Zeitlin Truncation of a Shallow Water Quasi‐Geostrophic Model for Planetary Flow
In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), p...
Saved in:
| Published in: | Journal of advances in modeling earth systems Vol. 16; no. 6 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
01.06.2024
American Geophysical Union (AGU) |
| Subjects: | |
| ISSN: | 1942-2466, 1942-2466 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies.
Plain Language Summary
We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics.
Key Points
We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere
We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects
Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence |
|---|---|
| AbstractList | In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies.
Plain Language Summary
We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics.
Key Points
We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere
We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects
Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. Abstract In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1 ) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2 ), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞ ; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944 ). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics. We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence |
| Author | Cifani, P. Franken, A. D. Caliaro, M. Geurts, B. J. |
| Author_xml | – sequence: 1 givenname: A. D. orcidid: 0000-0002-3724-3431 surname: Franken fullname: Franken, A. D. email: a.d.franken@utwente.nl organization: University of Twente – sequence: 2 givenname: M. surname: Caliaro fullname: Caliaro, M. organization: Gran Sasso Science Institute – sequence: 3 givenname: P. surname: Cifani fullname: Cifani, P. organization: Gran Sasso Science Institute – sequence: 4 givenname: B. J. surname: Geurts fullname: Geurts, B. J. organization: Eindhoven University of Technology |
| BookMark | eNp9UUtLHEEQboJCfOSWH9DgNavVr5npo4hPdslDRcilqZ7pjr2005ueXsSbP8Hf6C_JrBuCCOZURdX3omqbbPSpd4R8ZrDPgOsDDlzMLgGEBvaBbDEt-YTLqtp41X8k28MwB6iqiqst8uOnCyWGnl7lZd9iCamnyVOkl7cYY7qnN1hcpt-XOITnx6dTl4aS0-I2tHSWOhepT5l-i9i7gvmBnoyUXbLpMQ7u09-6Q65Pjq-OzibTr6fnR4fTSSsVqInVCIhO2tZacFxq762Q3kKnauV5U2vrvOSs6lqATvpOKu48F3bcO6ZR7JDztW6XcG4WOdyNCUzCYF4GKf8ymEtoozO15npUR5SVlcqrhqtGM9Z0kjUri1Frb621yOn30g3FzNMy92N8I6BmWoCGekR9WaPanIYhO__PlYFZfcC8_sAI52_gbSgvJy4ZQ3yPJNak-xDdw38NzMXh7JhzBkr8AXeMmRA |
| CitedBy_id | crossref_primary_10_1088_1361_6544_ada511 crossref_primary_10_1016_j_jcp_2025_114155 crossref_primary_10_1063_5_0281814 crossref_primary_10_1063_5_0156942 crossref_primary_10_1103_PhysRevFluids_10_013801 |
| Cites_doi | 10.1175/jas4003.1 10.1175/1520‐0469(1998)055<0611:tdtapz>2.0.co;2 10.1007/978-3-319-08198-4 10.1017/s0022112075000225 10.1175/1520‐0469(2004)061<2016:pattco>2.0.co;2 10.1016/j.jcp.2022.111772 10.1029/2005gl025379 10.1111/j.2153‐3490.1960.tb01323.x 10.1007/bf02099772 10.1017/s0022112076000463 10.1016/0167‐2789(91)90152‐y 10.1016/j.physrep.2012.02.001 10.1007/s10543‐019‐00792‐1 10.5281/zenodo.8112852 10.1016/0167‐2789(83)90134‐3 10.1002/ggge.20071 10.1175/1520‐0469(1962)019<0159:otsoib>2.0.co;2 10.1017/jfm.2019.944 10.1073/pnas.0230451100 10.1017/s002211208700034x 10.1007/bf02099490 10.1098/rsta.1968.0003 10.5281/zenodo.8116153 10.1103/physrevfluids.7.l082601 10.1017/jfm.2021.1130 10.1093/oso/9780198804338.001.0001 10.1007/s002200050379 10.1146/annurev.fluid.24.1.145 10.1111/j.1600‐0870.1983.tb00181.x 10.1017/s0022112075001504 10.1016/j.jcp.2009.12.012 10.1007/978-1-4612-4350-2 10.1103/physrevlett.93.264501 10.1063/1.2116747 10.1146/annurev.fl.20.010188.001301 10.1063/1.532474 10.1175/1520‐0485(1993)023<1346:gomfaj>2.0.co;2 10.1175/1520‐0485(2004)034<1663:eeccla>2.0.co;2 10.1175/1520‐0469(1959)016<0524:fatdhw>2.0.co;2 10.3894/james.2009.1.2 10.1017/jfm.2022.457 10.1017/9781107588431 10.1175/2008jas2837.1 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG ABUWG AEUYN AFKRA AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.1029/2023MS003901 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central (New) ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1942-2466 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_7929fb3aa46b45f582589118d4184216 10_1029_2023MS003901 JAME22105 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Dutch Research Council – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek |
| GroupedDBID | 0R~ 1OC 24P 29J 31~ 5VS 8-1 8FE 8FH AAMMB AAZKR ABDBF ACCMX ACUHS ACXQS ADBBV ADKYN ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AGXDD AIDQK AIDYY ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZFZN BCNDV BENPR BHPHI BKSAR CCPQU D1K EAD EAP EAS EBS EJD EPL ESX GODZA GROUPED_DOAJ HCIFZ HZ~ IAO IGS IPNFZ ITC K6- KQ8 LK5 M7R M~E O9- OK1 P2P PCBAR PHGZM PHGZT PIMPY PROAC PUEGO RIG RNS TUS WIN ~OA AAYXX AFFHD CITATION 7TG ABUWG AZQEC DWQXO F1W H96 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c4505-b9a0aae4bcbb0e249ffb34fb0d575f2879bef4216dc00d4fd452ef23bd57e19a3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1942-2466 |
| IngestDate | Fri Oct 03 12:20:23 EDT 2025 Fri Jul 25 23:39:11 EDT 2025 Tue Nov 18 21:56:25 EST 2025 Sat Nov 29 02:09:19 EST 2025 Tue Sep 09 05:07:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4505-b9a0aae4bcbb0e249ffb34fb0d575f2879bef4216dc00d4fd452ef23bd57e19a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3724-3431 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003901 |
| PQID | 3071930907 |
| PQPubID | 616667 |
| PageCount | 16 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7929fb3aa46b45f582589118d4184216 proquest_journals_3071930907 crossref_primary_10_1029_2023MS003901 crossref_citationtrail_10_1029_2023MS003901 wiley_primary_10_1029_2023MS003901_JAME22105 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 20240601 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Journal of advances in modeling earth systems |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
| References | 2009; 66 1993; 23 1993; 107 2004; 61 2006; 31 2010; 229 1960; 12 2006; 33 2020; 60 1983; 7 1962; 19 2023b 2023a 2020; 884 2022; 933 1991; 138 1983; 35 1998; 195 1987; 175 1976; 75 1994; 165 1998; 39 1991; 49 2013; 14 2004; 93 2001 2022 2021 2022; 7 2004; 34 2023; 473 1975; 67 2019 2018 1975; 69 1992; 24 1968; 262 2014 1988; 20 2007; 64 2005; 17 1959; 16 2009; 1 2022; 943 2003; 100 2012; 515 1998; 55 Boyd J. P. (e_1_2_11_7_1) 2001 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_31_1 e_1_2_11_30_1 e_1_2_11_36_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_35_1 e_1_2_11_12_1 e_1_2_11_34_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_4_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_49_1 Hairer E. (e_1_2_11_19_1) 2006 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_46_1 e_1_2_11_47_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_9_1 e_1_2_11_23_1 Luesink E. (e_1_2_11_27_1) 2021 e_1_2_11_42_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 e_1_2_11_37_1 e_1_2_11_38_1 e_1_2_11_39_1 |
| References_xml | – volume: 60 start-page: 741 issue: 3 year: 2020 end-page: 758 article-title: A minimal‐variable symplectic method for isospectral flows publication-title: BIT Numerical Mathematics – volume: 61 start-page: 2016 issue: 16 year: 2004 end-page: 2036 article-title: Poisson‐bracket approach to the construction of energy‐and potential‐enstrophy‐conserving algorithms for the shallow‐water equations publication-title: Journal of the Atmospheric Sciences – volume: 49 start-page: 353 issue: 3 year: 1991 end-page: 362 article-title: Finite‐mode analogs of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure publication-title: Physica D: Nonlinear Phenomena – volume: 75 start-page: 691 issue: 4 year: 1976 end-page: 703 article-title: The equilibrium statistical mechanics of simple quasi‐geostrophic models publication-title: Journal of Fluid Mechanics – volume: 69 start-page: 417 issue: 3 year: 1975 end-page: 443 article-title: Waves and turbulence on a beta‐plane publication-title: Journal of Fluid Mechanics – volume: 473 year: 2023 article-title: An efficient geometric method for incompressible hydrodynamics on the sphere publication-title: Journal of Computational Physics – volume: 515 start-page: 227 issue: 5 year: 2012 end-page: 295 article-title: Statistical mechanics of two‐dimensional and geophysical flows publication-title: Physics Reports – volume: 14 start-page: 751 issue: 3 year: 2013 end-page: 758 article-title: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations publication-title: Geochemistry, Geophysics, Geosystems – volume: 165 start-page: 281 issue: 2 year: 1994 end-page: 296 article-title: Toeplitz quantization of kähler manifolds and gl(n), → limits publication-title: Communications in Mathematical Physics – volume: 66 start-page: 1735 issue: 6 year: 2009 end-page: 1748 article-title: A balanced approximation of the one‐layer shallow‐water equations on a sphere publication-title: Journal of the Atmospheric Sciences – year: 2001 – volume: 100 start-page: 3841 issue: 7 year: 2003 end-page: 3846 article-title: Statistically relevant conserved quantities for truncated quasigeostrophic flow publication-title: Proceedings of the National Academy of Sciences – year: 2021 – volume: 19 start-page: 159 issue: 2 year: 1962 end-page: 172 article-title: On the stability of internal baroclinic jets in a rotating atmosphere publication-title: Journal of the Atmospheric Sciences – volume: 884 year: 2020 article-title: A Casimir preserving scheme for long‐time simulation of spherical ideal hydrodynamics publication-title: Journal of Fluid Mechanics – year: 2023a – volume: 93 issue: 26 year: 2004 article-title: Self‐consistent finite‐mode approximations for the hydrodynamics of an incompressible fluid on nonrotating and rotating spheres publication-title: Physical Review Letters – volume: 39 start-page: 3906 issue: 7 year: 1998 end-page: 3915 article-title: The Edmonds asymptotic formulas for the 3j and 6j symbols publication-title: Journal of Mathematical Physics – volume: 229 start-page: 2634 issue: 7 year: 2010 end-page: 2648 article-title: Statistical relevance of vorticity conservation in the Hamiltonian particle‐mesh method publication-title: Journal of Computational Physics – volume: 31 year: 2006 – year: 2018 – year: 2014 – volume: 12 start-page: 364 issue: 4 year: 1960 end-page: 373 article-title: Energy and numerical weather prediction publication-title: Tellus – volume: 7 issue: 8 year: 2022 article-title: Casimir preserving spectrum of two‐dimensional turbulence publication-title: Physical Review Fluids – volume: 67 start-page: 155 issue: 1 year: 1975 end-page: 175 article-title: Statistical dynamics of two‐dimensional flow publication-title: Journal of Fluid Mechanics – volume: 175 start-page: 157 issue: ‐1 year: 1987 end-page: 181 article-title: Nonlinear stability and statistical mechanics of flow over topography publication-title: Journal of Fluid Mechanics – volume: 33 issue: 8 year: 2006 article-title: A generalized Rhines effect and storms on Jupiter publication-title: Geophysical Research Letters – volume: 16 start-page: 524 issue: 5 year: 1959 end-page: 534 article-title: Finite‐amplitude three‐dimensional harmonic waves on the spherical earth publication-title: Journal of the Atmospheric Sciences – volume: 7 start-page: 305 issue: 1–3 year: 1983 end-page: 323 article-title: Coadjoint orbits, vortices, and clebsch variables for incompressible fluids publication-title: Physica D: Nonlinear Phenomena – year: 2022 – year: 2023b – volume: 55 start-page: 611 issue: 4 year: 1998 end-page: 632 article-title: Two‐dimensional turbulence and persistent zonal jets in a global barotropic model publication-title: Journal of the Atmospheric Sciences – volume: 262 start-page: 511 issue: 1132 year: 1968 end-page: 607 article-title: The eigenfunctions of Laplace’s tidal equation over a sphere publication-title: Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences – volume: 195 start-page: 67 issue: 1 year: 1998 end-page: 77 article-title: Some properties of matrix harmonics on s 2 publication-title: Communications in Mathematical Physics – volume: 20 start-page: 225 issue: 1 year: 1988 end-page: 256 article-title: Hamiltonian fluid mechanics publication-title: Annual Review of Fluid Mechanics – volume: 34 start-page: 1663 issue: 7 year: 2004 end-page: 1678 article-title: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence publication-title: Journal of Physical Oceanography – volume: 943 year: 2022 article-title: Canonical scale separation in two‐dimensional incompressible hydrodynamics publication-title: Journal of Fluid Mechanics – volume: 23 start-page: 1346 issue: 7 year: 1993 end-page: 1362 article-title: Generation of mean flows and jets on a beta plane and over topography publication-title: Journal of Physical Oceanography – volume: 35 start-page: 17 issue: 1 year: 1983 end-page: 27 article-title: Linear non‐divergent mass‐wind laws on the sphere publication-title: Tellus A: Dynamic Meteorology and Oceanography – volume: 64 start-page: 3158 issue: 9 year: 2007 end-page: 3176 article-title: Forced‐dissipative shallow‐water turbulence on the sphere and the atmospheric circulation of the giant planets publication-title: Journal of the Atmospheric Sciences – volume: 107 year: 1993 – volume: 24 start-page: 145 issue: 1 year: 1992 end-page: 166 article-title: Topological methods in hydrodynamics publication-title: Annual Review of Fluid Mechanics – volume: 138 start-page: 209 issue: 2 year: 1991 end-page: 244 article-title: gl( ) and geometric quantization publication-title: Communications in Mathematical Physics – year: 2019 – volume: 1 start-page: 1 issue: 2 year: 2009 end-page: 11 article-title: Shallow water quasi‐geostrophic theory on the sphere publication-title: Journal of Advances in Modeling Earth Systems – volume: 933 year: 2022 article-title: Two‐dimensional turbulence on a sphere publication-title: Journal of Fluid Mechanics – volume: 17 issue: 10 year: 2005 article-title: Shallow water equations with a complete Coriolis force and topography publication-title: Physics of Fluids – ident: e_1_2_11_40_1 doi: 10.1175/jas4003.1 – ident: e_1_2_11_21_1 doi: 10.1175/1520‐0469(1998)055<0611:tdtapz>2.0.co;2 – ident: e_1_2_11_34_1 doi: 10.1007/978-3-319-08198-4 – volume-title: Geometric numerical integration year: 2006 ident: e_1_2_11_19_1 – ident: e_1_2_11_22_1 doi: 10.1017/s0022112075000225 – ident: e_1_2_11_36_1 doi: 10.1175/1520‐0469(2004)061<2016:pattco>2.0.co;2 – ident: e_1_2_11_10_1 – ident: e_1_2_11_12_1 doi: 10.1016/j.jcp.2022.111772 – ident: e_1_2_11_42_1 doi: 10.1029/2005gl025379 – ident: e_1_2_11_26_1 doi: 10.1111/j.2153‐3490.1960.tb01323.x – ident: e_1_2_11_5_1 doi: 10.1007/bf02099772 – ident: e_1_2_11_37_1 doi: 10.1017/s0022112076000463 – ident: e_1_2_11_47_1 doi: 10.1016/0167‐2789(91)90152‐y – ident: e_1_2_11_6_1 doi: 10.1016/j.physrep.2012.02.001 – ident: e_1_2_11_46_1 doi: 10.1007/s10543‐019‐00792‐1 – ident: e_1_2_11_17_1 doi: 10.5281/zenodo.8112852 – ident: e_1_2_11_28_1 doi: 10.1016/0167‐2789(83)90134‐3 – ident: e_1_2_11_38_1 doi: 10.1002/ggge.20071 – ident: e_1_2_11_9_1 doi: 10.1175/1520‐0469(1962)019<0159:otsoib>2.0.co;2 – ident: e_1_2_11_30_1 doi: 10.1017/jfm.2019.944 – ident: e_1_2_11_2_1 doi: 10.1073/pnas.0230451100 – ident: e_1_2_11_8_1 doi: 10.1017/s002211208700034x – volume-title: Stochastic geometric mechanics of thermal ocean dynamics (PhD thesis) year: 2021 ident: e_1_2_11_27_1 – ident: e_1_2_11_4_1 doi: 10.1007/bf02099490 – ident: e_1_2_11_25_1 doi: 10.1098/rsta.1968.0003 – ident: e_1_2_11_18_1 doi: 10.5281/zenodo.8116153 – ident: e_1_2_11_11_1 doi: 10.1103/physrevfluids.7.l082601 – ident: e_1_2_11_24_1 doi: 10.1017/jfm.2021.1130 – ident: e_1_2_11_49_1 doi: 10.1093/oso/9780198804338.001.0001 – ident: e_1_2_11_20_1 doi: 10.1007/s002200050379 – ident: e_1_2_11_3_1 doi: 10.1146/annurev.fluid.24.1.145 – ident: e_1_2_11_13_1 doi: 10.1111/j.1600‐0870.1983.tb00181.x – ident: e_1_2_11_33_1 doi: 10.1017/s0022112075001504 – ident: e_1_2_11_29_1 – ident: e_1_2_11_15_1 doi: 10.1016/j.jcp.2009.12.012 – ident: e_1_2_11_32_1 doi: 10.1007/978-1-4612-4350-2 – ident: e_1_2_11_48_1 doi: 10.1103/physrevlett.93.264501 – volume-title: Chebyshev and fourier spectral methods year: 2001 ident: e_1_2_11_7_1 – ident: e_1_2_11_14_1 doi: 10.1063/1.2116747 – ident: e_1_2_11_35_1 doi: 10.1146/annurev.fl.20.010188.001301 – ident: e_1_2_11_16_1 doi: 10.1063/1.532474 – ident: e_1_2_11_44_1 doi: 10.1175/1520‐0485(1993)023<1346:gomfaj>2.0.co;2 – ident: e_1_2_11_41_1 doi: 10.1175/1520‐0485(2004)034<1663:eeccla>2.0.co;2 – ident: e_1_2_11_23_1 doi: 10.1175/1520‐0469(1959)016<0524:fatdhw>2.0.co;2 – ident: e_1_2_11_39_1 doi: 10.3894/james.2009.1.2 – ident: e_1_2_11_31_1 doi: 10.1017/jfm.2022.457 – ident: e_1_2_11_43_1 doi: 10.1017/9781107588431 – ident: e_1_2_11_45_1 doi: 10.1175/2008jas2837.1 |
| SSID | ssj0066625 |
| Score | 2.3873694 |
| Snippet | In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation,... Abstract In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Atmospheric dynamics Dynamical systems Energy Fluid dynamics geophysical fluid dynamics Kinetic energy Numerical analysis Shallow water Simulation Topography turbulence Velocity Zonal winds |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4QwEG2M8eDF-BnR1fSgXpRYS1ngqMbVi8aPNW68kBamkWQDG9jVePMn-Bv9JU4LmPWgXjwCpWlmpp33SplHyE4QgB-AZK4Kte8KkMoNU2QpWpjib56FyFZsIri6CgeD6HpK6sucCavLA9eGOwwwf2vlSSm6SvjaR0YT4gQNU4HchB_ZYtuIeloyVa_BiMm53xxzZzwyDN-7vDP_oTbiL20CsnX6v4HLaYhqc0xvkSw04JAe14NaIjOQLxPnEnFtUdrtb7pHT4cZgkx7tUJuHwGdneW0X07yevONFppKemc0UooX-oBQsqQ3E1llH2_v51BU47IYPWUJNSJoQ4qQlRrdIhjL8pX28JVVct87659euI1KgpsIhC-uiiSTEoRKlGKAbEqjuYRWLEUkppEQRQq0sVSaMJYKnQqfg-aewudwFElvjczmRQ7rhGrWTSFQ2AV4giccoUQXmJIy7DLwteeQ_dZ0cdKUEDdKFsPYfsrmUTxtaIfsfrUe1aUzfmh3Yrzw1cYUvLY3MAziJgziv8LAIZ3Wh3EzC6sY1y_Epwz5v0MOrF9_HUiMee6MIwf2N_5jSJtkHnsX9bmyDpkdlxPYInPJ8zirym0br58rs-qs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RhUMvFEpRQ6Hyoe2ljTCJ83WqCtqlF1YUqIp6iexkTCOtkiXZBXHjJ_Ab-0s69joUDuXSYxLbijNj-72xMw_gXZJglKDkvkp15AuUyk9LYilamORvoYXIVmwiGY_T8_Ps2AXcOnessp8T7URdNoWJke-SLxLW4MTlPk8vfaMaZXZXnYTGM1g2mcrEAJb3h-Pjk34uJmweRO64Ow8yw_TDo1PzP6oTgekXIpuv_xHIfAhV7VozevG_b7kGqw5lsi8Lt1iHJaxfgndEALlpbRydfWAHk4rQqr3agJOfSF5T1eysndeLKB5rNJPs1IitNNfsB2HSln2by676fXt3iE03a5vpr6pgRk1twgj7MiOAhDPZ3rARVXkF30fDs4OvvpNb8AtBOMhXmeRSolCFUhyJlmmtQqEVLwnSaWJWmUIy4V5cFpyXQpciClAHoaLnuJfJcBMGdVPja2CaxyUmiprAUARFQJgkRq6kTGOOkQ49-Nh_-7xwuciNJMYkt3viQZY_tJQH7-9LTxc5OP5Rbt-Y8b6MyZxtbzTtRe4GYp4QHqR-SSliJSIdEUNOacJPS0FclzrnwXZv2dwN5y7_a1YPPlnHePJFclowhwGR6Wjr6dbewHOqJxZHz7ZhMGvnuAMrxdWs6tq3zpn_ABZ2-7c priority: 102 providerName: ProQuest |
| Title | Zeitlin Truncation of a Shallow Water Quasi‐Geostrophic Model for Planetary Flow |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003901 https://www.proquest.com/docview/3071930907 https://doaj.org/article/7929fb3aa46b45f582589118d4184216 |
| Volume | 16 |
| WOSCitedRecordID | wos001246597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: PCBAR dateStart: 20090201 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: BENPR dateStart: 20090201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: PIMPY dateStart: 20090201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: WIN dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1942-2466 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066625 issn: 1942-2466 databaseCode: 24P dateStart: 20090101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hlgMX3ohAu_IBuECE13Fex7bahR52FdqiFi6RnYxLpFVSJbtwQ_0J_EZ-ScdOdrU9gIS4RHI8jvwY299M7PkAXsUxhjEq7uvEhL5Epf2kJCvFSBv8LXAQ2ZFNxPN5cnGRZoPDzd6F6eNDbBxudma49dpOcKW7IdiAjZFpeb9np_Zuqb2-tTseB4mlbhAyW6_EhMwd6SrZ6cIXMoqGg-9U_v126VtbkovcfwtuboNWt-tMH_xvfR_C_QFvsoNeQR7BHawfgzcjqNy0zqPO3rCjRUW41aWewMlXJP2panbWruren8cawxQ7tbQrzQ92Tui0ZZ9Wqqt-X__6gE23bJurb1XBLK_aghEKZpYKCZdUVzalIk_h83RydvTRH4gX_EISIvJ1qrhSKHWhNUcy0IzRgTSalwTuDNlYqUYazHFUFpyX0pQyFGhEoCkfx6kKnsFO3dT4HJjhUYmxpk9gIEUhCJ1EyLVSScQxNIEHb9d9nxdDVHJLjrHI3d9xkebb_ebB6430VR-N4w9yh3YYNzI2hrZ70bSX-TAl85iQIbVLKRlpGZqQbOWElv6klGT1UuM82FsrQT5M7C6nJZEgL0957ME7N9x_rUhOW-dEkFkdvvg38ZdwjzJkfyhtD3aW7Qr34W7xfVl17cip-Qh2Dyfz7GTk_Aj0nP2c0LvseJZ9odT58fwGVvkAmg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTY8EakFPCCsoEIj-O8FgjR0qGjdkYDHdTCJtiJTSONkiGZoeqOT-BL-Kh-CddOUsqC7rpgmcS5iuPj63P9uAfgaRgqP1SCujLSvsuVkG6UYZSiuUn-5lmKbMUmwvE4OjyMJyvwqzsLY7ZVdj7ROuqsTM0c-UvEInINirHc6_k316hGmdXVTkKjgcWuOjnGkK1-NXyL7bvB2GB7urXjtqoCbspxuHdlLKgQistUSqow-tBaelxLmiFz0RhAxFLhl_aDLKU04zrjPlOaeRKfq34sPLR7BVY5gj3qwepkOJp86nw_xgLMb7fXUxabmQVvtG_Ov7aiM93AZ_UB_iK156mxHdsGN_-3v3ILbrQsmrxpYH8bVlRxB5wRBgBlZdcJyDOyNcuRjduru_Dhs8JekRdkWi2LZpaSlJoIsm_EZMpjcoCcuyLvl6LOT3_8fKfKelGV86M8JUYtbkaQ2xMj8KQWojohA3zlHny8lCreh15RFuoBEE2DTIUSTSiPs5Qh5woUlUJEAVW-9hx43rV1kra51o3kxyyxa_4sTs4jw4GNs9LzJsfIP8ptGticlTGZwe2NsvqatI4mCZHvYr2E4IHkvvYjZnQj-1HGMZbHyjmw3iEpad1VnfyBkQMvLBAv_JAECcE2Y0jN1y629gSu7UxHe8necLz7EK6jDd5ss1uH3qJaqkdwNf2-yOvqcduRCHy5bJT-BlP4W5I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiEu_CMCBXygXCCq13H-DghB24VV2dVCi1q4BDuxIdIqWZJdqt54BJ6Hx-FJGDtOKQd664FjEseK42_sb-zxfACP4liFsRLUl4kOfa6E9JMCvRTNTfK3wFJkKzYRTybJ4WE6XYGf_VkYE1bZj4l2oC7q3KyRbyIWkWtQ9OU2tQuLmG4Pn8-_-kZByuy09nIaHUR21fERum_ts9E29vUGY8Od_a3XvlMY8HOOU78vU0GFUFzmUlKFnojWMuBa0gJZjEZnIpUKv3oQFTmlBdcFD5nSLJD4XA1SEWC9F2ANKTlHG1ubjsbTD_08gH4BC12oPWWpWWUIxnvmLKwToOknQasV8BfBPU2T7Tw3vPo__6FrcMWxa_KiM4frsKKqG-CN0TGoG7t_QB6TrVmJLN1e3YR3HxVaS1mR_WZZdauXpNZEkD0jMlMfkQPk4g15uxRt-ev7j1eqbhdNPf9S5sSoyM0Icn5ihJ_UQjTHZIiv3IL359LE27Ba1ZW6A0TTqFCxxCpUwFnOkItFikohkoiqUAcePOn7PctdDnYjBTLLbCwAS7PTKPFg46T0vMs98o9yLw2ETsqYjOH2Rt18ztwAlMXIg7FdQvBI8lCHCTN6koOk4OjjY-M8WO9RlblhrM3-QMqDpxaUZ35IhkRhhzGk7HfPru0hXEJoZm9Gk917cBmr4F303TqsLpqlug8X82-Lsm0eOJsi8Om8QfobRctkUg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeitlin+Truncation+of+a+Shallow+Water+Quasi%E2%80%90Geostrophic+Model+for+Planetary+Flow&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Franken%2C+A.+D.&rft.au=Caliaro%2C+M.&rft.au=Cifani%2C+P.&rft.au=Geurts%2C+B.+J.&rft.date=2024-06-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=16&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023MS003901&rft.externalDBID=10.1029%252F2023MS003901&rft.externalDocID=JAME22105 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon |