Classification of hyperspectral images by tensor modeling and additive morphological decomposition

Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 46; číslo 2; s. 566 - 577
Hlavní autoři: Velasco-Forero, Santiago, Angulo, Jesus
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier Ltd 01.02.2013
Elsevier
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pixel-wise classification in high-dimensional multivariate images is investigated. The proposed method deals with the joint use of spectral and spatial information provided in hyperspectral images. Additive morphological decomposition (AMD) based on morphological operators is proposed. AMD defines a scale-space decomposition for multivariate images without any loss of information. AMD is modeled as a tensor structure and tensor principal components analysis is compared as dimensional reduction algorithm versus classic approach. Experimental comparison shows that the proposed algorithm can provide better performance for the pixel classification of hyperspectral image than many other well-known techniques. ► Additive morphological decomposition without any loss of information is proposed. ► Decomposition is modeled as a tensor structure. ► Tensor PCA is compared versus PCA. ► Proposed workflow performs better than other techniques in HSI classification.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0031-3203
1873-5142
DOI:10.1016/j.patcog.2012.08.011