Rain-gauge network evaluation and augmentation using geostatistics

Rain-gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Hydrological processes Ročník 22; číslo 14; s. 2554 - 2564
Hlavní autori: Cheng, Ke-Sheng, Lin, Yun-Ching, Liou, Jun-Jih
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Chichester, UK John Wiley & Sons, Ltd 01.07.2008
Wiley
Predmet:
ISSN:0885-6087, 1099-1085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Rain-gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an existing rain-gauge network is proposed in this study. Through variogram analysis, hourly rainfalls are shown to have higher spatial variability than annual rainfalls, with hourly Mei-Yu rainfalls having the highest spatial variability. A criterion using ordinary kriging variance is proposed to assess the accuracy of rainfall estimation using the acceptance probability defined as the probability that estimation error falls within a desired range. Based on the criterion, the percentage of the total area with acceptable accuracy Ap under certain network configuration can be calculated. A sequential algorithm is also proposed to prioritize rain-gauges of the existing network, identify the base network, and relocate non-base gauges. Percentage of the total area with acceptable accuracy is mostly contributed by the base network. In contrast, non-base gauges provide little contribution to Ap and are subject to removal or relocation. Using a case study in northern Taiwan, the proposed approach demonstrates that the identified base network which comprises of approximately two-thirds of the total rain-gauges can achieve almost the same level of performance (expressed in terms of percentage of the total area with acceptable accuracy) as the complete network for hourly Mei-Yu rainfall estimation. The percentage of area with acceptable accuracy can be raised from 56% to 88% using an augmented network. A threshold value for the percentage of area with acceptable accuracy is also recommended to help determine the number of non-base gauges which need to be relocated. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList Rain-gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an existing rain-gauge network is proposed in this study. Through variogram analysis, hourly rainfalls are shown to have higher spatial variability than annual rainfalls, with hourly Mei-Yu rainfalls having the highest spatial variability. A criterion using ordinary kriging variance is proposed to assess the accuracy of rainfall estimation using the acceptance probability defined as the probability that estimation error falls within a desired range. Based on the criterion, the percentage of the total area with acceptable accuracy Ap under certain network configuration can be calculated. A sequential algorithm is also proposed to prioritize rain-gauges of the existing network, identify the base network, and relocate non-base gauges. Percentage of the total area with acceptable accuracy is mostly contributed by the base network. In contrast, non-base gauges provide little contribution to Ap and are subject to removal or relocation. Using a case study in northern Taiwan, the proposed approach demonstrates that the identified base network which comprises of approximately two-thirds of the total rain-gauges can achieve almost the same level of performance (expressed in terms of percentage of the total area with acceptable accuracy) as the complete network for hourly Mei-Yu rainfall estimation. The percentage of area with acceptable accuracy can be raised from 56% to 88% using an augmented network. A threshold value for the percentage of area with acceptable accuracy is also recommended to help determine the number of non-base gauges which need to be relocated.
Rain‐gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an existing rain‐gauge network is proposed in this study. Through variogram analysis, hourly rainfalls are shown to have higher spatial variability than annual rainfalls, with hourly Mei‐Yu rainfalls having the highest spatial variability. A criterion using ordinary kriging variance is proposed to assess the accuracy of rainfall estimation using the acceptance probability defined as the probability that estimation error falls within a desired range. Based on the criterion, the percentage of the total area with acceptable accuracy Ap under certain network configuration can be calculated. A sequential algorithm is also proposed to prioritize rain‐gauges of the existing network, identify the base network, and relocate non‐base gauges. Percentage of the total area with acceptable accuracy is mostly contributed by the base network. In contrast, non‐base gauges provide little contribution to Ap and are subject to removal or relocation. Using a case study in northern Taiwan, the proposed approach demonstrates that the identified base network which comprises of approximately two‐thirds of the total rain‐gauges can achieve almost the same level of performance (expressed in terms of percentage of the total area with acceptable accuracy) as the complete network for hourly Mei‐Yu rainfall estimation. The percentage of area with acceptable accuracy can be raised from 56% to 88% using an augmented network. A threshold value for the percentage of area with acceptable accuracy is also recommended to help determine the number of non‐base gauges which need to be relocated. Copyright © 2007 John Wiley & Sons, Ltd.
Rain‐gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can achieve depends on the total number and locations of gauges in the network. A geostatistical approach for evaluation and augmentation of an existing rain‐gauge network is proposed in this study. Through variogram analysis, hourly rainfalls are shown to have higher spatial variability than annual rainfalls, with hourly Mei‐Yu rainfalls having the highest spatial variability. A criterion using ordinary kriging variance is proposed to assess the accuracy of rainfall estimation using the acceptance probability defined as the probability that estimation error falls within a desired range. Based on the criterion, the percentage of the total area with acceptable accuracy A p under certain network configuration can be calculated. A sequential algorithm is also proposed to prioritize rain‐gauges of the existing network, identify the base network, and relocate non‐base gauges. Percentage of the total area with acceptable accuracy is mostly contributed by the base network. In contrast, non‐base gauges provide little contribution to A p and are subject to removal or relocation. Using a case study in northern Taiwan, the proposed approach demonstrates that the identified base network which comprises of approximately two‐thirds of the total rain‐gauges can achieve almost the same level of performance (expressed in terms of percentage of the total area with acceptable accuracy) as the complete network for hourly Mei‐Yu rainfall estimation. The percentage of area with acceptable accuracy can be raised from 56% to 88% using an augmented network. A threshold value for the percentage of area with acceptable accuracy is also recommended to help determine the number of non‐base gauges which need to be relocated. Copyright © 2007 John Wiley & Sons, Ltd.
Author Liou, Jun-Jih
Lin, Yun-Ching
Cheng, Ke-Sheng
Author_xml – sequence: 1
  fullname: Cheng, Ke-Sheng
– sequence: 2
  fullname: Lin, Yun-Ching
– sequence: 3
  fullname: Liou, Jun-Jih
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20516265$$DView record in Pascal Francis
BookMark eNqF0U1v1DAQBmALtRLbgsQ_IBcQlyzj-CP2kVawRVSlQAviZE0SJ5hmncVOKPvv61VKJRCoJ0vjZ0Yevwdkzw_eEvKEwpICFC-_bTdLqQR9QBYUtM4pKLFHFqCUyCWo8iE5iPE7AHBQsCBHH9H5vMOps5m34_UQrjL7E_sJRzf4DH2Tpbu19eNcmKLzXdbZIe4KcXR1fET2W-yjfXx7HpLLN68vjk_y0_ert8evTvOaC6B5U9WqEZXWDCvGaIu14LxV6U2MKduItkDAosWSUqkb3VSaNVbxQmvdyqpp2CF5Ps_dhOHHZONo1i7Wtu_R22GKhpey5CXAvZAxoXQafC8sKJSqAJngs1uIsca-DehrF80muDWGrSlAUFlIkdxydnUYYgy2NbWbP24M6HpDwexCMikkswspNbz4q-H3zH_QfKbXrrfb_zpz8vX8T59Ssr_uPIYrI0tWCvPlbGXku6PV-YeL0nxO_unsWxwMdiHtd_mpAMoANAXOJbsB5XK7DA
CODEN HYPRE3
CitedBy_id crossref_primary_10_1007_s11069_010_9589_3
crossref_primary_10_1007_s11356_016_7995_0
crossref_primary_10_1016_j_jhydrol_2022_127595
crossref_primary_10_1007_s12517_018_3915_6
crossref_primary_10_1016_j_advwatres_2010_04_018
crossref_primary_10_1007_s11269_011_9898_7
crossref_primary_10_3389_feart_2017_00114
crossref_primary_10_1007_s10333_010_0247_x
crossref_primary_10_1002_joc_5946
crossref_primary_10_1016_j_landurbplan_2010_05_004
crossref_primary_10_1016_j_wace_2023_100634
crossref_primary_10_2166_nh_2021_141
crossref_primary_10_1007_s00704_024_04856_3
crossref_primary_10_1007_s12040_024_02507_9
crossref_primary_10_1002_hyp_10389
crossref_primary_10_1002_hyp_10786
crossref_primary_10_1016_j_jastp_2023_106072
crossref_primary_10_1080_02626667_2018_1444767
crossref_primary_10_1007_s00704_016_1853_3
crossref_primary_10_2166_nh_2016_169
crossref_primary_10_1007_s11269_016_1545_x
crossref_primary_10_1061__ASCE_HE_1943_5584_0000675
crossref_primary_10_1007_s12145_018_0332_z
crossref_primary_10_2166_wcc_2023_034
crossref_primary_10_1080_02626667_2023_2179403
crossref_primary_10_1007_s10661_020_08726_z
crossref_primary_10_2166_wrd_2015_112
crossref_primary_10_5194_hess_17_4685_2013
crossref_primary_10_1007_s00477_023_02517_x
crossref_primary_10_1007_s00704_012_0702_2
crossref_primary_10_1080_02626667_2012_685171
crossref_primary_10_1680_wama_2011_164_7_321
crossref_primary_10_1080_02626667_2018_1437271
crossref_primary_10_1007_s11356_015_5507_2
crossref_primary_10_1080_02626667_2011_637044
crossref_primary_10_1111_j_1752_1688_2010_00484_x
crossref_primary_10_1061__ASCE_HE_1943_5584_0000969
crossref_primary_10_1016_j_jhydrol_2015_03_034
crossref_primary_10_5194_hess_21_3071_2017
crossref_primary_10_1016_j_advwatres_2019_103476
crossref_primary_10_1016_j_jhydrol_2015_08_013
crossref_primary_10_1007_s11269_010_9621_0
crossref_primary_10_3390_e16084626
crossref_primary_10_1016_j_jhydrol_2012_07_026
crossref_primary_10_2166_nh_2017_108
crossref_primary_10_1080_14498596_2015_1030789
crossref_primary_10_1016_j_seps_2022_101469
crossref_primary_10_3390_w11010070
crossref_primary_10_1016_j_jhydrol_2021_126366
crossref_primary_10_1007_s12517_016_2576_6
crossref_primary_10_1007_s10333_024_00977_7
crossref_primary_10_1007_s11069_014_1220_6
crossref_primary_10_1007_s00477_014_0928_x
crossref_primary_10_1007_s00704_023_04476_3
crossref_primary_10_1007_s40899_017_0176_6
crossref_primary_10_1371_journal_pone_0195966
crossref_primary_10_1088_1742_6596_1366_1_012072
crossref_primary_10_1007_s11356_023_30452_5
crossref_primary_10_3390_w10111635
crossref_primary_10_1007_s10333_018_0654_y
crossref_primary_10_1007_s11269_009_9471_9
crossref_primary_10_1016_j_envres_2019_108686
crossref_primary_10_1061__ASCE_HE_1943_5584_0000353
crossref_primary_10_1186_s40663_018_0147_x
crossref_primary_10_1002_hyp_7699
crossref_primary_10_1002_hyp_9559
crossref_primary_10_1007_s40996_020_00484_9
crossref_primary_10_5194_hess_15_171_2011
crossref_primary_10_1038_s41598_020_66363_5
crossref_primary_10_1080_02626667_2013_872788
crossref_primary_10_1080_02626667_2014_910305
crossref_primary_10_1175_JHM_D_14_0034_1
crossref_primary_10_1007_s00704_021_03604_1
crossref_primary_10_1080_02626667_2014_923969
crossref_primary_10_1016_j_jhydrol_2019_04_091
crossref_primary_10_2166_nh_2016_256
Cites_doi 10.1029/WR021i002p00199
10.1029/WR012i006p01185
10.1029/WR003i004p01021
10.1080/02626669109492505
10.1016/0309-1708(78)90039-8
10.1007/BF00872282
10.1016/S0022-1694(97)00153-4
10.1175/1525-7541(2003)004<0996:IITSSO>2.0.CO;2
10.1029/WR020i004p00463
10.1002/hyp.1350
10.1061/(ASCE)1084-0699(2002)7:2(175)
10.1029/JD092iD08p09571
10.1016/S0022-1694(98)00188-7
10.1175/JAM2304.1
10.1029/WR021i006p00837
10.1029/WR017i006p01641
10.1007/BF00872281
10.1002/hyp.1209
10.1029/WR023i011p02123
10.1175/1520-0493(2002)130<0700:KCOAMY>2.0.CO;2
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2008 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1002/hyp.6851
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 2564
ExternalDocumentID 20516265
10_1002_hyp_6851
HYP6851
ark_67375_WNG_6KBGPQT7_V
US201300910446
Genre article
GeographicLocations Far East
Asia
Taiwan
GeographicLocations_xml – name: Taiwan
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
AGHNM
AIQQE
CITATION
O8X
IQODW
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-c4501-dbc8d5b993ab331fac544f8608338ed5f2a0a2fa71169d9db93de842999f6bdd3
IEDL.DBID DRFUL
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000257954400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Fri Jul 11 09:51:59 EDT 2025
Thu Oct 02 11:40:54 EDT 2025
Tue Oct 07 09:38:32 EDT 2025
Mon Jul 21 09:12:01 EDT 2025
Sat Nov 29 03:25:04 EST 2025
Tue Nov 18 22:13:20 EST 2025
Wed Jan 22 16:28:11 EST 2025
Tue Nov 11 03:30:04 EST 2025
Wed Dec 27 19:12:23 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords geostatistics
algorithms
rainfall
kriging
probability
variograms
accuracy
rain water
case studies
networks
variogram analysis
network augmentation
contour maps
performances
errors
network evaluation
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4501-dbc8d5b993ab331fac544f8608338ed5f2a0a2fa71169d9db93de842999f6bdd3
Notes http://dx.doi.org/10.1002/hyp.6851
ArticleID:HYP6851
istex:A51B3E84005B00C4526C7B37DDF2AD9F85C0D468
ark:/67375/WNG-6KBGPQT7-V
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 21078206
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_47674700
proquest_miscellaneous_33589429
proquest_miscellaneous_21078206
pascalfrancis_primary_20516265
crossref_citationtrail_10_1002_hyp_6851
crossref_primary_10_1002_hyp_6851
wiley_primary_10_1002_hyp_6851_HYP6851
istex_primary_ark_67375_WNG_6KBGPQT7_V
fao_agris_US201300910446
PublicationCentury 2000
PublicationDate 1 July 2008
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 1 July 2008
  day: 01
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2008
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Krstanovic PF, Singh VP. 1992b. Evaluation of rainfall network using entropy: II. Application. Water Resources Management 6: 295-314.
Delhomme JP. 1978. Kriging in the hydrosciences. Advances in Water Resources 1: 251-266.
Journel AG, Huijbregts CJ. 1978. Mining Geostatistics. Academic Press: London.
Yeh HC, Chen GT-J, Liu WT. 2002. Kinematic characteristics of a Mei-yu front detected by the QuikSCAT oceanic winds. Monthly Weather Review 130: 700-711.
Eagleson PS. 1967. Optimum density of rainfall networks. Water Resources Research 3: 1021-1033.
Ali A, Lebel T, Amani A. 2003. Invariance in the spatial structure of Sahelian rain fields at climatological scales. Journal of Hydrometeorology 4: 996-1011.
Al-Zahrani M, Husain T. 1998. An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. Journal of Hydrology 205: 205-216.
Bastin G, Lorent B, Duque C, Gevers M. 1984. Optimal estimation of the average areal rainfall and optimal selection of raingauge locations. Water Resources Research 20: 463-470.
Pardo-Igúzquiza E. 1998. Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology 210: 206-220.
Bras RF, Rodriguez-Iturbe I. 1976. Network design for the estimation of areal mean rainfall events. Water Resources Research 12: 1185-1195.
Krajewski WF. 1987. Cokriging radar-rainfall and rain gage data. Journal of Geophysical Research 92: 9571-9580.
Cheng KS, Wei C, Cheng YB, Yeh HC. 2003. Effect of spatial variation characteristics on contouring of design storm depth. Hydrological Processes 17: 1755-1769. DOI: 10·1002/hyp.1209.
Krstanovic PF, Singh VP. 1992a. Evaluation of rainfall network using entropy: I. Theoretical development. Water Resources Management 6: 279-293.
St-Hilaire A, Ouarda TBMJ, Lachance M, Bobée B, Gaudet J, Gignac C. 2003. Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study. Hydrological Processes 17: 3561-3580.
Rouhani S. 1985. Variance reduction analysis. Water Resources Research 21: 837-846.
WMO. 1974. Guide to Hydrometeorological Practices, 3rd edition. World Meteorological Organization: Geneva.
Kassim AHM, Kottegoda NT. 1991. Rainfall network design through comparative kriging methods. Hydrological Sciences Journal 36: 223-240.
Hughes JP, Lettenmaier DP. 1981. Data requirements for kriging: estimation and network design. Water Resources Research 17: 1641-1650.
Bogardi I, Bardossy A. 1985. Multicriterion network design using geostatistics. Water Resources Research 21: 199-208.
De Marsily G. 1986. Quantitative Hydrogeology. Academic Press: Orlando, FL.
Tsintikidis D, Georgakakos KP, Sperfslage JA, Smith DE, Carpenter TM. 2002. Precipitation uncertainty and raingauge network design within Folsom Lake watershed. Journal of Hydrologic Engineering 7: 175-184.
Ali A, Lebel T, Amani A. 2005. Rainfall estimation in the Sahel. Part I: error function. Journal of Applied Meteorology 44: 1691-1706.
Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134.
1984; 20
1987; 23
1976; 12
1991; 36
1987; 92
2002; 130
1967; 3
2002; 7
1986
2003; 4
1974
2003; 17
1978; 1
1981; 17
1998; 205
1998; 210
1985; 21
2005; 44
1978
1992a; 6
1992b; 6
Journel AG (e_1_2_1_13_1) 1978
De Marsily G (e_1_2_1_10_1) 1986
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_20_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_4_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_22_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
WMO (e_1_2_1_23_1) 1974
e_1_2_1_19_1
References_xml – reference: Bogardi I, Bardossy A. 1985. Multicriterion network design using geostatistics. Water Resources Research 21: 199-208.
– reference: St-Hilaire A, Ouarda TBMJ, Lachance M, Bobée B, Gaudet J, Gignac C. 2003. Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study. Hydrological Processes 17: 3561-3580.
– reference: Bastin G, Lorent B, Duque C, Gevers M. 1984. Optimal estimation of the average areal rainfall and optimal selection of raingauge locations. Water Resources Research 20: 463-470.
– reference: Journel AG, Huijbregts CJ. 1978. Mining Geostatistics. Academic Press: London.
– reference: Bras RF, Rodriguez-Iturbe I. 1976. Network design for the estimation of areal mean rainfall events. Water Resources Research 12: 1185-1195.
– reference: Cheng KS, Wei C, Cheng YB, Yeh HC. 2003. Effect of spatial variation characteristics on contouring of design storm depth. Hydrological Processes 17: 1755-1769. DOI: 10·1002/hyp.1209.
– reference: Krajewski WF. 1987. Cokriging radar-rainfall and rain gage data. Journal of Geophysical Research 92: 9571-9580.
– reference: Tsintikidis D, Georgakakos KP, Sperfslage JA, Smith DE, Carpenter TM. 2002. Precipitation uncertainty and raingauge network design within Folsom Lake watershed. Journal of Hydrologic Engineering 7: 175-184.
– reference: Delhomme JP. 1978. Kriging in the hydrosciences. Advances in Water Resources 1: 251-266.
– reference: Al-Zahrani M, Husain T. 1998. An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. Journal of Hydrology 205: 205-216.
– reference: Krstanovic PF, Singh VP. 1992b. Evaluation of rainfall network using entropy: II. Application. Water Resources Management 6: 295-314.
– reference: Eagleson PS. 1967. Optimum density of rainfall networks. Water Resources Research 3: 1021-1033.
– reference: Ali A, Lebel T, Amani A. 2003. Invariance in the spatial structure of Sahelian rain fields at climatological scales. Journal of Hydrometeorology 4: 996-1011.
– reference: Hughes JP, Lettenmaier DP. 1981. Data requirements for kriging: estimation and network design. Water Resources Research 17: 1641-1650.
– reference: Lebel T, Bastin G, Obled C, Creutin JD. 1987. On the accuracy of areal rainfall estimation: a case study. Water Resources Research 23: 2123-2134.
– reference: Kassim AHM, Kottegoda NT. 1991. Rainfall network design through comparative kriging methods. Hydrological Sciences Journal 36: 223-240.
– reference: De Marsily G. 1986. Quantitative Hydrogeology. Academic Press: Orlando, FL.
– reference: Yeh HC, Chen GT-J, Liu WT. 2002. Kinematic characteristics of a Mei-yu front detected by the QuikSCAT oceanic winds. Monthly Weather Review 130: 700-711.
– reference: Pardo-Igúzquiza E. 1998. Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing. Journal of Hydrology 210: 206-220.
– reference: Rouhani S. 1985. Variance reduction analysis. Water Resources Research 21: 837-846.
– reference: Krstanovic PF, Singh VP. 1992a. Evaluation of rainfall network using entropy: I. Theoretical development. Water Resources Management 6: 279-293.
– reference: WMO. 1974. Guide to Hydrometeorological Practices, 3rd edition. World Meteorological Organization: Geneva.
– reference: Ali A, Lebel T, Amani A. 2005. Rainfall estimation in the Sahel. Part I: error function. Journal of Applied Meteorology 44: 1691-1706.
– volume: 210
  start-page: 206
  year: 1998
  end-page: 220
  article-title: Optimal selection of number and location of rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 199
  year: 1985
  end-page: 208
  article-title: Multicriterion network design using geostatistics
  publication-title: Water Resources Research
– year: 1986
– volume: 23
  start-page: 2123
  year: 1987
  end-page: 2134
  article-title: On the accuracy of areal rainfall estimation: a case study
  publication-title: Water Resources Research
– volume: 44
  start-page: 1691
  year: 2005
  end-page: 1706
  article-title: Rainfall estimation in the Sahel. Part I: error function
  publication-title: Journal of Applied Meteorology
– volume: 12
  start-page: 1185
  year: 1976
  end-page: 1195
  article-title: Network design for the estimation of areal mean rainfall events
  publication-title: Water Resources Research
– volume: 130
  start-page: 700
  year: 2002
  end-page: 711
  article-title: Kinematic characteristics of a Mei‐yu front detected by the QuikSCAT oceanic winds
  publication-title: Monthly Weather Review
– volume: 205
  start-page: 205
  year: 1998
  end-page: 216
  article-title: An algorithm for designing a precipitation network in the south‐western region of Saudi Arabia
  publication-title: Journal of Hydrology
– volume: 21
  start-page: 837
  year: 1985
  end-page: 846
  article-title: Variance reduction analysis
  publication-title: Water Resources Research
– volume: 6
  start-page: 279
  year: 1992a
  end-page: 293
  article-title: Evaluation of rainfall network using entropy: I. Theoretical development
  publication-title: Water Resources Management
– volume: 17
  start-page: 1755
  year: 2003
  end-page: 1769
  article-title: Effect of spatial variation characteristics on contouring of design storm depth
  publication-title: Hydrological Processes
– volume: 92
  start-page: 9571
  year: 1987
  end-page: 9580
  article-title: Cokriging radar‐rainfall and rain gage data
  publication-title: Journal of Geophysical Research
– year: 1974
– volume: 1
  start-page: 251
  year: 1978
  end-page: 266
  article-title: Kriging in the hydrosciences
  publication-title: Advances in Water Resources
– volume: 20
  start-page: 463
  year: 1984
  end-page: 470
  article-title: Optimal estimation of the average areal rainfall and optimal selection of raingauge locations
  publication-title: Water Resources Research
– volume: 3
  start-page: 1021
  year: 1967
  end-page: 1033
  article-title: Optimum density of rainfall networks
  publication-title: Water Resources Research
– year: 1978
– volume: 36
  start-page: 223
  year: 1991
  end-page: 240
  article-title: Rainfall network design through comparative kriging methods
  publication-title: Hydrological Sciences Journal
– volume: 6
  start-page: 295
  year: 1992b
  end-page: 314
  article-title: Evaluation of rainfall network using entropy: II. Application
  publication-title: Water Resources Management
– volume: 17
  start-page: 3561
  year: 2003
  end-page: 3580
  article-title: Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: a case study
  publication-title: Hydrological Processes
– volume: 7
  start-page: 175
  year: 2002
  end-page: 184
  article-title: Precipitation uncertainty and raingauge network design within Folsom Lake watershed
  publication-title: Journal of Hydrologic Engineering
– volume: 4
  start-page: 996
  year: 2003
  end-page: 1011
  article-title: Invariance in the spatial structure of Sahelian rain fields at climatological scales
  publication-title: Journal of Hydrometeorology
– volume: 17
  start-page: 1641
  year: 1981
  end-page: 1650
  article-title: Data requirements for kriging: estimation and network design
  publication-title: Water Resources Research
– ident: e_1_2_1_6_1
  doi: 10.1029/WR021i002p00199
– ident: e_1_2_1_7_1
  doi: 10.1029/WR012i006p01185
– ident: e_1_2_1_11_1
  doi: 10.1029/WR003i004p01021
– ident: e_1_2_1_14_1
  doi: 10.1080/02626669109492505
– ident: e_1_2_1_9_1
  doi: 10.1016/0309-1708(78)90039-8
– ident: e_1_2_1_17_1
  doi: 10.1007/BF00872282
– ident: e_1_2_1_4_1
  doi: 10.1016/S0022-1694(97)00153-4
– volume-title: Mining Geostatistics
  year: 1978
  ident: e_1_2_1_13_1
– ident: e_1_2_1_2_1
  doi: 10.1175/1525-7541(2003)004<0996:IITSSO>2.0.CO;2
– ident: e_1_2_1_5_1
  doi: 10.1029/WR020i004p00463
– ident: e_1_2_1_21_1
  doi: 10.1002/hyp.1350
– ident: e_1_2_1_22_1
  doi: 10.1061/(ASCE)1084-0699(2002)7:2(175)
– ident: e_1_2_1_15_1
  doi: 10.1029/JD092iD08p09571
– ident: e_1_2_1_19_1
  doi: 10.1016/S0022-1694(98)00188-7
– volume-title: Guide to Hydrometeorological Practices
  year: 1974
  ident: e_1_2_1_23_1
– ident: e_1_2_1_3_1
  doi: 10.1175/JAM2304.1
– ident: e_1_2_1_20_1
  doi: 10.1029/WR021i006p00837
– ident: e_1_2_1_12_1
  doi: 10.1029/WR017i006p01641
– ident: e_1_2_1_16_1
  doi: 10.1007/BF00872281
– ident: e_1_2_1_8_1
  doi: 10.1002/hyp.1209
– ident: e_1_2_1_18_1
  doi: 10.1029/WR023i011p02123
– volume-title: Quantitative Hydrogeology
  year: 1986
  ident: e_1_2_1_10_1
– ident: e_1_2_1_24_1
  doi: 10.1175/1520-0493(2002)130<0700:KCOAMY>2.0.CO;2
SSID ssj0004080
Score 2.2285428
Snippet Rain-gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can...
Rain‐gauge networks are often used to provide estimates of area average rainfall or point rainfalls at ungauged locations. The level of accuracy a network can...
SourceID proquest
pascalfrancis
crossref
wiley
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2554
SubjectTerms algorithms
case studies
Earth sciences
Earth, ocean, space
Exact sciences and technology
geostatistics
Hydrology
Hydrology. Hydrogeology
network augmentation
network evaluation
probability
rain
rain gauges
Taiwan
variance
variogram analysis
Title Rain-gauge network evaluation and augmentation using geostatistics
URI https://api.istex.fr/ark:/67375/WNG-6KBGPQT7-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.6851
https://www.proquest.com/docview/21078206
https://www.proquest.com/docview/33589429
https://www.proquest.com/docview/47674700
Volume 22
WOSCitedRecordID wos000257954400015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdGhwQvMGBoHbAFCcFTqOPYcfwIjG4SU1VghfFk2bGdSbB0ailib3wEPiOfhLskbVeJSpN4ykPOknN_fHfx3e8IeeYDt5goxOBORcx5CLFiRRIXiZOO2sCpqRuFj-VgkJ-eqmFbVYm9MA0-xOKHG1pGfV6jgRs77S1BQ88uL15mOXZPbzJQW94hmwcf-qPjZVckreemgRmJOKO5nEPPUtabr11xRjeCGUOIitz9iSWSZgpcCs14i5X482oUW7uh_t3_-YAtcqcNPqNXjbbcIxu-uk9utXPQzy4fkAO87vnz63dpZqWPqqZEPFoigkemchG8O287lqoI6-bLqPRj7ExqQJ-3yaj_9uTNUdzOWYgLLmgSO1vkTliIVIxN0ySYQoDQcuAZ5K_eicAMNSwYmSSZcspZlTqfoyNTIbPOpQ9JpxpXfodEVhgP6blyQhrOnbM4G0tlXLiEySBFl7yYM1wXLQg5zsL4phv4ZKaBKxq50iVPF5QXDfDGP2h2QGbalHAe6tFHhrewGP9Aitslz2tBLtaayVesYZNCfx4c6uzd68Ph-xOpP3XJ3oqkFwsYHFeQ7cGW9-ei12B6eJ9iKj-eTTVky4g2mK2nSFORK2DUegqOYEqSUthvrStrv1UffRnic_e6hI_I7aa2BUuLH5PO98nMPyE3ix-gDJO91lj-An_SGRo
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VFKlceKOGR7tICE5Lvbv2elecgJIGNUQBElpOlndtbyXaTZUSRG_8BH4jv4SZfSREIhISpz3sWLLnYc_YM98APLGOZxQo-HicCp9z5_w0zAM_D4w0LHOc6apQeCCHw-T4OB1twIu2FqbGh1hcuJFlVPs1GThdSO8tUUNPLs-fxwmVT29y1CLRgc39D73JYFkWyarGaWhHwo9ZIlvsWRbutWNXTqMrTk_RRyX2fqccSX2BbHJ1f4sVB_RPN7Y6h3o3_msFN-F64356L2t9uQUbtrwNW00n9JPLO7BPDz6_fvws9LywXlkniXtLTHBPl8bDf2dNzVLpUeZ84RV2SrVJNezzXZj03oxf9_2m04Kfc8EC32R5YkSGvorOoihwOhcotgSZhhGsNcKFmunQaRkEcWpSk6WRsQkdZamLM2Oie9App6XdBi8T2mKAnhohNefGZNQdK425MEEonRRdeNZyXOUNDDl1wzhVNYByqJArirjShccLyvMaeuMvNNsoNKUL3BHV5GNI77DkAWGQ24WnlSQXY_XsC2WxSaGOhgcqPnx1MHo_lupTF3ZWRL0YEOKGhfEeTnm3lb1C46MXFV3a6fxCYbxMeIPxeoooEkmKjFpPwQlOSTKG862UZe1aVf_ziL73_5VwF7b643cDNXg7PHwA1-pMF0o0fgidr7O5fQRX82-oGLOdxnJ-A0DPHQo
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhMxELZKi4BL-VdDoV0kBKel3l17vRYnSkiLGkUBGigny17bW6llE6UE0RuPwDPyJJ3Zn4RIRELitAePJXvG45lZz3xDyDPnmcFAIQRzykPGvA9lnEdhHllhqfGM6qpQuC8Gg-zkRA7XyKu2FqbGh5j_cEPNqO5rVHA3sX5vgRp6ejl5mWZYPr3BuExBKze6H3qj_qIsklaN00CPeJjSTLTYszTea-cuWaNrXo_BR0X2_sAcSX0BbPJ1f4slB_RPN7ayQ73b_7WDO2SzcT-D1_V5uUvWXHmP3Gw6oZ9e3iddfPD5_fNXoWeFC8o6STxYYIIHurQBjH1tapbKADPni6BwY6xNqmGfH5BR7-3xm8Ow6bQQ5ozTKLQmzyw34KtokySR1zkHsWXANIhgneU-1lTHXosoSqWV1sjEugxNmfSpsTZ5SNbLcem2SGC4dhCgS8uFZsxag92xZMq4jWLhBe-QFy3HVd7AkGM3jHNVAyjHCriikCsd8nROOamhN_5CswVCU7qAG1GNPsb4DoseEAS5HfK8kuR8rp6eYRab4Orz4EClR_sHw_fHQn3qkJ0lUc8nxHBhQbwHS95tZa9A-fBFRZduPLtQEC8j3mC6miJJeCaBUaspGMIpCUphvdVhWblXdfhliN9H_0q4S24Muz3Vfzc42ia36kQXzDN-TNa_TWfuCbmef4dzMd1pFOcKo6IchQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rain%E2%80%90gauge+network+evaluation+and+augmentation+using+geostatistics&rft.jtitle=Hydrological+processes&rft.au=Cheng%2C+Ke%E2%80%90Sheng&rft.au=Lin%2C+Yun%E2%80%90Ching&rft.au=Liou%2C+Jun%E2%80%90Jih&rft.date=2008-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=22&rft.issue=14&rft.spage=2554&rft.epage=2564&rft_id=info:doi/10.1002%2Fhyp.6851&rft.externalDBID=10.1002%252Fhyp.6851&rft.externalDocID=HYP6851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon