A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine

A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries (Basel) Jg. 10; H. 3; S. 87
Hauptverfasser: Sun, Chongbin, Qin, Wenhu, Yun, Zhonghua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.03.2024
Schlagworte:
ISSN:2313-0105, 2313-0105
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Firstly, health indicators are extracted from lithium-battery-charging data, and grey relational analysis (GRA) is employed to identify highly correlated features with the state-of-health of the battery. Subsequently, a state-of-health estimation model based on mixed extreme learning machine is constructed, and the hyperparameters of the model are optimized using the fennec fox optimization algorithm to improve estimation accuracy and convergence speed. The experimental results demonstrate that the proposed method has significantly improved the accuracy of the state-of-health estimation for lithium batteries compared to the extreme learning machine. Furthermore, it can achieve precise state-of-health estimation results for multiple batteries, even under complex operating conditions and with limited charge/discharge cycle data.
AbstractList A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment. This paper proposes a state-of-health estimation method based on fennec fox optimization algorithm–mixed extreme learning machine (FFA-MELM). Firstly, health indicators are extracted from lithium-battery-charging data, and grey relational analysis (GRA) is employed to identify highly correlated features with the state-of-health of the battery. Subsequently, a state-of-health estimation model based on mixed extreme learning machine is constructed, and the hyperparameters of the model are optimized using the fennec fox optimization algorithm to improve estimation accuracy and convergence speed. The experimental results demonstrate that the proposed method has significantly improved the accuracy of the state-of-health estimation for lithium batteries compared to the extreme learning machine. Furthermore, it can achieve precise state-of-health estimation results for multiple batteries, even under complex operating conditions and with limited charge/discharge cycle data.
Audience Academic
Author Sun, Chongbin
Qin, Wenhu
Yun, Zhonghua
Author_xml – sequence: 1
  givenname: Chongbin
  surname: Sun
  fullname: Sun, Chongbin
– sequence: 2
  givenname: Wenhu
  surname: Qin
  fullname: Qin, Wenhu
– sequence: 3
  givenname: Zhonghua
  orcidid: 0000-0002-1255-5770
  surname: Yun
  fullname: Yun, Zhonghua
BookMark eNp1ks9uEzEQxleoSJTSB-BmifO29tq7Xh9DldBKiXoAztasd5w42rWD15FCT1x4At6wT4LbUPFfc_Bo9P2-scfzsjjxwWNRvGb0gnNFLztICaPDiVHKKW3ls-K04oyXlNH65Jf8RXE-TVtKKWulrCp5WnydkfcJEpbBltcIQ9qQ-ZTcCMkFT1aYNqEnNkSydGnj9iN5-9QrZxP2JKsW6D0asggHcrvLrLs70rNhHWLGxvsv31bukMXzQ4o4IlkiRO_8mqzAbJzHV8VzC8OE5z_Os-LjYv7h6rpc3r67uZotSyOESmXfGVQKOwrcUIa2ZarvZG0bqFoBHWMg65pBxZViphNg6tpQhYoxNF0tOn5W3Bx9-wBbvYv5nfGzDuD0YyHEtYaYnBlQS8W7HEI0vRVNLZUEI0GABd70iCx7vTl67WL4tMcp6W3YR5-vryulqFAtF81P1RqyqfM2pAhmdJPRM9m2leCCP6gu_qHK0ePoTP5s63L9N0AeARPDNEW02rj0OPUMukEzqh82Q_-1GZlkf5BPY_g_8x1cF8F4
CitedBy_id crossref_primary_10_1016_j_energy_2025_134658
crossref_primary_10_3390_en17133096
crossref_primary_10_1038_s41598_025_16642_w
crossref_primary_10_1016_j_egyr_2025_02_007
crossref_primary_10_1016_j_displa_2024_102905
crossref_primary_10_1016_j_rineng_2025_105825
Cites_doi 10.1016/j.est.2022.104720
10.1016/j.est.2021.103252
10.1177/0142331220966425
10.1109/ACCESS.2022.3151641
10.1109/IECON43393.2020.9254859
10.1109/ACCESS.2021.3089032
10.1016/j.energy.2018.06.220
10.1109/RAMS.2019.8769016
10.1109/ACCESS.2019.2923095
10.1007/s00170-004-2386-y
10.1016/j.energy.2023.127378
10.1016/j.neucom.2005.12.126
10.1016/j.rser.2021.111903
10.3390/en13184858
10.1016/j.jpowsour.2020.228655
10.1016/j.est.2022.105752
10.1007/s40747-021-00639-9
10.3390/wevj12030113
10.3390/en11092323
10.1016/j.asoc.2022.109615
10.1016/j.advengsoft.2014.02.005
10.1016/j.rser.2020.110015
10.1016/j.jpowsour.2018.10.019
10.1109/TIE.2021.3066946
10.1109/CONECCT52877.2021.9622557
10.3390/batteries9040224
10.1016/j.est.2022.104215
10.1109/MIE.2020.2964814
10.1149/1945-7111/ac8a1a
10.1016/j.energy.2023.128794
10.3390/en13020375
10.1016/j.est.2023.108647
10.1016/j.apenergy.2018.01.011
10.1109/ICARCV.2004.1468985
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/batteries10030087
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2313-0105
ExternalDocumentID oai_doaj_org_article_793b3b3446df465797ac7a4afa36dee1
A788243436
10_3390_batteries10030087
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c449t-dbce99eb0a3c01ef819db75f6a284ab11a7551a23991cb4ac55c09e911ecb54b3
IEDL.DBID PIMPY
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001191599800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2313-0105
IngestDate Fri Oct 03 12:34:22 EDT 2025
Fri Jul 25 12:08:20 EDT 2025
Tue Nov 11 11:06:46 EST 2025
Sat Nov 29 10:42:12 EST 2025
Tue Nov 18 21:57:05 EST 2025
Sat Nov 29 07:14:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c449t-dbce99eb0a3c01ef819db75f6a284ab11a7551a23991cb4ac55c09e911ecb54b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1255-5770
OpenAccessLink https://www.proquest.com/publiccontent/docview/2990498346?pq-origsite=%requestingapplication%
PQID 2990498346
PQPubID 2055442
ParticipantIDs doaj_primary_oai_doaj_org_article_793b3b3446df465797ac7a4afa36dee1
proquest_journals_2990498346
gale_infotracmisc_A788243436
gale_infotracacademiconefile_A788243436
crossref_citationtrail_10_3390_batteries10030087
crossref_primary_10_3390_batteries10030087
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Batteries (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_17) 2023; 274
Chen (ref_22) 2022; 129
Tran (ref_13) 2021; 43
Dehghani (ref_36) 2022; 10
Lipu (ref_5) 2022; 55
Smarsly (ref_2) 2014; 73
ref_14
Bi (ref_10) 2020; 476
ref_31
Vennam (ref_4) 2022; 52
ref_30
Li (ref_6) 2022; 50
Tosun (ref_33) 2006; 28
Wang (ref_9) 2020; 131
Hasib (ref_16) 2021; 9
Pan (ref_18) 2018; 160
Zhang (ref_19) 2022; 169
Li (ref_12) 2018; 212
ref_25
Rauf (ref_3) 2022; 156
ref_23
ref_21
Huang (ref_35) 2004; Volume 2
Hu (ref_1) 2020; 14
Huang (ref_34) 2006; 70
Gao (ref_11) 2022; 69
ref_29
Xiong (ref_7) 2018; 405
ref_28
Chen (ref_15) 2023; 72
ref_27
ref_26
Zuo (ref_20) 2023; 282
ref_8
Xu (ref_24) 2019; 7
Zhi (ref_32) 2022; 8
References_xml – volume: 52
  start-page: 104720
  year: 2022
  ident: ref_4
  article-title: A Survey on Lithium-Ion Battery Internal and External Degradation Modeling and State of Health Estimation
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104720
– volume: 43
  start-page: 103252
  year: 2021
  ident: ref_13
  article-title: A Comprehensive Equivalent Circuit Model for Lithium-Ion Batteries, Incorporating the Effects of State of Health, State of Charge, and Temperature on Model Parameters
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2021.103252
– ident: ref_26
  doi: 10.1177/0142331220966425
– volume: 10
  start-page: 84417
  year: 2022
  ident: ref_36
  article-title: Fennec Fox Optimization: A New Nature-Inspired Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3151641
– ident: ref_30
– ident: ref_14
  doi: 10.1109/IECON43393.2020.9254859
– volume: 9
  start-page: 86166
  year: 2021
  ident: ref_16
  article-title: A Comprehensive Review of Available Battery Datasets, RUL Prediction Approaches, and Advanced Battery Management
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3089032
– volume: 160
  start-page: 466
  year: 2018
  ident: ref_18
  article-title: Novel Battery State-of-Health Online Estimation Method Using Multiple Health Indicators and an Extreme Learning Machine
  publication-title: Energy
  doi: 10.1016/j.energy.2018.06.220
– ident: ref_25
  doi: 10.1109/RAMS.2019.8769016
– volume: 7
  start-page: 105186
  year: 2019
  ident: ref_24
  article-title: State-of-Health Estimation for Lithium-Ion Batteries Based on Wiener Process with Modeling the Relaxation Effect
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923095
– volume: 28
  start-page: 450
  year: 2006
  ident: ref_33
  article-title: Determination of Optimum Parameters for Multi-Performance Characteristics in Drilling by Using Grey Relational Analysis
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2386-y
– volume: 274
  start-page: 127378
  year: 2023
  ident: ref_17
  article-title: Data-Driven State-of-Health Estimation for Lithium-Ion Battery Based on Aging Features
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127378
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_34
  article-title: Extreme Learning Machine: Theory and Applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 156
  start-page: 111903
  year: 2022
  ident: ref_3
  article-title: Machine Learning in State of Health and Remaining Useful Life Estimation: Theoretical and Technological Development in Battery Degradation Modelling
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111903
– ident: ref_21
  doi: 10.3390/en13184858
– volume: 476
  start-page: 228655
  year: 2020
  ident: ref_10
  article-title: Online State of Health and Aging Parameter Estimation Using a Physics-Based Life Model with a Particle Filter
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228655
– volume: 55
  start-page: 105752
  year: 2022
  ident: ref_5
  article-title: Deep Learning Enabled State of Charge, State of Health and Remaining Useful Life Estimation for Smart Battery Management System: Methods, Implementations, Issues and Prospects
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105752
– volume: 8
  start-page: 2167
  year: 2022
  ident: ref_32
  article-title: A State of Health Estimation Method for Electric Vehicle Li-Ion Batteries Using GA-PSO-SVR
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00639-9
– ident: ref_8
  doi: 10.3390/wevj12030113
– ident: ref_31
  doi: 10.3390/en11092323
– ident: ref_29
– volume: 129
  start-page: 109615
  year: 2022
  ident: ref_22
  article-title: Online State-of-Health Estimation of Lithium-Ion Battery Based on Relevance Vector Machine with Dynamic Integration
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109615
– volume: 73
  start-page: 1
  year: 2014
  ident: ref_2
  article-title: Decentralized Fault Detection and Isolation in Wireless Structural Health Monitoring Systems Using Analytical Redundancy
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.02.005
– volume: 131
  start-page: 110015
  year: 2020
  ident: ref_9
  article-title: A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110015
– volume: 405
  start-page: 18
  year: 2018
  ident: ref_7
  article-title: Towards a Smarter Battery Management System: A Critical Review on Battery State of Health Monitoring Methods
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.10.019
– volume: 69
  start-page: 2684
  year: 2022
  ident: ref_11
  article-title: Co-Estimation of State-of-Charge and State-of- Health for Lithium-Ion Batteries Using an Enhanced Electrochemical Model
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2021.3066946
– ident: ref_27
  doi: 10.1109/CONECCT52877.2021.9622557
– ident: ref_28
  doi: 10.3390/batteries9040224
– volume: 50
  start-page: 104215
  year: 2022
  ident: ref_6
  article-title: State of Health Estimation of Lithium-Ion Battery Based on Improved Ant Lion Optimization and Support Vector Regression
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104215
– volume: 14
  start-page: 65
  year: 2020
  ident: ref_1
  article-title: Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2020.2964814
– volume: 169
  start-page: 080520
  year: 2022
  ident: ref_19
  article-title: Improved Particle Swarm Optimization-Extreme Learning Machine Modeling Strategies for the Accurate Lithium-Ion Battery State of Health Estimation and High-Adaptability Remaining Useful Life Prediction
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ac8a1a
– volume: 282
  start-page: 128794
  year: 2023
  ident: ref_20
  article-title: Intelligent Estimation on State of Health of Lithium-Ion Power Batteries Based on Failure Feature Extraction
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128794
– ident: ref_23
  doi: 10.3390/en13020375
– volume: 72
  start-page: 108647
  year: 2023
  ident: ref_15
  article-title: Li-Ion Battery State-of-Health Estimation Based on the Combination of Statistical and Geometric Features of the Constant-Voltage Charging Stage
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.108647
– volume: 212
  start-page: 1178
  year: 2018
  ident: ref_12
  article-title: A Single Particle Model with Chemical/Mechanical Degradation Physics for Lithium Ion Battery State of Health (SOH) Estimation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.01.011
– volume: Volume 2
  start-page: 1029
  year: 2004
  ident: ref_35
  article-title: Extreme Learning Machine: RBF Network Case
  publication-title: Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference
  doi: 10.1109/ICARCV.2004.1468985
SSID ssj0001877227
Score 2.3186812
Snippet A reliable and accurate estimation of the state-of-health (SOH) of lithium batteries is critical to safely operating electric vehicles and other equipment....
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 87
SubjectTerms Accuracy
Aging
Algorithms
Analysis
Artificial neural networks
Content analysis
Datasets
Deep learning
Electric vehicles
extreme learning machine
Failure
fennec fox optimization algorithm
grey relational analysis
Health
Lithium
Lithium batteries
Lithium cells
Machine learning
Mathematical optimization
Methods
Neural networks
Optimization
Optimization algorithms
Partial differential equations
Reliability (Engineering)
state-of-health
Temperature
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsQwEA4iHvQg_uL6Rw6CIATbbdI0x1V28eCqBwVvIUkTXXB3ZbcrHr34BL6hT-Ik6cqKqBfppbRTSDuTmfnSzDcIHRQZeDxRWOIcY4RayolI8pJw2xSQfadK8Nhsgl9cFLe34mqm1ZffExbpgeOHOwb70XAAaikdzRkXXBmuqHIqy0trA_BJuJgBU2F1pYCsscnjb8wMcP2xDnSVgD5Tb9eJ30I3E4gCX_9PXjmEms4KWq5zRNyKY1tFc3awhpZmmAPX0WsLhzSRDB2JlUS4DZM11iHibmgLjSEfxee96r436eOT6cDgbGxLDFId72MNhviDL8Fx9OuKTNx6uBuO4LH--8tbt_cMwu3nyi8j4pqM9Q53wxZMu4FuOu3r0zNSd1QghlJRkVIbK4TVicpMkloH6UCpOXO5giildJoqDhmU8vWuqdFUGcZMIiw4RGs0ozrbRPOD4cBuIdzknnvKZADGAZEYWgjGQBGpUS7n1GUNlEw_rzQ13bjvevEgAXZ4jchvGmmgo89HHiPXxm_CJ15nn4KeJjtcAOORtfHIv4yngQ69xqWfzDA4o-qaBHhFT4slWxwAiK-9zRto94skTELz9fbUZmTtBMbSR3oqYDbk2_8x2B202ISMKm6A20Xz1Whi99CCeap649F-sP8PDMMMtQ
  priority: 102
  providerName: Directory of Open Access Journals
Title A State-of-Health Estimation Method for Lithium Batteries Based on Fennec Fox Optimization Algorithm–Mixed Extreme Learning Machine
URI https://www.proquest.com/docview/2990498346
https://doaj.org/article/793b3b3446df465797ac7a4afa36dee1
Volume 10
WOSCitedRecordID wos001191599800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: P5Z
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database (Proquest)
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: M7S
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: BENPR
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2313-0105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001877227
  issn: 2313-0105
  databaseCode: PIMPY
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBZt3ENz6LvUTWp0KBQKwvuQVqtTsYtNC7W79AFpL0LSah1DbCf2puTYS39B_mF_SWd25TwozakYjPGOsRaNPn2jnfmGkJd5Coincs-qSgjGPZdMRVnJpE8UsO_YKNk2m5DTaX5woIpQHr0JaZVbTGyAulV7xrxtAOF-uXJ4Yt5HEOUK_ih7c3zCsIcUPmsNDTVukw6EPTH4eKd4Pym-XZ655MAlE9k-3Ewh2u_bRsQSYtIYvT3CxLor21Oj4v8vrG42oPH9_zv0B-ReIKJ00HrOQ3LLLx-R3SvyhI_JrwFtuChbVawtV6IjQIS22JFOmt7TFEgv_TCvD-enCzrc3id82viSgtUYgdxR2OToR0CnRSj7pIOjGQyqPlz8_nk-mZ-B8eisxrNKGhRfZ3TS5Hn6J-TrePTl7TsW2jYwx7mqWWmdV8rbyKQuin0FnKO0UlSZga3Q2Dg2EmiawaLa2FlunBAuUh5Q1zsruE2fkp3laumfEZpIFLhyKUT8EPY4nishEiBFzlSZ5FXaJdF2trQLmubYWuNIQ2yDE6z_muAueX3xk-NW0OMm4yG6wIUhanE3X6zWMx2WtgaEs_CCuLqseCakksZJw01l0qz0Pu6SV-hAGhEDBudMKHyAW0TtLT2QEOVggW_WJfvXLGGlu-uXt_6lA9Js9KU7Pb_58h65mwAha_Pn9slOvT71L8gd96Oeb9Y90hmOpsWnXnMm0cMM2M_wXojvvbCI_gBVWivY
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQ98I9YKOADCAnJan7seH1AaAu7atXdpYciVVxc23G2K3V3290Uyo0LT8B78FA8CWMn6Y8QvfWAconiSZQ4n7-ZsT0zAC_bKTKebDtaFJxT5pigMspyKlwi0fqOtRRVsQkxHLZ3d-X2EvxqYmH8tsqGEwNR5zPr58jXPG0yiY_O3h0eUV81yq-uNiU0KlhsuW9f0WVbvN38gP_3VZL0ujvvN2hdVYBaxmRJc2OdlM5EOrVR7ApUibkRvMg0MrU2cawFWhHax3zG1jBtObeRdEgKzhrOTIrPvQbXQ-kuHD_b_PPZnE4bbdVEVIunaSqjNROSZKLPG_vRFPmNe-fUX6gS8C9dEBRc787_1jV34XZtSpNOhf17sOSm92HlXILFB_CjQ4I1TWcFrQKuSBc5rQrXJINQPZug2U7643J_fDwh601P4tnC5QSlel4VWYJqmnxEfp3UgaukczDCTij3J7-__xyMT1C4e1L62VZS56wdkUHYqeoewqcr6YdHsDydTd1jIInwKbps6kyKjptlbcl5gmad1UUmWJG2IGrwoGydld0XBzlQ6J15CKm_INSCN6e3HFYpSS4TXvcgOxX02cTDhdl8pGpyUsjRBg_GsrxgGRdSaCs004VOs9y5uAWvPUSV5zx8Oavr0A38RJ89THUE-mk-RDlrweoFSeQqe7G5QbCquXKhzuD75PLmF3BzY2fQV_3N4dZTuJWgeVntBlyF5XJ-7J7BDfulHC_mz8OwJLB31WD_A2h9eTI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VghAceCMWCvgAQkKyNg87jg8IbemuqNpdKgFSb8Z2nO1K3d2ym0K5ceEX8G_4OfwSxk7ShxC99YByiZJJlDifv5lx5gHwLE-R8WTuaFlyTpljgsooK6hwiUTrO9ZS1M0mxGiU7-7KnRX41ebC-LDKlhMDURdz69fIu542mcRbZ92yCYvY2Ri8PvhMfQcp_6e1badRQ2TLffuK7tvy1eYGfuvnSTLof3jzljYdBqhlTFa0MNZJ6UykUxvFrkT1WBjBy0wja2sTx1qgRaF9_mdsDdOWcxtJhwThrOHMpHjfS3BZMJ7HIWzw_cn6To52ayLqH6lpKqOuCQUz0f-N_cyKfBDfKVUYOgb8Sy8EZTe4-T8P0y240ZjYpFfPiduw4mZ34Pqpwot34UePBCubzktaJ2KRPnJdncZJhqGrNkFznmxPqr3J4ZSst6OKe0tXEJQaeBVlCapv8g55d9oktJLe_hgHodqb_v7-czg5QuH-UeVXYUlTy3ZMhiGC1d2DjxcyDvdhdTafuQdAEuFLd9nUmRQdOstyyXmC5p7VZSZYmXYgarGhbFOt3TcN2VfotXk4qb_g1IGXx5cc1KVKzhNe94A7FvRVxsOB-WKsGtJSyN0GN8ayomQZF1JoKzTTpU6zwrm4Ay88XJXnQnw4q5uUDnxFX1VM9QT6bz51OevA2hlJ5DB79nSLZtVw6FKdQPnh-aefwlXEuNreHG09gmsJWp11kOAarFaLQ_cYrtgv1WS5eBJmKIFPF431P7vzgeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+State-of-Health+Estimation+Method+for+Lithium+Batteries+Based+on+Fennec+Fox+Optimization+Algorithm%E2%80%93Mixed+Extreme+Learning+Machine&rft.jtitle=Batteries+%28Basel%29&rft.au=Sun%2C+Chongbin&rft.au=Qin%2C+Wenhu&rft.au=Yun%2C+Zhonghua&rft.date=2024-03-01&rft.pub=MDPI+AG&rft.eissn=2313-0105&rft.volume=10&rft.issue=3&rft.spage=87&rft_id=info:doi/10.3390%2Fbatteries10030087&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2313-0105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2313-0105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2313-0105&client=summon