04mV4ef53Mzr-cHh_NJk5pXk9Mw1vkHsALKcnXuuUGa6Wk061pSTsEx7XkHT3KnaibBYraNQp91_pOyX12us31EZf2OoUVpo2NGOyTENNPi6kE15PVpEACIo3vK-VlQ7XoUDhQTnLQMGZ92mZdp3izplzsMq7TMJ5vodF1I7jUZqRgS7kUc060sC6Up35KwtBbwe1j__Zl_6Pp4B_T86mv4HKL34aeNv9l7dnRfAqiFbV8AFZcllw
CitedBy_id crossref_primary_10_1111_gcb_70462
crossref_primary_10_1111_ele_70012
crossref_primary_10_1016_j_agrformet_2025_110701
crossref_primary_10_1029_2024MS004697
crossref_primary_10_1029_2023MS004099
crossref_primary_10_1016_j_agrformet_2025_110762
Cites_doi 10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2
10.1016/j.agrformet.2005.09.011
10.1128/aem.71.12.8573-8580.2005
10.1029/2011gl048738
10.1016/j.agrformet.2014.03.007
10.12688/f1000research.8962.1
10.1111/1365-2435.13097
10.1016/j.agrformet.2009.04.003
10.1038/s41477-017-0006-8
10.1016/j.agrformet.2004.05.002
10.1016/j.agrformet.2004.10.003
10.1016/j.agrformet.2006.03.018
10.1016/j.agrformet.2009.11.002
10.5194/bg-4-581-2007
10.1088/1748-9326/8/2/025008
10.1016/j.geoderma.2012.08.027
10.1016/j.agrformet.2016.02.002
10.1038/s41597-020-0534-3
10.1016/j.agrformet.2006.09.002
10.5194/bg-4-803-2007
10.5194/soil-7-217-2021
10.1093/treephys/21.5.287
10.1088/1748-9326/8/3/035007
10.1007/s10750-012-0998-z
10.1023/a:1010933404324
10.5194/bg-10-5931-2013
10.1111/j.1365-2486.2004.00819.x
10.1111/gcb.14992
10.1016/j.agrformet.2016.12.021
10.1016/j.pedobi.2012.05.001
10.1111/j.1365-3040.2010.02238.x
10.1002/jgrg.20101
10.1016/j.agrformet.2006.08.001
10.18160/XTV7-WXVZ
10.1016/j.agrformet.2004.02.007
10.1007/978-3-662-05171-9_6
10.1111/gcb.12518
10.1046/j.1365-2486.2002.00491.x
10.5194/hess-22-4061-2018
10.5194/bg-12-1299-2015
10.1111/j.1365-2486.2004.00863.x
10.1016/j.agrformet.2005.03.006
10.5194/gmd-13-1545-2020
10.1111/j.1365-2486.2012.02776.x
10.5194/bg-6-1027-2009
10.1016/j.agrformet.2017.08.006
10.3402/tellusb.v54i5.16684
10.1111/j.1466-822X.2005.00151.x
10.1016/j.agrformet.2021.108761
10.5194/bg-9-3757-2012
10.1016/j.agrformet.2004.12.004
10.1111/j.1365-2435.2010.01779.x
10.3402/tellusb.v64i0.17159
10.1016/j.agrformet.2007.08.004
10.1029/2007jd009286
10.5194/bg-11-4139-2014
10.5194/essd-12-2725-2020
10.1080/16000889.2020.1822063
10.1038/s41598-017-03818-2
10.1111/j.1365-2486.2009.01873.x
10.1029/2007jg000640
10.1007/978-3-642-32424-6_2
10.1016/j.agrformet.2010.12.007
10.1016/j.rse.2003.11.008
10.1016/j.foreco.2007.07.003
10.1016/j.agrformet.2009.06.009
10.1111/ele.12211
10.5194/bg-13-5895-2016
10.1016/s0167-8655(99)00077-x
10.1007/s11104-011-0751-9
10.1038/s41586-019-1078-6
10.1029/2011ms000070
10.1007/bf00386231
10.5194/bg-13-95-2016
10.1002/2016ms000886
10.1046/j.1354-1013.2001.00439.x
10.1016/j.agrformet.2006.02.004
10.1029/2006gb002735
10.1186/s13021-020-00141-8
10.1111/nph.13791
10.5194/bg-11-3477-2014
10.1016/j.agrformet.2019.107760
10.1111/j.1365-2486.1996.tb00072.x
10.1029/2009JG000983
10.1002/2015JG003181
10.1111/j.1529-8817.2003.00810.x
10.1016/j.agrformet.2012.06.011
10.5194/bg-5-969-2008
10.1111/j.1365-2486.2003.00699.x
10.1214/aos/1013203451
10.1111/gcb.14884
10.1029/2019jd031702
10.1109/36.649788
10.5194/bg-19-2805-2022
10.1111/gcb.13766
10.1371/journal.pone.0130140
10.18160/0Z7J-J3TR
10.1002/hyp.6384
10.5194/bg-8-999-2011
10.1016/j.ecolmodel.2014.08.017
10.1111/j.1365-2486.2005.01081.x
10.5194/bg-13-6285-2016
10.1088/1748-9326/ab70bb
10.5194/bg-17-1621-2020
10.1002/2015JG003302
10.1029/93gb02725
10.1111/j.1600-0889.2007.00309.x
10.5194/bg-11-347-2014
10.1371/journal.pone.0211510
10.1111/j.1365-2486.2005.001002.x
10.5065/PZ8F-F017
10.1016/j.agrformet.2010.08.013
10.1016/j.agrformet.2018.06.030
10.1016/j.rse.2012.06.023
10.5194/bg-4-791-2007
10.1016/j.agrformet.2011.03.002
10.1111/j.1600-0889.2007.00305.x
10.1016/s1352-2310(97)00447-0
10.1002/qj.49711046626
10.1023/A:1023027709805
10.5194/bg-7-2601-2010
10.1016/j.agrformet.2008.10.025
10.1029/2007gb003033
10.1007/978-3-662-05171-9_7
10.1007/s00468-016-1486-2
10.1007/978-3-030-28954-6_10
10.1111/geb.12937
10.5194/bg-16-2557-2019
10.1111/j.1365-2486.1996.tb00074.x
10.5194/bg-11-1627-2014
10.1046/j.1365-2486.2002.00480.x
10.1046/j.1365-2435.2000.00434.x
10.1007/s11430-006-8207-4
10.1029/2006JG000293
10.1002/hyp.10467
10.1007/978-3-540-30217-9_29
10.1016/S0168-1923(02)00024-2
10.1046/j.1365-2486.1999.00281.x
10.1016/j.polar.2013.03.003
10.5194/bg-6-251-2009
10.5281/zenodo.7771525
10.1016/s0168-1923(96)02335-0
10.1111/j.1365-2486.2006.01281.x
10.1016/j.agrformet.2018.03.017
10.1016/j.rse.2019.01.016
10.3390/rs10040529
10.1016/j.agrformet.2006.03.022
10.1029/2008JG000900
10.1007/bf02478259
10.1046/j.1365-2486.2002.00521.x
10.1073/pnas.1515160113
10.1016/j.agrformet.2017.01.009
10.1007/s00484-015-1038-2
10.1016/j.agrformet.2013.01.003
10.1111/j.1529-8817.2003.00804.x
10.1127/metz/2016/0816
10.1071/wf03023
10.1504/ijep.2015.076583
10.1016/j.agrformet.2004.09.005
10.1186/1750-0680-3-7
10.3402/tellusb.v58i5.17028
10.1016/S0168-1923(01)00240-4
10.1016/j.agrformet.2018.08.003
10.1175/2011bams2948.1
10.5194/bg-7-3707-2010
10.1016/j.agrformet.2012.03.007
10.1029/2021ms002767
10.1890/1051-0761(1999)009[0936:ECONEO]2.0.CO;2
10.1016/j.agrformet.2008.09.003
10.1029/2009JG001010
10.1016/j.agrformet.2021.108708
10.1007/s00484-006-0046-7
10.5194/bg-6-1115-2009
10.1093/treephys/25.7.839
10.1002/2014jg002876
10.1038/35009084
10.1016/j.agrformet.2004.06.008
10.1029/97jd01176
10.1029/2006JG000306
10.1111/gcb.14939
10.2307/2401901
10.1007/s10021-007-9018-y
10.1016/j.agrformet.2016.01.086
10.1016/j.agrformet.2016.07.016
10.1016/j.agrformet.2009.11.001
10.1016/j.agee.2009.05.006
10.1016/0168-1923(85)90020-6
10.5194/bg-15-3703-2018
10.1016/S0168-1923(99)00168-9
10.1029/2010jg001566
10.1002/2013jg002591
10.1021/ac60214a047
10.1016/j.agrformet.2015.07.004
10.1007/s00442-015-3380-9
10.1029/2011JG001901
10.1038/s41559-019-0838-x
10.5194/bg-13-4291-2016
10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
10.1126/sciadv.aax1396
10.1029/2002gb001983
10.1016/S0168-1923(03)00115-1
10.1016/J.AGRFORMET.2010.03.008
10.1016/j.agrformet.2006.12.001
10.1111/j.1365-2486.2007.01463.x
10.1016/j.agrformet.2015.08.247
ContentType Journal Article
Copyright 2023 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.1029/2022MS003464
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage n/a
ExternalDocumentID oai_doaj_org_article_5e4232aae19444d38e71ba1c24c30252
10_1029_2022MS003464
JAME21917
Genre researchArticle
GrantInformation_xml – fundername: Horizon 2020 Framework Programme
  funderid: 101004188
– fundername: Yough Innovation Subject 2022 of National Space Science Center Chinese Academy of Sciences
– fundername: Sino‐German Postdoc Scholarship Program
– fundername: European Space Agency
– fundername: European Research Council
  funderid: 855187
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAHHS
AAZKR
ABDBF
ACCFJ
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEGXH
AENEX
AEQDE
AEUYN
AFKRA
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PIMPY
PROAC
RIG
RNS
TUS
WIN
~OA
AAMMB
AAYXX
AEFGJ
AFFHD
AGXDD
AIDQK
AIDYY
CITATION
HZ~
PHGZM
PHGZT
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c4507-6809a0d22d133ed75906a7443c5969e5ca2c0530be6a74b178fa17c84adb9db43
IEDL.DBID DOA
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001058671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-2466
IngestDate Fri Oct 03 12:41:45 EDT 2025
Fri Jul 25 22:40:55 EDT 2025
Sat Nov 29 02:09:18 EST 2025
Tue Nov 18 22:37:23 EST 2025
Wed Jan 22 16:20:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4507-6809a0d22d133ed75906a7443c5969e5ca2c0530be6a74b178fa17c84adb9db43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0893-1833
0000-0003-0465-1436
OpenAccessLink https://doaj.org/article/5e4232aae19444d38e71ba1c24c30252
PQID 2857810356
PQPubID 616667
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_5e4232aae19444d38e71ba1c24c30252
proquest_journals_2857810356
crossref_citationtrail_10_1029_2022MS003464
crossref_primary_10_1029_2022MS003464
wiley_primary_10_1029_2022MS003464_JAME21917
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
20230801
2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2023
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References e_1_2_8_1_36_1
e_1_2_8_2_81_1
e_1_2_8_1_13_1
Schroder I. (e_1_2_8_2_124_1) 2014; 102
e_1_2_8_2_152_1
e_1_2_8_2_43_1
e_1_2_8_2_89_1
e_1_2_8_2_20_1
e_1_2_8_2_114_1
e_1_2_8_2_66_1
e_1_2_8_2_137_1
Suni T. (e_1_2_8_2_131_1) 2003; 8
e_1_2_8_2_17_1
e_1_2_8_2_9_1
e_1_2_8_1_48_1
e_1_2_8_1_47_1
e_1_2_8_1_24_1
e_1_2_8_2_141_1
Pedregosa F. (e_1_2_8_1_43_1) 2011; 12
e_1_2_8_1_62_1
Running S. W. (e_1_2_8_2_118_1) 2015
e_1_2_8_2_54_1
e_1_2_8_2_31_1
Billesbach D. (e_1_2_8_2_21_1) 2016
e_1_2_8_2_103_1
e_1_2_8_2_149_1
e_1_2_8_2_77_1
e_1_2_8_2_126_1
e_1_2_8_1_3_1
e_1_2_8_2_28_1
e_1_2_8_1_59_1
e_1_2_8_1_14_1
e_1_2_8_2_151_1
e_1_2_8_1_52_1
e_1_2_8_2_80_1
e_1_2_8_2_42_1
e_1_2_8_2_113_1
e_1_2_8_2_136_1
e_1_2_8_2_159_1
e_1_2_8_2_65_1
e_1_2_8_2_88_1
e_1_2_8_2_16_1
e_1_2_8_2_39_1
e_1_2_8_1_26_1
e_1_2_8_1_49_1
e_1_2_8_1_25_1
e_1_2_8_2_2_1
e_1_2_8_2_140_1
e_1_2_8_1_40_1
e_1_2_8_2_91_1
e_1_2_8_2_53_1
Sanz M. J. (e_1_2_8_2_121_1) 2004
e_1_2_8_2_30_1
e_1_2_8_2_102_1
e_1_2_8_2_125_1
e_1_2_8_2_148_1
e_1_2_8_2_15_1
e_1_2_8_2_76_1
e_1_2_8_2_99_1
Nossent J. (e_1_2_8_2_95_1) 2012
e_1_2_8_2_27_1
e_1_2_8_1_4_1
e_1_2_8_1_37_1
e_1_2_8_1_11_1
e_1_2_8_1_57_1
e_1_2_8_1_34_1
e_1_2_8_2_150_1
e_1_2_8_2_41_1
e_1_2_8_2_112_1
e_1_2_8_2_26_1
e_1_2_8_2_64_1
e_1_2_8_2_135_1
e_1_2_8_2_87_1
e_1_2_8_2_158_1
e_1_2_8_2_38_1
e_1_2_8_2_109_1
e_1_2_8_1_22_1
e_1_2_8_1_68_1
e_1_2_8_1_45_1
e_1_2_8_2_3_1
Greenwell B. M. (e_1_2_8_1_17_1) 2018
e_1_2_8_2_90_1
e_1_2_8_1_60_1
e_1_2_8_2_52_1
e_1_2_8_2_101_1
e_1_2_8_2_14_1
e_1_2_8_2_37_1
e_1_2_8_2_75_1
Meyers T. (e_1_2_8_2_85_1) 2016
e_1_2_8_2_98_1
e_1_2_8_2_147_1
e_1_2_8_2_49_1
Kingma D. P. (e_1_2_8_1_28_1) 2014
Rouse J. W. (e_1_2_8_2_116_1) 1974
e_1_2_8_1_5_1
e_1_2_8_1_72_1
e_1_2_8_1_19_1
e_1_2_8_1_12_1
e_1_2_8_1_58_1
e_1_2_8_2_40_1
e_1_2_8_1_50_1
e_1_2_8_2_111_1
e_1_2_8_2_134_1
e_1_2_8_2_48_1
e_1_2_8_2_63_1
e_1_2_8_2_86_1
e_1_2_8_2_157_1
e_1_2_8_2_108_1
e_1_2_8_1_23_1
Lundberg S. M. (e_1_2_8_1_31_1) 2017
e_1_2_8_1_46_1
e_1_2_8_1_69_1
e_1_2_8_2_51_1
e_1_2_8_2_4_1
e_1_2_8_1_61_1
e_1_2_8_2_100_1
e_1_2_8_2_123_1
e_1_2_8_2_59_1
e_1_2_8_2_74_1
e_1_2_8_2_97_1
e_1_2_8_2_36_1
e_1_2_8_2_146_1
e_1_2_8_2_13_1
e_1_2_8_1_6_1
Srivastava N. (e_1_2_8_1_51_1) 2014; 15
e_1_2_8_1_55_1
e_1_2_8_2_62_1
e_1_2_8_1_32_1
e_1_2_8_2_110_1
e_1_2_8_2_156_1
e_1_2_8_1_70_1
e_1_2_8_2_133_1
e_1_2_8_2_47_1
e_1_2_8_2_24_1
e_1_2_8_2_107_1
e_1_2_8_1_29_1
e_1_2_8_1_66_1
e_1_2_8_2_73_1
e_1_2_8_2_50_1
e_1_2_8_2_5_1
e_1_2_8_1_20_1
Nardino M. (e_1_2_8_2_92_1) 2002
e_1_2_8_2_145_1
e_1_2_8_2_58_1
e_1_2_8_2_122_1
e_1_2_8_2_96_1
e_1_2_8_2_12_1
e_1_2_8_2_35_1
e_1_2_8_2_119_1
e_1_2_8_1_7_1
e_1_2_8_1_33_1
e_1_2_8_1_56_1
e_1_2_8_2_61_1
e_1_2_8_2_84_1
e_1_2_8_1_10_1
Stocker T. (e_1_2_8_1_53_1) 2014
Fu P. (e_1_2_8_2_45_1) 1999
e_1_2_8_2_132_1
e_1_2_8_2_155_1
e_1_2_8_1_71_1
e_1_2_8_1_8_1
e_1_2_8_2_69_1
e_1_2_8_2_23_1
e_1_2_8_2_46_1
e_1_2_8_2_106_1
e_1_2_8_2_129_1
e_1_2_8_1_44_1
e_1_2_8_1_67_1
e_1_2_8_2_72_1
e_1_2_8_1_21_1
e_1_2_8_2_6_1
e_1_2_8_2_144_1
e_1_2_8_2_11_1
e_1_2_8_2_57_1
e_1_2_8_2_34_1
Aurela M. (e_1_2_8_2_10_1) 2015; 20
e_1_2_8_1_18_1
Masson‐Delmotte V. (e_1_2_8_1_35_1) 2021
e_1_2_8_2_60_1
e_1_2_8_2_83_1
e_1_2_8_1_30_1
e_1_2_8_2_22_1
e_1_2_8_2_68_1
e_1_2_8_1_9_1
e_1_2_8_2_154_1
e_1_2_8_2_19_1
e_1_2_8_2_128_1
e_1_2_8_2_7_1
e_1_2_8_1_27_1
e_1_2_8_2_71_1
e_1_2_8_2_94_1
e_1_2_8_1_64_1
e_1_2_8_1_41_1
e_1_2_8_2_33_1
e_1_2_8_2_79_1
e_1_2_8_2_120_1
e_1_2_8_2_143_1
e_1_2_8_2_56_1
e_1_2_8_2_105_1
e_1_2_8_2_117_1
Bowling D. (e_1_2_8_2_25_1) 2016
e_1_2_8_1_15_1
e_1_2_8_1_38_1
Xu T. (e_1_2_8_1_63_1) 2011
e_1_2_8_2_82_1
e_1_2_8_1_54_1
e_1_2_8_2_130_1
e_1_2_8_2_44_1
e_1_2_8_2_67_1
e_1_2_8_2_153_1
e_1_2_8_2_115_1
e_1_2_8_2_138_1
e_1_2_8_2_18_1
e_1_2_8_2_8_1
e_1_2_8_2_70_1
e_1_2_8_2_93_1
e_1_2_8_1_42_1
e_1_2_8_1_65_1
e_1_2_8_2_55_1
e_1_2_8_2_78_1
e_1_2_8_2_32_1
e_1_2_8_2_142_1
e_1_2_8_2_104_1
e_1_2_8_2_127_1
e_1_2_8_1_2_1
e_1_2_8_2_29_1
e_1_2_8_2_139_1
e_1_2_8_1_16_1
e_1_2_8_1_39_1
References_xml – ident: e_1_2_8_1_49_1
  doi: 10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2
– ident: e_1_2_8_2_123_1
– ident: e_1_2_8_2_29_1
  doi: 10.1016/j.agrformet.2005.09.011
– ident: e_1_2_8_2_74_1
  doi: 10.1128/aem.71.12.8573-8580.2005
– ident: e_1_2_8_1_14_1
  doi: 10.1029/2011gl048738
– year: 2018
  ident: e_1_2_8_1_17_1
  article-title: A simple and effective model‐based variable importance measure
  publication-title: arXiv preprint arXiv:1805.04755
– ident: e_1_2_8_1_66_1
  doi: 10.1016/j.agrformet.2014.03.007
– ident: e_1_2_8_1_3_1
  doi: 10.12688/f1000research.8962.1
– ident: e_1_2_8_2_23_1
  doi: 10.1111/1365-2435.13097
– ident: e_1_2_8_2_87_1
  doi: 10.1016/j.agrformet.2009.04.003
– ident: e_1_2_8_1_58_1
  doi: 10.1038/s41477-017-0006-8
– ident: e_1_2_8_2_27_1
  doi: 10.1016/j.agrformet.2004.05.002
– volume-title: Paper presented at the congress CNR‐ISA Fo
  year: 2002
  ident: e_1_2_8_2_92_1
– ident: e_1_2_8_2_5_1
  doi: 10.1016/j.agrformet.2004.10.003
– ident: e_1_2_8_2_60_1
  doi: 10.1016/j.agrformet.2006.03.018
– volume-title: FLUXNET2015 US‐Goo Goodwin creek
  year: 2016
  ident: e_1_2_8_2_85_1
– ident: e_1_2_8_2_125_1
  doi: 10.1016/j.agrformet.2009.11.002
– ident: e_1_2_8_2_13_1
  doi: 10.5194/bg-4-581-2007
– ident: e_1_2_8_2_46_1
  doi: 10.1088/1748-9326/8/2/025008
– ident: e_1_2_8_2_2_1
  doi: 10.1016/j.geoderma.2012.08.027
– ident: e_1_2_8_2_52_1
  doi: 10.1016/j.agrformet.2016.02.002
– ident: e_1_2_8_2_98_1
  doi: 10.1038/s41597-020-0534-3
– ident: e_1_2_8_2_105_1
  doi: 10.1016/j.agrformet.2006.09.002
– ident: e_1_2_8_2_64_1
  doi: 10.5194/bg-4-803-2007
– ident: e_1_2_8_2_104_1
  doi: 10.5194/soil-7-217-2021
– ident: e_1_2_8_2_154_1
  doi: 10.1093/treephys/21.5.287
– ident: e_1_2_8_2_156_1
  doi: 10.1088/1748-9326/8/3/035007
– ident: e_1_2_8_2_40_1
  doi: 10.1007/s10750-012-0998-z
– ident: e_1_2_8_1_8_1
  doi: 10.1023/a:1010933404324
– ident: e_1_2_8_2_63_1
  doi: 10.5194/bg-10-5931-2013
– ident: e_1_2_8_2_149_1
– ident: e_1_2_8_2_108_1
  doi: 10.1111/j.1365-2486.2004.00819.x
– ident: e_1_2_8_1_54_1
  doi: 10.1111/gcb.14992
– ident: e_1_2_8_2_75_1
  doi: 10.1016/j.agrformet.2016.12.021
– ident: e_1_2_8_2_42_1
  doi: 10.1016/j.pedobi.2012.05.001
– ident: e_1_2_8_2_86_1
  doi: 10.1111/j.1365-3040.2010.02238.x
– ident: e_1_2_8_2_31_1
  doi: 10.1002/jgrg.20101
– ident: e_1_2_8_2_47_1
  doi: 10.1016/j.agrformet.2006.08.001
– ident: e_1_2_8_1_57_1
  doi: 10.18160/XTV7-WXVZ
– ident: e_1_2_8_2_55_1
  doi: 10.1016/j.agrformet.2004.02.007
– ident: e_1_2_8_2_19_1
  doi: 10.1007/978-3-662-05171-9_6
– ident: e_1_2_8_2_83_1
  doi: 10.1111/gcb.12518
– ident: e_1_2_8_2_43_1
  doi: 10.1046/j.1365-2486.2002.00491.x
– ident: e_1_2_8_2_141_1
  doi: 10.5194/hess-22-4061-2018
– ident: e_1_2_8_1_6_1
  doi: 10.5194/bg-12-1299-2015
– ident: e_1_2_8_2_4_1
  doi: 10.1111/j.1365-2486.2004.00863.x
– volume-title: Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth Observing System MODIS land algorithm
  year: 2015
  ident: e_1_2_8_2_118_1
– ident: e_1_2_8_2_80_1
  doi: 10.1016/j.agrformet.2005.03.006
– ident: e_1_2_8_1_52_1
  doi: 10.5194/gmd-13-1545-2020
– ident: e_1_2_8_2_94_1
  doi: 10.1111/j.1365-2486.2012.02776.x
– ident: e_1_2_8_2_82_1
  doi: 10.5194/bg-6-1027-2009
– ident: e_1_2_8_2_70_1
  doi: 10.1016/j.agrformet.2017.08.006
– ident: e_1_2_8_2_8_1
  doi: 10.3402/tellusb.v54i5.16684
– ident: e_1_2_8_2_48_1
  doi: 10.1111/j.1466-822X.2005.00151.x
– ident: e_1_2_8_1_19_1
  doi: 10.1016/j.agrformet.2021.108761
– ident: e_1_2_8_1_41_1
– ident: e_1_2_8_1_30_1
  doi: 10.5194/bg-9-3757-2012
– ident: e_1_2_8_2_73_1
  doi: 10.1016/j.agrformet.2004.12.004
– year: 2014
  ident: e_1_2_8_1_28_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– ident: e_1_2_8_2_79_1
  doi: 10.1111/j.1365-2435.2010.01779.x
– ident: e_1_2_8_1_45_1
  doi: 10.5194/soil-7-217-2021
– ident: e_1_2_8_2_148_1
  doi: 10.3402/tellusb.v64i0.17159
– ident: e_1_2_8_2_50_1
  doi: 10.1016/j.agrformet.2007.08.004
– ident: e_1_2_8_2_155_1
  doi: 10.1029/2007jd009286
– ident: e_1_2_8_2_117_1
  doi: 10.5194/bg-11-4139-2014
– ident: e_1_2_8_1_70_1
  doi: 10.5194/essd-12-2725-2020
– ident: e_1_2_8_2_103_1
  doi: 10.1080/16000889.2020.1822063
– ident: e_1_2_8_1_25_1
  doi: 10.1038/s41598-017-03818-2
– ident: e_1_2_8_2_39_1
  doi: 10.1111/j.1365-2486.2009.01873.x
– ident: e_1_2_8_2_35_1
  doi: 10.1029/2007jg000640
– ident: e_1_2_8_2_97_1
  doi: 10.1007/978-3-642-32424-6_2
– ident: e_1_2_8_2_114_1
  doi: 10.1016/j.agrformet.2010.12.007
– ident: e_1_2_8_1_61_1
  doi: 10.1016/j.rse.2003.11.008
– ident: e_1_2_8_2_99_1
  doi: 10.1016/j.foreco.2007.07.003
– ident: e_1_2_8_2_28_1
  doi: 10.1016/j.agrformet.2009.06.009
– ident: e_1_2_8_1_47_1
  doi: 10.1111/ele.12211
– ident: e_1_2_8_2_17_1
  doi: 10.5194/bg-13-5895-2016
– ident: e_1_2_8_1_29_1
  doi: 10.1016/s0167-8655(99)00077-x
– ident: e_1_2_8_2_76_1
  doi: 10.1007/s11104-011-0751-9
– ident: e_1_2_8_1_12_1
  doi: 10.1038/s41586-019-1078-6
– ident: e_1_2_8_1_23_1
  doi: 10.1029/2011ms000070
– ident: e_1_2_8_1_13_1
  doi: 10.1007/bf00386231
– ident: e_1_2_8_2_119_1
  doi: 10.5194/bg-13-95-2016
– ident: e_1_2_8_1_64_1
  doi: 10.1002/2016ms000886
– ident: e_1_2_8_2_72_1
  doi: 10.1046/j.1354-1013.2001.00439.x
– ident: e_1_2_8_2_158_1
  doi: 10.1016/j.agrformet.2006.02.004
– volume-title: Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change
  year: 2021
  ident: e_1_2_8_1_35_1
– ident: e_1_2_8_1_33_1
  doi: 10.1029/2006gb002735
– ident: e_1_2_8_2_134_1
  doi: 10.1186/s13021-020-00141-8
– ident: e_1_2_8_2_135_1
  doi: 10.1111/nph.13791
– ident: e_1_2_8_2_58_1
  doi: 10.5194/bg-11-3477-2014
– ident: e_1_2_8_2_54_1
  doi: 10.1016/j.agrformet.2019.107760
– ident: e_1_2_8_2_145_1
  doi: 10.1111/j.1365-2486.1996.tb00072.x
– ident: e_1_2_8_2_128_1
  doi: 10.1029/2009JG000983
– ident: e_1_2_8_2_126_1
  doi: 10.1002/2015JG003181
– ident: e_1_2_8_2_41_1
  doi: 10.1111/j.1529-8817.2003.00810.x
– ident: e_1_2_8_2_34_1
  doi: 10.1016/j.agrformet.2012.06.011
– ident: e_1_2_8_2_69_1
  doi: 10.5194/bg-5-969-2008
– volume: 8
  start-page: 287
  issue: 4
  year: 2003
  ident: e_1_2_8_2_131_1
  article-title: Long‐term measurements of surface fluxes above a Scots pine forest in Hyytiala, southern Finland, 1996‐2001
  publication-title: Boreal Environment Research
– volume-title: ANUCLIM version 6.1 user guide
  year: 2011
  ident: e_1_2_8_1_63_1
– ident: e_1_2_8_2_147_1
  doi: 10.1111/j.1365-2486.2003.00699.x
– ident: e_1_2_8_1_15_1
  doi: 10.1214/aos/1013203451
– ident: e_1_2_8_1_44_1
  doi: 10.1111/gcb.14884
– volume-title: FLUXNET2015 US‐AR1 ARM USDA UNL OSU woodward switchgrass 1
  year: 2016
  ident: e_1_2_8_2_21_1
– ident: e_1_2_8_1_62_1
  doi: 10.1029/2019jd031702
– ident: e_1_2_8_2_90_1
  doi: 10.1109/36.649788
– ident: e_1_2_8_2_151_1
  doi: 10.5194/bg-19-2805-2022
– ident: e_1_2_8_1_59_1
  doi: 10.1111/gcb.13766
– volume-title: Paper presented at the EGU general assembly conference abstracts
  year: 2012
  ident: e_1_2_8_2_95_1
– ident: e_1_2_8_1_2_1
  doi: 10.1371/journal.pone.0130140
– ident: e_1_2_8_1_56_1
  doi: 10.18160/0Z7J-J3TR
– ident: e_1_2_8_2_100_1
  doi: 10.1002/hyp.6384
– ident: e_1_2_8_1_22_1
  doi: 10.5194/bg-8-999-2011
– ident: e_1_2_8_1_65_1
  doi: 10.1016/j.ecolmodel.2014.08.017
– ident: e_1_2_8_2_136_1
  doi: 10.1111/j.1365-2486.2005.01081.x
– ident: e_1_2_8_2_26_1
  doi: 10.5194/bg-13-6285-2016
– ident: e_1_2_8_1_11_1
  doi: 10.1088/1748-9326/ab70bb
– ident: e_1_2_8_2_44_1
  doi: 10.5194/bg-17-1621-2020
– ident: e_1_2_8_2_53_1
  doi: 10.1002/2015JG003302
– ident: e_1_2_8_1_46_1
  doi: 10.1029/93gb02725
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_1_43_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_2_11_1
  doi: 10.1111/j.1600-0889.2007.00309.x
– ident: e_1_2_8_2_67_1
  doi: 10.5194/bg-11-347-2014
– ident: e_1_2_8_2_20_1
  doi: 10.1371/journal.pone.0211510
– ident: e_1_2_8_2_110_1
  doi: 10.1111/j.1365-2486.2005.001002.x
– ident: e_1_2_8_1_55_1
  doi: 10.5065/PZ8F-F017
– ident: e_1_2_8_1_18_1
  doi: 10.1016/j.agrformet.2010.08.013
– ident: e_1_2_8_1_27_1
  doi: 10.1016/j.agrformet.2018.06.030
– ident: e_1_2_8_1_69_1
  doi: 10.1016/j.rse.2012.06.023
– ident: e_1_2_8_2_101_1
  doi: 10.5194/bg-4-791-2007
– ident: e_1_2_8_2_61_1
  doi: 10.1016/j.agrformet.2011.03.002
– ident: e_1_2_8_2_138_1
  doi: 10.1111/j.1600-0889.2007.00305.x
– ident: e_1_2_8_1_16_1
  doi: 10.1016/s1352-2310(97)00447-0
– ident: e_1_2_8_2_56_1
  doi: 10.1002/qj.49711046626
– ident: e_1_2_8_2_81_1
  doi: 10.1023/A:1023027709805
– ident: e_1_2_8_2_112_1
  doi: 10.5194/bg-7-2601-2010
– ident: e_1_2_8_2_88_1
  doi: 10.1016/j.agrformet.2008.10.025
– ident: e_1_2_8_1_10_1
  doi: 10.1029/2007gb003033
– ident: e_1_2_8_2_139_1
  doi: 10.1007/978-3-662-05171-9_7
– ident: e_1_2_8_2_68_1
  doi: 10.1007/s00468-016-1486-2
– ident: e_1_2_8_1_39_1
  doi: 10.1007/978-3-030-28954-6_10
– ident: e_1_2_8_1_42_1
  doi: 10.1111/geb.12937
– ident: e_1_2_8_2_24_1
  doi: 10.5194/bg-16-2557-2019
– ident: e_1_2_8_2_22_1
  doi: 10.1111/j.1365-2486.1996.tb00074.x
– ident: e_1_2_8_2_159_1
  doi: 10.5194/bg-11-1627-2014
– volume-title: AmeriFlux US‐cop corral pocket
  year: 2016
  ident: e_1_2_8_2_25_1
– ident: e_1_2_8_2_89_1
  doi: 10.1046/j.1365-2486.2002.00480.x
– ident: e_1_2_8_2_51_1
  doi: 10.1046/j.1365-2435.2000.00434.x
– ident: e_1_2_8_2_129_1
  doi: 10.1007/s11430-006-8207-4
– ident: e_1_2_8_2_144_1
  doi: 10.1029/2006JG000293
– ident: e_1_2_8_2_84_1
  doi: 10.1002/hyp.10467
– ident: e_1_2_8_1_20_1
  doi: 10.1007/978-3-540-30217-9_29
– ident: e_1_2_8_2_38_1
  doi: 10.1016/S0168-1923(02)00024-2
– ident: e_1_2_8_2_57_1
  doi: 10.1046/j.1365-2486.1999.00281.x
– ident: e_1_2_8_2_91_1
  doi: 10.1016/j.polar.2013.03.003
– ident: e_1_2_8_2_6_1
  doi: 10.5194/bg-6-251-2009
– volume: 20
  start-page: 455
  issue: 4
  year: 2015
  ident: e_1_2_8_2_10_1
  article-title: Carbon dioxide and energy flux measurements in four northern‐boreal ecosystems at Pallas
  publication-title: Boreal Environment Research
– ident: e_1_2_8_1_4_1
  doi: 10.5281/zenodo.7771525
– ident: e_1_2_8_2_12_1
  doi: 10.1016/s0168-1923(96)02335-0
– ident: e_1_2_8_2_15_1
  doi: 10.1111/j.1365-2486.2006.01281.x
– volume-title: Paper presented at the proceedings of the nineteenth annual ESRI user conference
  year: 1999
  ident: e_1_2_8_2_45_1
– ident: e_1_2_8_2_96_1
  doi: 10.1016/j.agrformet.2018.03.017
– ident: e_1_2_8_1_50_1
  doi: 10.1016/j.rse.2019.01.016
– ident: e_1_2_8_2_133_1
  doi: 10.3390/rs10040529
– ident: e_1_2_8_2_132_1
  doi: 10.1016/j.agrformet.2006.03.022
– ident: e_1_2_8_2_127_1
  doi: 10.1029/2008JG000900
– start-page: 371
  volume-title: Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
  year: 1974
  ident: e_1_2_8_2_116_1
– ident: e_1_2_8_1_36_1
  doi: 10.1007/bf02478259
– ident: e_1_2_8_2_113_1
  doi: 10.1046/j.1365-2486.2002.00521.x
– ident: e_1_2_8_1_7_1
  doi: 10.1073/pnas.1515160113
– ident: e_1_2_8_2_102_1
  doi: 10.1016/j.agrformet.2017.01.009
– ident: e_1_2_8_2_150_1
  doi: 10.1007/s00484-015-1038-2
– ident: e_1_2_8_1_21_1
  doi: 10.1016/j.agrformet.2013.01.003
– ident: e_1_2_8_2_59_1
  doi: 10.1111/j.1529-8817.2003.00804.x
– ident: e_1_2_8_1_48_1
  doi: 10.1127/metz/2016/0816
– ident: e_1_2_8_2_18_1
  doi: 10.1071/wf03023
– ident: e_1_2_8_2_143_1
  doi: 10.1504/ijep.2015.076583
– ident: e_1_2_8_2_37_1
  doi: 10.1016/j.agrformet.2004.09.005
– ident: e_1_2_8_2_7_1
  doi: 10.1186/1750-0680-3-7
– ident: e_1_2_8_2_142_1
  doi: 10.3402/tellusb.v58i5.17028
– ident: e_1_2_8_2_14_1
  doi: 10.1016/S0168-1923(01)00240-4
– ident: e_1_2_8_1_71_1
  doi: 10.1016/j.agrformet.2018.08.003
– ident: e_1_2_8_2_16_1
  doi: 10.1175/2011bams2948.1
– ident: e_1_2_8_1_9_1
  doi: 10.5194/bg-7-3707-2010
– volume: 102
  issue: 100
  year: 2014
  ident: e_1_2_8_2_124_1
  article-title: Arcturus Emerald OzFlux tower site OzFlux: Australian and New Zealand flux research and monitoring
  publication-title: hdl
– ident: e_1_2_8_2_153_1
  doi: 10.1016/j.agrformet.2012.03.007
– ident: e_1_2_8_1_38_1
  doi: 10.1029/2021ms002767
– volume-title: Paper presented at the geophysics Research Abstracts
  year: 2004
  ident: e_1_2_8_2_121_1
– ident: e_1_2_8_2_30_1
  doi: 10.1890/1051-0761(1999)009[0936:ECONEO]2.0.CO;2
– ident: e_1_2_8_2_9_1
  doi: 10.1016/j.agrformet.2008.09.003
– ident: e_1_2_8_2_137_1
  doi: 10.1029/2009JG001010
– ident: e_1_2_8_1_5_1
  doi: 10.1016/j.agrformet.2021.108708
– ident: e_1_2_8_2_36_1
  doi: 10.1007/s00484-006-0046-7
– ident: e_1_2_8_2_130_1
  doi: 10.5194/bg-6-1115-2009
– ident: e_1_2_8_1_37_1
  doi: 10.1093/treephys/25.7.839
– ident: e_1_2_8_1_72_1
  doi: 10.1002/2014jg002876
– ident: e_1_2_8_2_146_1
  doi: 10.1038/35009084
– ident: e_1_2_8_2_33_1
  doi: 10.1016/j.agrformet.2004.06.008
– ident: e_1_2_8_2_65_1
  doi: 10.1029/97jd01176
– ident: e_1_2_8_2_120_1
  doi: 10.1029/2006JG000306
– ident: e_1_2_8_1_32_1
  doi: 10.1111/gcb.14939
– ident: e_1_2_8_1_40_1
  doi: 10.2307/2401901
– volume-title: Climate change 2013: The physical science basis: Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change
  year: 2014
  ident: e_1_2_8_1_53_1
– ident: e_1_2_8_2_93_1
  doi: 10.1007/s10021-007-9018-y
– ident: e_1_2_8_2_32_1
  doi: 10.1016/j.agrformet.2016.01.086
– ident: e_1_2_8_2_78_1
  doi: 10.1016/j.agrformet.2016.07.016
– ident: e_1_2_8_2_109_1
  doi: 10.1016/j.agrformet.2009.11.001
– ident: e_1_2_8_2_3_1
  doi: 10.1016/j.agee.2009.05.006
– ident: e_1_2_8_2_152_1
  doi: 10.1016/0168-1923(85)90020-6
– ident: e_1_2_8_2_111_1
  doi: 10.5194/bg-15-3703-2018
– ident: e_1_2_8_2_49_1
  doi: 10.1016/S0168-1923(99)00168-9
– ident: e_1_2_8_1_26_1
  doi: 10.1029/2010jg001566
– ident: e_1_2_8_1_60_1
  doi: 10.1002/2013jg002591
– volume-title: Paper presented at the 31st annual conference on neural information processing systems (NIPS)
  year: 2017
  ident: e_1_2_8_1_31_1
– ident: e_1_2_8_2_122_1
  doi: 10.1021/ac60214a047
– ident: e_1_2_8_2_157_1
  doi: 10.1016/j.agrformet.2015.07.004
– ident: e_1_2_8_2_115_1
  doi: 10.1007/s00442-015-3380-9
– ident: e_1_2_8_2_77_1
  doi: 10.1029/2011JG001901
– ident: e_1_2_8_1_24_1
  doi: 10.1038/s41559-019-0838-x
– ident: e_1_2_8_2_140_1
  doi: 10.5194/bg-13-4291-2016
– volume: 15
  start-page: 1929
  year: 2014
  ident: e_1_2_8_1_51_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_2_107_1
  doi: 10.1175/1520-0493(1972)100<0081:otaosh>2.3.co;2
– ident: e_1_2_8_1_68_1
  doi: 10.1126/sciadv.aax1396
– ident: e_1_2_8_2_71_1
  doi: 10.1029/2002gb001983
– ident: e_1_2_8_2_66_1
  doi: 10.1016/S0168-1923(03)00115-1
– ident: e_1_2_8_2_106_1
  doi: 10.1016/J.AGRFORMET.2010.03.008
– ident: e_1_2_8_1_67_1
  doi: 10.1016/j.agrformet.2006.12.001
– ident: e_1_2_8_1_34_1
  doi: 10.1111/j.1365-2486.2007.01463.x
– ident: e_1_2_8_2_62_1
  doi: 10.1016/j.agrformet.2015.08.247
SSID ssj0066625
Score 2.3384533
Snippet In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy and...
Abstract In a model simulating dynamics of a system, parameters can represent system sensitivities and unresolved processes, therefore affecting model accuracy...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bioclimatology
Carbon
Climate
Climate and vegetation
ecosystem properties
Ecosystems
Efficiency
feature importance
hybrid model
Light
Methods
Modelling
Neural networks
parameter extrapolation
Parameterization
Parameters
Phosphorus
Photosynthesis
Primary production
Radiation
Soil properties
Vegetation
vegetation productivity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1By4EL34hAQT4AF4iwHSeOT4hWW_XQrlaloN4if8zCSqukbLb8fjxeb2kP9MIxI8uyMuPxs_38BuCttLWpBGU_Iocp07jSaQyl53zO0eJcJLXP78d6Om3Pz80sH7iNmVa5zYkpUYfB0xn5J9nG2BK8qpvPF79KqhpFt6u5hMZd2CWlshjnu_uT6ex0m4sjNpd1prtzaWinL0--kiZLo24sREmv_wbIvA5V01pz-PB_R_kIHmSUyb5swuIx3MH-CRQnESAPq3SOzt6zg-UiotX09RSOzhJ9lp0O7nJcs5klzhbJOOdXmmzRs4kfNrrP5TExjdjs57COlj5CyHExMqqqthyfwbfDydnBUZmLLJReRSxYNi03lgcpQ9ytYtC14Y3VSlW-No3B2lvp40TlDsnshG7nVmjfKhucCU5Vz2GnH3p8AQxd0FbELjwGpYw36HVjgtAV1ihcW8CH7R_vfFYgp0IYyy7dhEvTXfdPAe-uWl9slDf-0W6fnHfVhvSyk2FY_ejy9OtqpAtpa1EYpVSoWtTCWeGl8lVEfbKAva0_uzyJx-6vMwv4mMLh1oF0cZmcSNr_vry9t1dwn4rWb2iEe7CzXl3ia7jnf68X4-pNDuE_gLT38w
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB6VlgOXQvlRU0rlQ8sFImLHseMjVFtVVVutoKDeIv8trLRKqs225z4Cz8iT4HG8q-0BJMQx1jiy7JnxN_b4G4BDpitVUvR-mBzGlTC5kd7ltigmhdd-QiPb57dzeXlZX1-rcTpww7cwAz_E6sANLSP6azRwbfpENoAcmSFqZxdfkF9F8EewRWkpUasZHy89cUDmsehqiNNZzrgQKfE99P-w3vvBlhSZ-x_AzXXQGnedk6f_O95nsJ3wJvk4KMgObPj2OWQXASp383iiTt6S49k04Nb49QLOrmIiLfncmdt-QcYas7eQ0Dm91yTTloxsNzBA_7r_eY5ZR2T8o1uEtjbAyX7aE6ywNutfwteT0dXxaZ4KLuSWB1yYi7pQunCMuRC5eicrVQgtOS9tpYTyldXMBqMtjMdmQ2U90VTammtnlDO8fAWbbdf6XSDeOKlp-IX1jnNllbdSKEdl6StPTZ3Bu-WcNzaxkWNRjFkTb8WZatbnK4OjlfTNwMLxB7lPuHwrGeTOjg3d_HuTTLGpPF5Oa-2DXnDuytpLajS1jNsyIECWwf5y8Ztk0H3D6uDaaFFWIoP3cZn_OpAmbJkjhrHw3r-Jv4YnWNB-SDHch83F_Na_gcf2bjHt5wdRvX8DRDv4Fw
  priority: 102
  providerName: Wiley-Blackwell
Title Toward Robust Parameterizations in Ecosystem‐Level Photosynthesis Models
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022MS003464
https://www.proquest.com/docview/2857810356
https://doaj.org/article/5e4232aae19444d38e71ba1c24c30252
Volume 15
WOSCitedRecordID wos001058671200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PCBAR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5B4cAFUX5EoKx8AC4QYTtOHB9plapF3VVUCpRT5J9ZsdIqQZstx6qPwDPyJNhOttoegAuXSB5ZkTUTz3wTj78BeMl1rjIWvF8oDhOqMKmR6FJL6ZyixjmLbJ-fT-RsVp6fq3qr1VeoCRvogQfFvcsxHCVqjT7bFsJlJUpmNLNc2MzH6-h9qVSbZGrwwR6T83wsc6dchQyfTz8GLpZC3AhAkaf_Brjchqgxxhw-gPsjOCTvh0Xtwi1sH0Iy9bi2W8Xf3-Q1OVguPMiMo0fw4SxWvZLTzlz0a1LrUGoV2JfHy5Vk0ZLKdgNd86-rnyehRIjU37q1l7Ue-_WLnoR2aMv-MXw6rM4OjtKxO0JqhQdxaVFSpanj3Pk0E53MFS20FCKzuSoU5lZz63cYNRjEhslyrpm0pdDOKGdE9gR22q7Fp0DQOKmZf4VFJ4SyCq0slGMywxyZKRN4s1FZY0fq8NDBYtnEI2yumm0FJ_Dqevb3gTLjD_P2g_av5wSi6yjw5m9G8zf_Mn8CexvbNePu6xteej_EaJYXCbyN9vzrQhof3yoeEtdn_2NJz-Fe6Ek_VAnuwc56dYEv4K79sV70qwnc5qKewJ39alafTuJX65_Ty8rL6uNp_dWPvhzPfgPKlu_d
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJc-EYECvhAuUBE7DhxfEAIyla76u4qggW1J-OvhZVWSdlsQfwpfiO2k5T2QG89cIxljZL4ZfwmM34D8IzIjKfYez9fHEZ5rmLFrIl1kiwSK-0CB7XPzxM2mxWHh7zcgt_9WRhfVtn7xOCoTa39P_JXpHDYwkma5W-Ov8e-a5TPrvYtNFpYHNhfP13I1rwev3fru0vI_nC-N4q7rgKxpo78xHmRcJkYQowLz6xhGU9yyShNdcZzbjMtiXbITJT1wwqzYiEx0wWVRnGjaOrsXoFt6sE-gO1yPC2Pet_vYgGSdeX1CeH-zwKZfvQaMDk9t_GF_gDnSO1Zahz2tv2b_9tbuQU3OhaN3rawvw1btroD0dQFAPU65AnQc7S3Wjo2Hq7uwmgeyoPRh1qdNBtUSl-T5mWqu1OoaFmhoa5bXet44iupUPmt3riRylHkZtkg3zVu1dyDT5fyYPdhUNWVfQDIKsMkdia0NZRyza1mOTeYpTazWBURvOhXWOhOYd03-liJkOknXJzFQwS7p7OPW2WRf8x758FyOsfrgYeBev1VdO5FZNYn3KW0mFNKTVpYhpXEmlCdOlZLItjp8SM6J9WIv-CJ4GWA34U3IhwNGBIf3z-82NpTuDaaTydiMp4dPILrzkbalkzuwGCzPrGP4ar-sVk26yfd54Pgy2Vj8w-CV1Ny
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJc-EYECvhAuUDU2HHi-IAQtLvqqrurCApqT8ZfCyutkrLZgvhr_DpsJyntgd564BjLGiXx8_iN_TwD8ILIjKfYez8vDqM8V7Fi1sQ6SeaJlXaOQ7bPzxM2mxVHR7zcgN_9XRgvq-x9YnDUptZ-j3yHFA5bOEmzfGfeySLKvdHbk--xryDlT1r7chotRA7sr58ufGvejPfcWG8TMhoe7u7HXYWBWFNHhOK8SLhMDCHGhWrWsIwnuWSUpjrjObeZlkQ7lCbK-maFWTGXmOmCSqO4UTR1dq_BpqPklAxgsxxPy-N-HXBxAck6qX1CuN9lINOPPh9MTi8sgqFWwAWCe54mh3VudPt__kN34FbHrtG7djrchQ1b3YNo6gKDehXOD9BLtLtcOJYenu7D_mGQDaMPtTpt1qiUXqvm01d3t1PRokJDXbf5ruOJV1ih8lu9di2Vo87NokG-mtyyeQCfruTDHsKgqiv7CJBVhknsTGhrKOWaW81ybjBLbWaxKiJ41Y-20F3mdV8AZCmCAoBwcR4bEWyf9T5pM478o997D5yzPj5PeGioV19F53ZEZv1BvJQWc0qpSQvLsJJYE6pTx3ZJBFs9lkTnvBrxF0gRvA5QvPRFhKMHQ-Lj_seXW3sONxwgxWQ8O3gCN52JtFVSbsFgvTq1T-G6_rFeNKtn3UxC8OWqofkHE6dcMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Robust+Parameterizations+in+Ecosystem%E2%80%90Level+Photosynthesis+Models&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Shanning+Bao&rft.au=Lazaro+Alonso&rft.au=Siyuan+Wang&rft.au=Johannes+Gensheimer&rft.date=2023-08-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.eissn=1942-2466&rft.volume=15&rft.issue=8&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2022MS003464&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5e4232aae19444d38e71ba1c24c30252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon