Zeitlin Truncation of a Shallow Water Quasi‐Geostrophic Model for Planetary Flow

In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advances in modeling earth systems Vol. 16; no. 6
Main Authors: Franken, A. D., Caliaro, M., Cifani, P., Geurts, B. J.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.06.2024
American Geophysical Union (AGU)
Subjects:
ISSN:1942-2466, 1942-2466
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. Plain Language Summary We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics. Key Points We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence
AbstractList In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. Plain Language Summary We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics. Key Points We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence
In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies.
Abstract In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N → ∞; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies.
In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation, previously studied by Verkley (2009, https://doi.org/10.1175/2008jas2837.1 ) and Schubert et al. (2009, https://doi.org/10.3894/james.2009.1.2 ), possesses a rich geometric structure, called Lie‐Poisson, and admits an infinite number of conserved quantities, called Casimirs. In this paper, we develop a Casimir preserving numerical method for long‐time simulations of this equation. The method develops in two steps: first, we construct an N‐dimensional Lie‐Poisson system that converges to the continuous one in the limit N  →  ∞ ; second, we integrate in time the finite‐dimensional system using an isospectral time integrator, developed by Modin and Viviani (2020, https://doi.org/10.1017/jfm.2019.944 ). We demonstrate the efficacy of this computational method by simulating a flow on the entire sphere for different values of the Lamb parameter. We particularly focus on rotation‐induced effects, such as the formation of jets. In agreement with shallow water models of the atmosphere, we observe the formation of robust latitudinal jets and a decrease in the zonal wind amplitude with latitude. Furthermore, spectra of the kinetic energy are computed as a point of reference for future studies. We conducted a study on a model that represents the movements of planetary flows. This model has important physical and mathematical properties that are related to its long‐term behavior, which is essential for understanding geophysical turbulence. In this work, we developed a numerical method for simulation that preserves the key mathematical structure of the model through a two‐step process. We applied our method to simulate global atmospheric flow and investigate the impact of varying strengths of planetary rotation. Our findings demonstrate the expected formation of wind patterns known as zonal jets, where stronger winds occur near the equator and weaker winds near the poles. We also present energy spectra that illustrate the influence of planetary rotation on the transfer of turbulent energy, which aligns with existing theoretical predictions found in literature. These results highlight the potential of our numerical method for studying fundamental problems in geophysical fluid dynamics. We develop a numerical method preserving Casimirs to simulate balanced shallow water flow on the sphere We perform global high‐resolution simulations while accurately accounting for latitude‐dependent effects Our simulations show the formation of robust zonal jets and provide key insights into quasi‐geostrophic turbulence
Author Cifani, P.
Franken, A. D.
Caliaro, M.
Geurts, B. J.
Author_xml – sequence: 1
  givenname: A. D.
  orcidid: 0000-0002-3724-3431
  surname: Franken
  fullname: Franken, A. D.
  email: a.d.franken@utwente.nl
  organization: University of Twente
– sequence: 2
  givenname: M.
  surname: Caliaro
  fullname: Caliaro, M.
  organization: Gran Sasso Science Institute
– sequence: 3
  givenname: P.
  surname: Cifani
  fullname: Cifani, P.
  organization: Gran Sasso Science Institute
– sequence: 4
  givenname: B. J.
  surname: Geurts
  fullname: Geurts, B. J.
  organization: Eindhoven University of Technology
BookMark eNp9UUtLHEEQboJCfOSWH9DgNavVr5npo4hPdslDRcilqZ7pjr2005ueXsSbP8Hf6C_JrBuCCOZURdX3omqbbPSpd4R8ZrDPgOsDDlzMLgGEBvaBbDEt-YTLqtp41X8k28MwB6iqiqst8uOnCyWGnl7lZd9iCamnyVOkl7cYY7qnN1hcpt-XOITnx6dTl4aS0-I2tHSWOhepT5l-i9i7gvmBnoyUXbLpMQ7u09-6Q65Pjq-OzibTr6fnR4fTSSsVqInVCIhO2tZacFxq762Q3kKnauV5U2vrvOSs6lqATvpOKu48F3bcO6ZR7JDztW6XcG4WOdyNCUzCYF4GKf8ymEtoozO15npUR5SVlcqrhqtGM9Z0kjUri1Frb621yOn30g3FzNMy92N8I6BmWoCGekR9WaPanIYhO__PlYFZfcC8_sAI52_gbSgvJy4ZQ3yPJNak-xDdw38NzMXh7JhzBkr8AXeMmRA
CitedBy_id crossref_primary_10_1088_1361_6544_ada511
crossref_primary_10_1016_j_jcp_2025_114155
crossref_primary_10_1063_5_0281814
crossref_primary_10_1063_5_0156942
crossref_primary_10_1103_PhysRevFluids_10_013801
Cites_doi 10.1175/jas4003.1
10.1175/1520‐0469(1998)055<0611:tdtapz>2.0.co;2
10.1007/978-3-319-08198-4
10.1017/s0022112075000225
10.1175/1520‐0469(2004)061<2016:pattco>2.0.co;2
10.1016/j.jcp.2022.111772
10.1029/2005gl025379
10.1111/j.2153‐3490.1960.tb01323.x
10.1007/bf02099772
10.1017/s0022112076000463
10.1016/0167‐2789(91)90152‐y
10.1016/j.physrep.2012.02.001
10.1007/s10543‐019‐00792‐1
10.5281/zenodo.8112852
10.1016/0167‐2789(83)90134‐3
10.1002/ggge.20071
10.1175/1520‐0469(1962)019<0159:otsoib>2.0.co;2
10.1017/jfm.2019.944
10.1073/pnas.0230451100
10.1017/s002211208700034x
10.1007/bf02099490
10.1098/rsta.1968.0003
10.5281/zenodo.8116153
10.1103/physrevfluids.7.l082601
10.1017/jfm.2021.1130
10.1093/oso/9780198804338.001.0001
10.1007/s002200050379
10.1146/annurev.fluid.24.1.145
10.1111/j.1600‐0870.1983.tb00181.x
10.1017/s0022112075001504
10.1016/j.jcp.2009.12.012
10.1007/978-1-4612-4350-2
10.1103/physrevlett.93.264501
10.1063/1.2116747
10.1146/annurev.fl.20.010188.001301
10.1063/1.532474
10.1175/1520‐0485(1993)023<1346:gomfaj>2.0.co;2
10.1175/1520‐0485(2004)034<1663:eeccla>2.0.co;2
10.1175/1520‐0469(1959)016<0524:fatdhw>2.0.co;2
10.3894/james.2009.1.2
10.1017/jfm.2022.457
10.1017/9781107588431
10.1175/2008jas2837.1
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1029/2023MS003901
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central (New)
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1942-2466
EndPage n/a
ExternalDocumentID oai_doaj_org_article_7929fb3aa46b45f582589118d4184216
10_1029_2023MS003901
JAME22105
Genre researchArticle
GrantInformation_xml – fundername: Dutch Research Council
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
GroupedDBID 0R~
1OC
24P
29J
31~
5VS
8-1
8FE
8FH
AAMMB
AAZKR
ABDBF
ACCMX
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AGXDD
AIDQK
AIDYY
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZFZN
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
D1K
EAD
EAP
EAS
EBS
EJD
EPL
ESX
GODZA
GROUPED_DOAJ
HCIFZ
HZ~
IAO
IGS
IPNFZ
ITC
K6-
KQ8
LK5
M7R
M~E
O9-
OK1
P2P
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PUEGO
RIG
RNS
TUS
WIN
~OA
AAYXX
AFFHD
CITATION
7TG
ABUWG
AZQEC
DWQXO
F1W
H96
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4505-b9a0aae4bcbb0e249ffb34fb0d575f2879bef4216dc00d4fd452ef23bd57e19a3
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001246597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1942-2466
IngestDate Fri Oct 03 12:20:23 EDT 2025
Fri Jul 25 23:39:11 EDT 2025
Tue Nov 18 21:56:25 EST 2025
Sat Nov 29 02:09:19 EST 2025
Tue Sep 09 05:07:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4505-b9a0aae4bcbb0e249ffb34fb0d575f2879bef4216dc00d4fd452ef23bd57e19a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3724-3431
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003901
PQID 3071930907
PQPubID 616667
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_7929fb3aa46b45f582589118d4184216
proquest_journals_3071930907
crossref_primary_10_1029_2023MS003901
crossref_citationtrail_10_1029_2023MS003901
wiley_primary_10_1029_2023MS003901_JAME22105
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of advances in modeling earth systems
PublicationYear 2024
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2009; 66
1993; 23
1993; 107
2004; 61
2006; 31
2010; 229
1960; 12
2006; 33
2020; 60
1983; 7
1962; 19
2023b
2023a
2020; 884
2022; 933
1991; 138
1983; 35
1998; 195
1987; 175
1976; 75
1994; 165
1998; 39
1991; 49
2013; 14
2004; 93
2001
2022
2021
2022; 7
2004; 34
2023; 473
1975; 67
2019
2018
1975; 69
1992; 24
1968; 262
2014
1988; 20
2007; 64
2005; 17
1959; 16
2009; 1
2022; 943
2003; 100
2012; 515
1998; 55
Boyd J. P. (e_1_2_11_7_1) 2001
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_31_1
e_1_2_11_30_1
e_1_2_11_36_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_35_1
e_1_2_11_12_1
e_1_2_11_34_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_49_1
Hairer E. (e_1_2_11_19_1) 2006
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_46_1
e_1_2_11_47_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_9_1
e_1_2_11_23_1
Luesink E. (e_1_2_11_27_1) 2021
e_1_2_11_42_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
e_1_2_11_37_1
e_1_2_11_38_1
e_1_2_11_39_1
References_xml – volume: 60
  start-page: 741
  issue: 3
  year: 2020
  end-page: 758
  article-title: A minimal‐variable symplectic method for isospectral flows
  publication-title: BIT Numerical Mathematics
– volume: 61
  start-page: 2016
  issue: 16
  year: 2004
  end-page: 2036
  article-title: Poisson‐bracket approach to the construction of energy‐and potential‐enstrophy‐conserving algorithms for the shallow‐water equations
  publication-title: Journal of the Atmospheric Sciences
– volume: 49
  start-page: 353
  issue: 3
  year: 1991
  end-page: 362
  article-title: Finite‐mode analogs of 2D ideal hydrodynamics: Coadjoint orbits and local canonical structure
  publication-title: Physica D: Nonlinear Phenomena
– volume: 75
  start-page: 691
  issue: 4
  year: 1976
  end-page: 703
  article-title: The equilibrium statistical mechanics of simple quasi‐geostrophic models
  publication-title: Journal of Fluid Mechanics
– volume: 69
  start-page: 417
  issue: 3
  year: 1975
  end-page: 443
  article-title: Waves and turbulence on a beta‐plane
  publication-title: Journal of Fluid Mechanics
– volume: 473
  year: 2023
  article-title: An efficient geometric method for incompressible hydrodynamics on the sphere
  publication-title: Journal of Computational Physics
– volume: 515
  start-page: 227
  issue: 5
  year: 2012
  end-page: 295
  article-title: Statistical mechanics of two‐dimensional and geophysical flows
  publication-title: Physics Reports
– volume: 14
  start-page: 751
  issue: 3
  year: 2013
  end-page: 758
  article-title: Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 165
  start-page: 281
  issue: 2
  year: 1994
  end-page: 296
  article-title: Toeplitz quantization of kähler manifolds and gl(n),  →  limits
  publication-title: Communications in Mathematical Physics
– volume: 66
  start-page: 1735
  issue: 6
  year: 2009
  end-page: 1748
  article-title: A balanced approximation of the one‐layer shallow‐water equations on a sphere
  publication-title: Journal of the Atmospheric Sciences
– year: 2001
– volume: 100
  start-page: 3841
  issue: 7
  year: 2003
  end-page: 3846
  article-title: Statistically relevant conserved quantities for truncated quasigeostrophic flow
  publication-title: Proceedings of the National Academy of Sciences
– year: 2021
– volume: 19
  start-page: 159
  issue: 2
  year: 1962
  end-page: 172
  article-title: On the stability of internal baroclinic jets in a rotating atmosphere
  publication-title: Journal of the Atmospheric Sciences
– volume: 884
  year: 2020
  article-title: A Casimir preserving scheme for long‐time simulation of spherical ideal hydrodynamics
  publication-title: Journal of Fluid Mechanics
– year: 2023a
– volume: 93
  issue: 26
  year: 2004
  article-title: Self‐consistent finite‐mode approximations for the hydrodynamics of an incompressible fluid on nonrotating and rotating spheres
  publication-title: Physical Review Letters
– volume: 39
  start-page: 3906
  issue: 7
  year: 1998
  end-page: 3915
  article-title: The Edmonds asymptotic formulas for the 3j and 6j symbols
  publication-title: Journal of Mathematical Physics
– volume: 229
  start-page: 2634
  issue: 7
  year: 2010
  end-page: 2648
  article-title: Statistical relevance of vorticity conservation in the Hamiltonian particle‐mesh method
  publication-title: Journal of Computational Physics
– volume: 31
  year: 2006
– year: 2018
– year: 2014
– volume: 12
  start-page: 364
  issue: 4
  year: 1960
  end-page: 373
  article-title: Energy and numerical weather prediction
  publication-title: Tellus
– volume: 7
  issue: 8
  year: 2022
  article-title: Casimir preserving spectrum of two‐dimensional turbulence
  publication-title: Physical Review Fluids
– volume: 67
  start-page: 155
  issue: 1
  year: 1975
  end-page: 175
  article-title: Statistical dynamics of two‐dimensional flow
  publication-title: Journal of Fluid Mechanics
– volume: 175
  start-page: 157
  issue: ‐1
  year: 1987
  end-page: 181
  article-title: Nonlinear stability and statistical mechanics of flow over topography
  publication-title: Journal of Fluid Mechanics
– volume: 33
  issue: 8
  year: 2006
  article-title: A generalized Rhines effect and storms on Jupiter
  publication-title: Geophysical Research Letters
– volume: 16
  start-page: 524
  issue: 5
  year: 1959
  end-page: 534
  article-title: Finite‐amplitude three‐dimensional harmonic waves on the spherical earth
  publication-title: Journal of the Atmospheric Sciences
– volume: 7
  start-page: 305
  issue: 1–3
  year: 1983
  end-page: 323
  article-title: Coadjoint orbits, vortices, and clebsch variables for incompressible fluids
  publication-title: Physica D: Nonlinear Phenomena
– year: 2022
– year: 2023b
– volume: 55
  start-page: 611
  issue: 4
  year: 1998
  end-page: 632
  article-title: Two‐dimensional turbulence and persistent zonal jets in a global barotropic model
  publication-title: Journal of the Atmospheric Sciences
– volume: 262
  start-page: 511
  issue: 1132
  year: 1968
  end-page: 607
  article-title: The eigenfunctions of Laplace’s tidal equation over a sphere
  publication-title: Philosophical Transactions of the Royal Society of London Series A: Mathematical and Physical Sciences
– volume: 195
  start-page: 67
  issue: 1
  year: 1998
  end-page: 77
  article-title: Some properties of matrix harmonics on s 2
  publication-title: Communications in Mathematical Physics
– volume: 20
  start-page: 225
  issue: 1
  year: 1988
  end-page: 256
  article-title: Hamiltonian fluid mechanics
  publication-title: Annual Review of Fluid Mechanics
– volume: 34
  start-page: 1663
  issue: 7
  year: 2004
  end-page: 1678
  article-title: Equatorward energy cascade, critical latitude, and the predominance of cyclonic vortices in geostrophic turbulence
  publication-title: Journal of Physical Oceanography
– volume: 943
  year: 2022
  article-title: Canonical scale separation in two‐dimensional incompressible hydrodynamics
  publication-title: Journal of Fluid Mechanics
– volume: 23
  start-page: 1346
  issue: 7
  year: 1993
  end-page: 1362
  article-title: Generation of mean flows and jets on a beta plane and over topography
  publication-title: Journal of Physical Oceanography
– volume: 35
  start-page: 17
  issue: 1
  year: 1983
  end-page: 27
  article-title: Linear non‐divergent mass‐wind laws on the sphere
  publication-title: Tellus A: Dynamic Meteorology and Oceanography
– volume: 64
  start-page: 3158
  issue: 9
  year: 2007
  end-page: 3176
  article-title: Forced‐dissipative shallow‐water turbulence on the sphere and the atmospheric circulation of the giant planets
  publication-title: Journal of the Atmospheric Sciences
– volume: 107
  year: 1993
– volume: 24
  start-page: 145
  issue: 1
  year: 1992
  end-page: 166
  article-title: Topological methods in hydrodynamics
  publication-title: Annual Review of Fluid Mechanics
– volume: 138
  start-page: 209
  issue: 2
  year: 1991
  end-page: 244
  article-title: gl( ) and geometric quantization
  publication-title: Communications in Mathematical Physics
– year: 2019
– volume: 1
  start-page: 1
  issue: 2
  year: 2009
  end-page: 11
  article-title: Shallow water quasi‐geostrophic theory on the sphere
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 933
  year: 2022
  article-title: Two‐dimensional turbulence on a sphere
  publication-title: Journal of Fluid Mechanics
– volume: 17
  issue: 10
  year: 2005
  article-title: Shallow water equations with a complete Coriolis force and topography
  publication-title: Physics of Fluids
– ident: e_1_2_11_40_1
  doi: 10.1175/jas4003.1
– ident: e_1_2_11_21_1
  doi: 10.1175/1520‐0469(1998)055<0611:tdtapz>2.0.co;2
– ident: e_1_2_11_34_1
  doi: 10.1007/978-3-319-08198-4
– volume-title: Geometric numerical integration
  year: 2006
  ident: e_1_2_11_19_1
– ident: e_1_2_11_22_1
  doi: 10.1017/s0022112075000225
– ident: e_1_2_11_36_1
  doi: 10.1175/1520‐0469(2004)061<2016:pattco>2.0.co;2
– ident: e_1_2_11_10_1
– ident: e_1_2_11_12_1
  doi: 10.1016/j.jcp.2022.111772
– ident: e_1_2_11_42_1
  doi: 10.1029/2005gl025379
– ident: e_1_2_11_26_1
  doi: 10.1111/j.2153‐3490.1960.tb01323.x
– ident: e_1_2_11_5_1
  doi: 10.1007/bf02099772
– ident: e_1_2_11_37_1
  doi: 10.1017/s0022112076000463
– ident: e_1_2_11_47_1
  doi: 10.1016/0167‐2789(91)90152‐y
– ident: e_1_2_11_6_1
  doi: 10.1016/j.physrep.2012.02.001
– ident: e_1_2_11_46_1
  doi: 10.1007/s10543‐019‐00792‐1
– ident: e_1_2_11_17_1
  doi: 10.5281/zenodo.8112852
– ident: e_1_2_11_28_1
  doi: 10.1016/0167‐2789(83)90134‐3
– ident: e_1_2_11_38_1
  doi: 10.1002/ggge.20071
– ident: e_1_2_11_9_1
  doi: 10.1175/1520‐0469(1962)019<0159:otsoib>2.0.co;2
– ident: e_1_2_11_30_1
  doi: 10.1017/jfm.2019.944
– ident: e_1_2_11_2_1
  doi: 10.1073/pnas.0230451100
– ident: e_1_2_11_8_1
  doi: 10.1017/s002211208700034x
– volume-title: Stochastic geometric mechanics of thermal ocean dynamics (PhD thesis)
  year: 2021
  ident: e_1_2_11_27_1
– ident: e_1_2_11_4_1
  doi: 10.1007/bf02099490
– ident: e_1_2_11_25_1
  doi: 10.1098/rsta.1968.0003
– ident: e_1_2_11_18_1
  doi: 10.5281/zenodo.8116153
– ident: e_1_2_11_11_1
  doi: 10.1103/physrevfluids.7.l082601
– ident: e_1_2_11_24_1
  doi: 10.1017/jfm.2021.1130
– ident: e_1_2_11_49_1
  doi: 10.1093/oso/9780198804338.001.0001
– ident: e_1_2_11_20_1
  doi: 10.1007/s002200050379
– ident: e_1_2_11_3_1
  doi: 10.1146/annurev.fluid.24.1.145
– ident: e_1_2_11_13_1
  doi: 10.1111/j.1600‐0870.1983.tb00181.x
– ident: e_1_2_11_33_1
  doi: 10.1017/s0022112075001504
– ident: e_1_2_11_29_1
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jcp.2009.12.012
– ident: e_1_2_11_32_1
  doi: 10.1007/978-1-4612-4350-2
– ident: e_1_2_11_48_1
  doi: 10.1103/physrevlett.93.264501
– volume-title: Chebyshev and fourier spectral methods
  year: 2001
  ident: e_1_2_11_7_1
– ident: e_1_2_11_14_1
  doi: 10.1063/1.2116747
– ident: e_1_2_11_35_1
  doi: 10.1146/annurev.fl.20.010188.001301
– ident: e_1_2_11_16_1
  doi: 10.1063/1.532474
– ident: e_1_2_11_44_1
  doi: 10.1175/1520‐0485(1993)023<1346:gomfaj>2.0.co;2
– ident: e_1_2_11_41_1
  doi: 10.1175/1520‐0485(2004)034<1663:eeccla>2.0.co;2
– ident: e_1_2_11_23_1
  doi: 10.1175/1520‐0469(1959)016<0524:fatdhw>2.0.co;2
– ident: e_1_2_11_39_1
  doi: 10.3894/james.2009.1.2
– ident: e_1_2_11_31_1
  doi: 10.1017/jfm.2022.457
– ident: e_1_2_11_43_1
  doi: 10.1017/9781107588431
– ident: e_1_2_11_45_1
  doi: 10.1175/2008jas2837.1
SSID ssj0066625
Score 2.3873694
Snippet In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This equation,...
Abstract In this work, we consider a Shallow‐Water Quasi Geostrophic equation on the sphere, as a model for global large‐scale atmospheric dynamics. This...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Atmospheric dynamics
Dynamical systems
Energy
Fluid dynamics
geophysical fluid dynamics
Kinetic energy
Numerical analysis
Shallow water
Simulation
Topography
turbulence
Velocity
Zonal winds
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT4QwEG2M8eDF-BnR1fSgXpRYS1ngqMbVi8aPNW68kBamkWQDG9jVePMn-Bv9JU4LmPWgXjwCpWlmpp33SplHyE4QgB-AZK4Kte8KkMoNU2QpWpjib56FyFZsIri6CgeD6HpK6sucCavLA9eGOwwwf2vlSSm6SvjaR0YT4gQNU4HchB_ZYtuIeloyVa_BiMm53xxzZzwyDN-7vDP_oTbiL20CsnX6v4HLaYhqc0xvkSw04JAe14NaIjOQLxPnEnFtUdrtb7pHT4cZgkx7tUJuHwGdneW0X07yevONFppKemc0UooX-oBQsqQ3E1llH2_v51BU47IYPWUJNSJoQ4qQlRrdIhjL8pX28JVVct87659euI1KgpsIhC-uiiSTEoRKlGKAbEqjuYRWLEUkppEQRQq0sVSaMJYKnQqfg-aewudwFElvjczmRQ7rhGrWTSFQ2AV4giccoUQXmJIy7DLwteeQ_dZ0cdKUEDdKFsPYfsrmUTxtaIfsfrUe1aUzfmh3Yrzw1cYUvLY3MAziJgziv8LAIZ3Wh3EzC6sY1y_Epwz5v0MOrF9_HUiMee6MIwf2N_5jSJtkHnsX9bmyDpkdlxPYInPJ8zirym0br58rs-qs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3RhUMvFEpRQ6Hyoe2ljTCJ83WqCtqlF1YUqIp6iexkTCOtkiXZBXHjJ_Ab-0s69joUDuXSYxLbijNj-72xMw_gXZJglKDkvkp15AuUyk9LYilamORvoYXIVmwiGY_T8_Ps2AXcOnessp8T7URdNoWJke-SLxLW4MTlPk8vfaMaZXZXnYTGM1g2mcrEAJb3h-Pjk34uJmweRO64Ow8yw_TDo1PzP6oTgekXIpuv_xHIfAhV7VozevG_b7kGqw5lsi8Lt1iHJaxfgndEALlpbRydfWAHk4rQqr3agJOfSF5T1eysndeLKB5rNJPs1IitNNfsB2HSln2by676fXt3iE03a5vpr6pgRk1twgj7MiOAhDPZ3rARVXkF30fDs4OvvpNb8AtBOMhXmeRSolCFUhyJlmmtQqEVLwnSaWJWmUIy4V5cFpyXQpciClAHoaLnuJfJcBMGdVPja2CaxyUmiprAUARFQJgkRq6kTGOOkQ49-Nh_-7xwuciNJMYkt3viQZY_tJQH7-9LTxc5OP5Rbt-Y8b6MyZxtbzTtRe4GYp4QHqR-SSliJSIdEUNOacJPS0FclzrnwXZv2dwN5y7_a1YPPlnHePJFclowhwGR6Wjr6dbewHOqJxZHz7ZhMGvnuAMrxdWs6tq3zpn_ABZ2-7c
  priority: 102
  providerName: ProQuest
Title Zeitlin Truncation of a Shallow Water Quasi‐Geostrophic Model for Planetary Flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023MS003901
https://www.proquest.com/docview/3071930907
https://doaj.org/article/7929fb3aa46b45f582589118d4184216
Volume 16
WOSCitedRecordID wos001246597000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PCBAR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: WIN
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1942-2466
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066625
  issn: 1942-2466
  databaseCode: 24P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hlgMX3ohAu_IBuECE13Fex7bahR52FdqiFi6RnYxLpFVSJbtwQ_0J_EZ-ScdOdrU9gIS4RHI8jvwY299M7PkAXsUxhjEq7uvEhL5Epf2kJCvFSBv8LXAQ2ZFNxPN5cnGRZoPDzd6F6eNDbBxudma49dpOcKW7IdiAjZFpeb9np_Zuqb2-tTseB4mlbhAyW6_EhMwd6SrZ6cIXMoqGg-9U_v126VtbkovcfwtuboNWt-tMH_xvfR_C_QFvsoNeQR7BHawfgzcjqNy0zqPO3rCjRUW41aWewMlXJP2panbWruren8cawxQ7tbQrzQ92Tui0ZZ9Wqqt-X__6gE23bJurb1XBLK_aghEKZpYKCZdUVzalIk_h83RydvTRH4gX_EISIvJ1qrhSKHWhNUcy0IzRgTSalwTuDNlYqUYazHFUFpyX0pQyFGhEoCkfx6kKnsFO3dT4HJjhUYmxpk9gIEUhCJ1EyLVSScQxNIEHb9d9nxdDVHJLjrHI3d9xkebb_ebB6430VR-N4w9yh3YYNzI2hrZ70bSX-TAl85iQIbVLKRlpGZqQbOWElv6klGT1UuM82FsrQT5M7C6nJZEgL0957ME7N9x_rUhOW-dEkFkdvvg38ZdwjzJkfyhtD3aW7Qr34W7xfVl17cip-Qh2Dyfz7GTk_Aj0nP2c0LvseJZ9odT58fwGVvkAmg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qUyTY8EakFPCCsoEIj-O8FgjR0qGjdkYDHdTCJtiJTSONkiGZoeqOT-BL-Kh-CddOUsqC7rpgmcS5iuPj63P9uAfgaRgqP1SCujLSvsuVkG6UYZSiuUn-5lmKbMUmwvE4OjyMJyvwqzsLY7ZVdj7ROuqsTM0c-UvEInINirHc6_k316hGmdXVTkKjgcWuOjnGkK1-NXyL7bvB2GB7urXjtqoCbspxuHdlLKgQistUSqow-tBaelxLmiFz0RhAxFLhl_aDLKU04zrjPlOaeRKfq34sPLR7BVY5gj3qwepkOJp86nw_xgLMb7fXUxabmQVvtG_Ov7aiM93AZ_UB_iK156mxHdsGN_-3v3ILbrQsmrxpYH8bVlRxB5wRBgBlZdcJyDOyNcuRjduru_Dhs8JekRdkWi2LZpaSlJoIsm_EZMpjcoCcuyLvl6LOT3_8fKfKelGV86M8JUYtbkaQ2xMj8KQWojohA3zlHny8lCreh15RFuoBEE2DTIUSTSiPs5Qh5woUlUJEAVW-9hx43rV1kra51o3kxyyxa_4sTs4jw4GNs9LzJsfIP8ptGticlTGZwe2NsvqatI4mCZHvYr2E4IHkvvYjZnQj-1HGMZbHyjmw3iEpad1VnfyBkQMvLBAv_JAECcE2Y0jN1y629gSu7UxHe8necLz7EK6jDd5ss1uH3qJaqkdwNf2-yOvqcduRCHy5bJT-BlP4W5I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiEu_CMCBXygXCCq13H-DghB24VV2dVCi1q4BDuxIdIqWZJdqt54BJ6Hx-FJGDtOKQd664FjEseK42_sb-zxfACP4liFsRLUl4kOfa6E9JMCvRTNTfK3wFJkKzYRTybJ4WE6XYGf_VkYE1bZj4l2oC7q3KyRbyIWkWtQ9OU2tQuLmG4Pn8-_-kZByuy09nIaHUR21fERum_ts9E29vUGY8Od_a3XvlMY8HOOU78vU0GFUFzmUlKFnojWMuBa0gJZjEZnIpUKv3oQFTmlBdcFD5nSLJD4XA1SEWC9F2ANKTlHG1ubjsbTD_08gH4BC12oPWWpWWUIxnvmLKwToOknQasV8BfBPU2T7Tw3vPo__6FrcMWxa_KiM4frsKKqG-CN0TGoG7t_QB6TrVmJLN1e3YR3HxVaS1mR_WZZdauXpNZEkD0jMlMfkQPk4g15uxRt-ev7j1eqbhdNPf9S5sSoyM0Icn5ihJ_UQjTHZIiv3IL359LE27Ba1ZW6A0TTqFCxxCpUwFnOkItFikohkoiqUAcePOn7PctdDnYjBTLLbCwAS7PTKPFg46T0vMs98o9yLw2ETsqYjOH2Rt18ztwAlMXIg7FdQvBI8lCHCTN6koOk4OjjY-M8WO9RlblhrM3-QMqDpxaUZ35IhkRhhzGk7HfPru0hXEJoZm9Gk917cBmr4F303TqsLpqlug8X82-Lsm0eOJsi8Om8QfobRctkUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zeitlin+Truncation+of+a+Shallow+Water+Quasi%E2%80%90Geostrophic+Model+for+Planetary+Flow&rft.jtitle=Journal+of+advances+in+modeling+earth+systems&rft.au=Franken%2C+A.+D.&rft.au=Caliaro%2C+M.&rft.au=Cifani%2C+P.&rft.au=Geurts%2C+B.+J.&rft.date=2024-06-01&rft.issn=1942-2466&rft.eissn=1942-2466&rft.volume=16&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023MS003901&rft.externalDBID=10.1029%252F2023MS003901&rft.externalDocID=JAME22105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1942-2466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1942-2466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1942-2466&client=summon