A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine
A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Fi...
Gespeichert in:
| Veröffentlicht in: | Batteries (Basel) Jg. 10; H. 3; S. 87 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.03.2024
|
| Schlagworte: | |
| ISSN: | 2313-0105, 2313-0105 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Firstly, health indicators are extracted from lithium-battery-charging data, and grey relational analysis (GRA) is employed to identify highly correlated features with the state-of-health of the battery. Subsequently, a state-of-health estimation model based on mixed extreme learning machine is constructed, and the hyperparameters of the model are optimized using the fennec fox optimization algorithm to improve estimation accuracy and convergence speed. The experimental results demonstrate that the proposed method has significantly improved the accuracy of the state-of-health estimation for lithium batteries compared to the extreme learning machine. Furthermore, it can achieve precise state-of-health estimation results for multiple batteries, even under complex operating conditions and with limited charge/discharge cycle data. |
|---|---|
| AbstractList | A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Firstly, health indicators are extracted from lithium-battery-charging data, and grey relational analysis (GRA) is employed to identify highly correlated features with the state-of-health of the battery. Subsequently, a state-of-health estimation model based on mixed extreme learning machine is constructed, and the hyperparameters of the model are optimized using the fennec fox optimization algorithm to improve estimation accuracy and convergence speed. The experimental results demonstrate that the proposed method has significantly improved the accuracy of the state-of-health estimation for lithium batteries compared to the extreme learning machine. Furthermore, it can achieve precise state-of-health estimation results for multiple batteries, even under complex operating conditions and with limited charge/discharge cycle data. |
| Audience | Academic |
| Author | Sun, Chongbin Qin, Wenhu Yun, Zhonghua |
| Author_xml | – sequence: 1 givenname: Chongbin surname: Sun fullname: Sun, Chongbin – sequence: 2 givenname: Wenhu surname: Qin fullname: Qin, Wenhu – sequence: 3 givenname: Zhonghua orcidid: 0000-0002-1255-5770 surname: Yun fullname: Yun, Zhonghua |
| BookMark | eNp1ks9uEzEQxleoSJTSB-BmifO29tq7Xh9DldBKiXoAztasd5w42rWD15FCT1x4At6wT4LbUPFfc_Bo9P2-scfzsjjxwWNRvGb0gnNFLztICaPDiVHKKW3ls-K04oyXlNH65Jf8RXE-TVtKKWulrCp5WnydkfcJEpbBltcIQ9qQ-ZTcCMkFT1aYNqEnNkSydGnj9iN5-9QrZxP2JKsW6D0asggHcrvLrLs70rNhHWLGxvsv31bukMXzQ4o4IlkiRO_8mqzAbJzHV8VzC8OE5z_Os-LjYv7h6rpc3r67uZotSyOESmXfGVQKOwrcUIa2ZarvZG0bqFoBHWMg65pBxZViphNg6tpQhYoxNF0tOn5W3Bx9-wBbvYv5nfGzDuD0YyHEtYaYnBlQS8W7HEI0vRVNLZUEI0GABd70iCx7vTl67WL4tMcp6W3YR5-vryulqFAtF81P1RqyqfM2pAhmdJPRM9m2leCCP6gu_qHK0ePoTP5s63L9N0AeARPDNEW02rj0OPUMukEzqh82Q_-1GZlkf5BPY_g_8x1cF8F4 |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_134658 crossref_primary_10_3390_en17133096 crossref_primary_10_1038_s41598_025_16642_w crossref_primary_10_1016_j_egyr_2025_02_007 crossref_primary_10_1016_j_displa_2024_102905 crossref_primary_10_1016_j_rineng_2025_105825 |
| Cites_doi | 10.1016/j.est.2022.104720 10.1016/j.est.2021.103252 10.1177/0142331220966425 10.1109/ACCESS.2022.3151641 10.1109/IECON43393.2020.9254859 10.1109/ACCESS.2021.3089032 10.1016/j.energy.2018.06.220 10.1109/RAMS.2019.8769016 10.1109/ACCESS.2019.2923095 10.1007/s00170-004-2386-y 10.1016/j.energy.2023.127378 10.1016/j.neucom.2005.12.126 10.1016/j.rser.2021.111903 10.3390/en13184858 10.1016/j.jpowsour.2020.228655 10.1016/j.est.2022.105752 10.1007/s40747-021-00639-9 10.3390/wevj12030113 10.3390/en11092323 10.1016/j.asoc.2022.109615 10.1016/j.advengsoft.2014.02.005 10.1016/j.rser.2020.110015 10.1016/j.jpowsour.2018.10.019 10.1109/TIE.2021.3066946 10.1109/CONECCT52877.2021.9622557 10.3390/batteries9040224 10.1016/j.est.2022.104215 10.1109/MIE.2020.2964814 10.1149/1945-7111/ac8a1a 10.1016/j.energy.2023.128794 10.3390/en13020375 10.1016/j.est.2023.108647 10.1016/j.apenergy.2018.01.011 10.1109/ICARCV.2004.1468985 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS DOA |
| DOI | 10.3390/batteries10030087 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2313-0105 |
| ExternalDocumentID | oai_doaj_org_article_793b3b3446df465797ac7a4afa36dee1 A788243436 10_3390_batteries10030087 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABJCF ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V M7S MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c449t-dbce99eb0a3c01ef819db75f6a284ab11a7551a23991cb4ac55c09e911ecb54b3 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001191599800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2313-0105 |
| IngestDate | Fri Oct 03 12:34:22 EDT 2025 Fri Jul 25 12:08:20 EDT 2025 Tue Nov 11 11:06:46 EST 2025 Sat Nov 29 10:42:12 EST 2025 Tue Nov 18 21:57:05 EST 2025 Sat Nov 29 07:14:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c449t-dbce99eb0a3c01ef819db75f6a284ab11a7551a23991cb4ac55c09e911ecb54b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1255-5770 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2990498346?pq-origsite=%requestingapplication% |
| PQID | 2990498346 |
| PQPubID | 2055442 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_793b3b3446df465797ac7a4afa36dee1 proquest_journals_2990498346 gale_infotracmisc_A788243436 gale_infotracacademiconefile_A788243436 crossref_citationtrail_10_3390_batteries10030087 crossref_primary_10_3390_batteries10030087 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-03-01 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Batteries (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_17) 2023; 274 Chen (ref_22) 2022; 129 Tran (ref_13) 2021; 43 Dehghani (ref_36) 2022; 10 Lipu (ref_5) 2022; 55 Smarsly (ref_2) 2014; 73 ref_14 Bi (ref_10) 2020; 476 ref_31 Vennam (ref_4) 2022; 52 ref_30 Li (ref_6) 2022; 50 Tosun (ref_33) 2006; 28 Wang (ref_9) 2020; 131 Hasib (ref_16) 2021; 9 Pan (ref_18) 2018; 160 Zhang (ref_19) 2022; 169 Li (ref_12) 2018; 212 ref_25 Rauf (ref_3) 2022; 156 ref_23 ref_21 Huang (ref_35) 2004; Volume 2 Hu (ref_1) 2020; 14 Huang (ref_34) 2006; 70 Gao (ref_11) 2022; 69 ref_29 Xiong (ref_7) 2018; 405 ref_28 Chen (ref_15) 2023; 72 ref_27 ref_26 Zuo (ref_20) 2023; 282 ref_8 Xu (ref_24) 2019; 7 Zhi (ref_32) 2022; 8 |
| References_xml | – volume: 52 start-page: 104720 year: 2022 ident: ref_4 article-title: A Survey on Lithium-Ion Battery Internal and External Degradation Modeling and State of Health Estimation publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104720 – volume: 43 start-page: 103252 year: 2021 ident: ref_13 article-title: A Comprehensive Equivalent Circuit Model for Lithium-Ion Batteries, Incorporating the Effects of State of Health, State of Charge, and Temperature on Model Parameters publication-title: J. Energy Storage doi: 10.1016/j.est.2021.103252 – ident: ref_26 doi: 10.1177/0142331220966425 – volume: 10 start-page: 84417 year: 2022 ident: ref_36 article-title: Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3151641 – ident: ref_30 – ident: ref_14 doi: 10.1109/IECON43393.2020.9254859 – volume: 9 start-page: 86166 year: 2021 ident: ref_16 article-title: A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3089032 – volume: 160 start-page: 466 year: 2018 ident: ref_18 article-title: Novel Battery State-of-Health Online Estimation Method Using Multiple Health Indicators and an Extreme Learning Machine publication-title: Energy doi: 10.1016/j.energy.2018.06.220 – ident: ref_25 doi: 10.1109/RAMS.2019.8769016 – volume: 7 start-page: 105186 year: 2019 ident: ref_24 article-title: State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process with Modeling the Relaxation Effect publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923095 – volume: 28 start-page: 450 year: 2006 ident: ref_33 article-title: Determination of Optimum Parameters for Multi-Performance Characteristics in Drilling by Using Grey Relational Analysis publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2386-y – volume: 274 start-page: 127378 year: 2023 ident: ref_17 article-title: Data-Driven State-of-Health Estimation for Lithium-Ion Battery Based on Aging Features publication-title: Energy doi: 10.1016/j.energy.2023.127378 – volume: 70 start-page: 489 year: 2006 ident: ref_34 article-title: Extreme Learning Machine: Theory and Applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – volume: 156 start-page: 111903 year: 2022 ident: ref_3 article-title: Machine Learning in State of Health and Remaining Useful Life Estimation: Theoretical and Technological Development in Battery Degradation Modelling publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111903 – ident: ref_21 doi: 10.3390/en13184858 – volume: 476 start-page: 228655 year: 2020 ident: ref_10 article-title: Online State of Health and Aging Parameter Estimation Using a Physics-Based Life Model with a Particle Filter publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228655 – volume: 55 start-page: 105752 year: 2022 ident: ref_5 article-title: Deep Learning Enabled State of Charge, State of Health and Remaining Useful Life Estimation for Smart Battery Management System: Methods, Implementations, Issues and Prospects publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105752 – volume: 8 start-page: 2167 year: 2022 ident: ref_32 article-title: A State of Health Estimation Method for Electric Vehicle Li-Ion Batteries Using GA-PSO-SVR publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00639-9 – ident: ref_8 doi: 10.3390/wevj12030113 – ident: ref_31 doi: 10.3390/en11092323 – ident: ref_29 – volume: 129 start-page: 109615 year: 2022 ident: ref_22 article-title: Online State-of-Health Estimation of Lithium-Ion Battery Based on Relevance Vector Machine with Dynamic Integration publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109615 – volume: 73 start-page: 1 year: 2014 ident: ref_2 article-title: Decentralized Fault Detection and Isolation in Wireless Structural Health Monitoring Systems Using Analytical Redundancy publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.02.005 – volume: 131 start-page: 110015 year: 2020 ident: ref_9 article-title: A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110015 – volume: 405 start-page: 18 year: 2018 ident: ref_7 article-title: Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.10.019 – volume: 69 start-page: 2684 year: 2022 ident: ref_11 article-title: Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2021.3066946 – ident: ref_27 doi: 10.1109/CONECCT52877.2021.9622557 – ident: ref_28 doi: 10.3390/batteries9040224 – volume: 50 start-page: 104215 year: 2022 ident: ref_6 article-title: State of Health Estimation of Lithium-Ion Battery Based on Improved Ant Lion Optimization and Support Vector Regression publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104215 – volume: 14 start-page: 65 year: 2020 ident: ref_1 article-title: Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2020.2964814 – volume: 169 start-page: 080520 year: 2022 ident: ref_19 article-title: Improved Particle Swarm Optimization-Extreme Learning Machine Modeling Strategies for the Accurate Lithium-Ion Battery State of Health Estimation and High-Adaptability Remaining Useful Life Prediction publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ac8a1a – volume: 282 start-page: 128794 year: 2023 ident: ref_20 article-title: Intelligent Estimation on State of Health of Lithium-Ion Power Batteries Based on Failure Feature Extraction publication-title: Energy doi: 10.1016/j.energy.2023.128794 – ident: ref_23 doi: 10.3390/en13020375 – volume: 72 start-page: 108647 year: 2023 ident: ref_15 article-title: Li-Ion Battery State-of-Health Estimation Based on the Combination of Statistical and Geometric Features of the Constant-Voltage Charging Stage publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108647 – volume: 212 start-page: 1178 year: 2018 ident: ref_12 article-title: A Single Particle Model with Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.01.011 – volume: Volume 2 start-page: 1029 year: 2004 ident: ref_35 article-title: Extreme Learning Machine: RBF Network Case publication-title: Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference doi: 10.1109/ICARCV.2004.1468985 |
| SSID | ssj0001877227 |
| Score | 2.3186812 |
| Snippet | A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment.... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 87 |
| SubjectTerms | Accuracy Aging Algorithms Analysis Artificial neural networks Content analysis Datasets Deep learning Electric vehicles extreme learning machine Failure fennec fox optimization algorithm grey relational analysis Health Lithium Lithium batteries Lithium cells Machine learning Mathematical optimization Methods Neural networks Optimization Optimization algorithms Partial differential equations Reliability (Engineering) state-of-health Temperature |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHvQg_uL6Rw6CIATbbdI0x1V28eCqBwVvIUkTXXB3ZbcrHr34BL6hT-Ik6cqKqBfppbRTSDuTmfnSzDcIHRQZeDxRWOIcY4RayolI8pJw2xSQfadK8Nhsgl9cFLe34mqm1ZffExbpgeOHOwb70XAAaikdzRkXXBmuqHIqy0trA_BJuJgBU2F1pYCsscnjb8wMcP2xDnSVgD5Tb9eJ30I3E4gCX_9PXjmEms4KWq5zRNyKY1tFc3awhpZmmAPX0WsLhzSRDB2JlUS4DZM11iHibmgLjSEfxee96r436eOT6cDgbGxLDFId72MNhviDL8Fx9OuKTNx6uBuO4LH--8tbt_cMwu3nyi8j4pqM9Q53wxZMu4FuOu3r0zNSd1QghlJRkVIbK4TVicpMkloH6UCpOXO5giildJoqDhmU8vWuqdFUGcZMIiw4RGs0ozrbRPOD4cBuIdzknnvKZADGAZEYWgjGQBGpUS7n1GUNlEw_rzQ13bjvevEgAXZ4jchvGmmgo89HHiPXxm_CJ15nn4KeJjtcAOORtfHIv4yngQ69xqWfzDA4o-qaBHhFT4slWxwAiK-9zRto94skTELz9fbUZmTtBMbSR3oqYDbk2_8x2B202ISMKm6A20Xz1Whi99CCeap649F-sP8PDMMMtQ priority: 102 providerName: Directory of Open Access Journals |
| Title | A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine |
| URI | https://www.proquest.com/docview/2990498346 https://doaj.org/article/793b3b3446df465797ac7a4afa36dee1 |
| Volume | 10 |
| WOSCitedRecordID | wos001191599800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: P5Z dateStart: 20151201 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database (Proquest) customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: M7S dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: BENPR dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2313-0105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001877227 issn: 2313-0105 databaseCode: PIMPY dateStart: 20151201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZt3ENz6LvUTWp0KBQKwvuQVqtTsYtNC7W79AFpL0LSah1DbCf2puTYS39B_mF_SWd25TwozakYjPGOsRaNPn2jnfmGkJd5Coincs-qSgjGPZdMRVnJpE8UsO_YKNk2m5DTaX5woIpQHr0JaZVbTGyAulV7xrxtAOF-uXJ4Yt5HEOUK_ih7c3zCsIcUPmsNDTVukw6EPTH4eKd4Pym-XZ655MAlE9k-3Ewh2u_bRsQSYtIYvT3CxLor21Oj4v8vrG42oPH9_zv0B-ReIKJ00HrOQ3LLLx-R3SvyhI_JrwFtuChbVawtV6IjQIS22JFOmt7TFEgv_TCvD-enCzrc3id82viSgtUYgdxR2OToR0CnRSj7pIOjGQyqPlz8_nk-mZ-B8eisxrNKGhRfZ3TS5Hn6J-TrePTl7TsW2jYwx7mqWWmdV8rbyKQuin0FnKO0UlSZga3Q2Dg2EmiawaLa2FlunBAuUh5Q1zsruE2fkp3laumfEZpIFLhyKUT8EPY4nishEiBFzlSZ5FXaJdF2trQLmubYWuNIQ2yDE6z_muAueX3xk-NW0OMm4yG6wIUhanE3X6zWMx2WtgaEs_CCuLqseCakksZJw01l0qz0Pu6SV-hAGhEDBudMKHyAW0TtLT2QEOVggW_WJfvXLGGlu-uXt_6lA9Js9KU7Pb_58h65mwAha_Pn9slOvT71L8gd96Oeb9Y90hmOpsWnXnMm0cMM2M_wXojvvbCI_gBVWivY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQ98I9YKOADCAnJan7seH1AaAu7atXdpYciVVxc23G2K3V3290Uyo0LT8B78FA8CWMn6Y8QvfWAconiSZQ4n7-ZsT0zAC_bKTKebDtaFJxT5pigMspyKlwi0fqOtRRVsQkxHLZ3d-X2EvxqYmH8tsqGEwNR5zPr58jXPG0yiY_O3h0eUV81yq-uNiU0KlhsuW9f0WVbvN38gP_3VZL0ujvvN2hdVYBaxmRJc2OdlM5EOrVR7ApUibkRvMg0MrU2cawFWhHax3zG1jBtObeRdEgKzhrOTIrPvQbXQ-kuHD_b_PPZnE4bbdVEVIunaSqjNROSZKLPG_vRFPmNe-fUX6gS8C9dEBRc787_1jV34XZtSpNOhf17sOSm92HlXILFB_CjQ4I1TWcFrQKuSBc5rQrXJINQPZug2U7643J_fDwh601P4tnC5QSlel4VWYJqmnxEfp3UgaukczDCTij3J7-__xyMT1C4e1L62VZS56wdkUHYqeoewqcr6YdHsDydTd1jIInwKbps6kyKjptlbcl5gmad1UUmWJG2IGrwoGydld0XBzlQ6J15CKm_INSCN6e3HFYpSS4TXvcgOxX02cTDhdl8pGpyUsjRBg_GsrxgGRdSaCs004VOs9y5uAWvPUSV5zx8Oavr0A38RJ89THUE-mk-RDlrweoFSeQqe7G5QbCquXKhzuD75PLmF3BzY2fQV_3N4dZTuJWgeVntBlyF5XJ-7J7BDfulHC_mz8OwJLB31WD_A2h9eTI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvgAQkKyNg87jg8IbemuqNpdKgFSb8Z2nO1K3d2ym0K5ceEX8G_4OfwSxk7ShxC99YByiZJJlDifv5lx5gHwLE-R8WTuaFlyTpljgsooK6hwiUTrO9ZS1M0mxGiU7-7KnRX41ebC-LDKlhMDURdz69fIu542mcRbZ92yCYvY2Ri8PvhMfQcp_6e1badRQ2TLffuK7tvy1eYGfuvnSTLof3jzljYdBqhlTFa0MNZJ6UykUxvFrkT1WBjBy0wja2sTx1qgRaF9_mdsDdOWcxtJhwThrOHMpHjfS3BZMJ7HIWzw_cn6To52ayLqH6lpKqOuCQUz0f-N_cyKfBDfKVUYOgb8Sy8EZTe4-T8P0y240ZjYpFfPiduw4mZ34Pqpwot34UePBCubzktaJ2KRPnJdncZJhqGrNkFznmxPqr3J4ZSst6OKe0tXEJQaeBVlCapv8g55d9oktJLe_hgHodqb_v7-czg5QuH-UeVXYUlTy3ZMhiGC1d2DjxcyDvdhdTafuQdAEuFLd9nUmRQdOstyyXmC5p7VZSZYmXYgarGhbFOt3TcN2VfotXk4qb_g1IGXx5cc1KVKzhNe94A7FvRVxsOB-WKsGtJSyN0GN8ayomQZF1JoKzTTpU6zwrm4Ay88XJXnQnw4q5uUDnxFX1VM9QT6bz51OevA2hlJ5DB79nSLZtVw6FKdQPnh-aefwlXEuNreHG09gmsJWp11kOAarFaLQ_cYrtgv1WS5eBJmKIFPF431P7vzgeA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+State-of-Health+Estimation+Method+for+Lithium+Batteries+Based+on+Fennec+Fox+Optimization+Algorithm%E2%80%93Mixed+Extreme+Learning+Machine&rft.jtitle=Batteries+%28Basel%29&rft.au=Sun%2C+Chongbin&rft.au=Qin%2C+Wenhu&rft.au=Yun%2C+Zhonghua&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=2313-0105&rft.volume=10&rft.issue=3&rft.spage=87&rft_id=info:doi/10.3390%2Fbatteries10030087&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon |